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Deducing Relevant Bridge Bidding 

Information from Double Dummy Data 

Daniel Winograd-Cort 

Abstract 

The game of Bridge has entertained card players for many years.  The players start by 

evaluating their hands individually and then using this information to bid for a contract.  Bidding 

systems provide a way for partners to communicate the values of their hands so they can find 

an appropriate contract, but they are often imprecise and can lead teams into contracts that 

they cannot keep.  Unfortunately, creating a new bidding system is a challenging task.  There 

are approximately  ways to deal 13 cards each to 4 people from a 52 card deck, but there 

are  possible bidding sequences (Butler, 2008).  Therefore, instead of creating a new 

bidding system, I propose to determine what information is most important to convey in order 

to achieve success.  As opposed to hand evaluation, this system will use relationships between 

two partners’ hands.  For this project, I train neural networks using sample simplified hands of 

Bridge (known as Double Dummy Bridge results) to find which particular patterns and 

relationships of cards represent the necessary information needed to complete the best 

possible contract.  Although I am unable to extract meaningful rules from the neural networks 

to find these combinations, I show the proper steps and the places for improvement. 

Introduction 

The game of Bridge is not a perfect information game, and as such, has no chance of being 

perfectly solved.  Furthermore, there is no proof that current strategies are optimal, so it may 

be possible to develop new strategies and systems superior to those currently in use.  In this 

paper, I will explore possible enhancements to hand evaluation and bidding.  I will assume a 

passing knowledge of Bridge play and terms for this report; if the reader is interested in more 

information, please see the supplementary Appendix of Bridge Terminology or the plethora of 

online and in print Bridge guides. 
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Bridge Information 

Almost all current Bridge bidding systems rely on a player evaluating his hand, determining 

the hand’s value (typically some number), and making a bid that communicates this value to his 

partner.  The evaluation must be complex enough to be meaningful, but simple enough to both 

easily calculate and communicate during bidding.  This must be done under the restrictions of 

the game of Bridge; the bids are allowed to have special meanings, but there is only a small, 

finite set of bids that each player may make. 

The most popular hand evaluation system is known as the High Card Point (HCP) system.  In 

the HCP system, a hand’s value is the sum of its cards where each ace is worth four points, each 

king is worth three points, each queen, two points, each jack, one point, and all other cards are 

worthless.  If a team has a combined score of over 26 points, then they should attempt to bid to 

a game contract (Rubens, 1969). 

An experienced Bridge player will recognize that this is an oversimplification of the HCP 

system.  To fine-tune your hand score, it is necessary to account for the distribution of suits in 

your hand, whether your strongest suit is the same as your partner’s or perhaps one of your 

opponent’s, and many other small factors.  In addition, if there is going to be a trump suit, the 

players want to assure that they have at least eight of the thirteen trump between them. 

Are we missing something?  Maybe extra points should be awarded if I have a long suit 

where my partner has none of that suit.  Perhaps points should be subtracted if I have a king 

and my partner has neither the ace nor the queen (this is a scenario that could lead to a finesse, 

a play where the king is denied taking any tricks by the opposing team).  Unfortunately, since 

HCP and other hand evaluation systems look only at each individual hand, they won’t account 

for any of these things. 

I will define an information system to be a set of rules based on relationships in cards 

between two teammates’ hands that, when satisfied, predicts success accurately.  If my partner 

and I each have few cards in a suit, HCP tells us to add extra points.  However, more points 

should be awarded if those suits are different than if they are the same.  HCP does not account 

for which suit is which as it does not compare between hands; a good information system, on 

the other hand, would account for such scenarios. 

Experimental Technique 

The goal of this project is to determine an information system that can be used by a new 

bidding system to allow better bidding accuracy.  A decision tree seems like the obvious choice 

at first, but this proves problematic.  In order to discover a set of constraints like this, one 

would need to branch on every detail about the hands.  For example, one way to branch would 

be to ask at each node, “Does the hand contain this card?” for every possible card.  If I branch 

on the cards of just one hand, the tree would have  outputs, and unfortunately, generating 
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enough sample data to extract useful information from this tree would take on the order of 

millennia.  A solution to this problem may be to choose the set of information one thinks is 

correct and use the tree to check how important it is.  However, it would be difficult to 

determine which set to use.  Decision trees are appropriate for verification purposes, and in 

fact, decision tree based algorithms are used to test new strategies, but they are not useful for 

generating new strategies. 

A neural network, however, can be trained using all of the cards in the hands as its input 

without needing too many training samples.  As it learns, it will identify the importance of 

various features of the hand; each hidden node in the network will identify a relationship about 

the inputs and affect the output proportionally to how important that relationship is.  Thus, I 

will attempt to create a neural network that can identify when its input hands will lead to 

success and then extract the most important rules from it. 

Experimental Design 

General Neural Network Design 

Neural networks are fickle constructs and have many adjustable parameters that require 

fine-tuning to maximize the network’s efficiency.  I have designed seven networks with 

common trends, which I describe below. 

Structure 

Each network is composed of a layer of input nodes, a single layer of hidden nodes, and a 

single output node that indicates success or failure.  Neural networks have the capacity to be 

much more complicated than this, and if my goal were to determine, given two input hands, 

the chance of success, I would use a more complex neural network.  However, my goal is to 

extract simple and meaningful rules from the network, and as the network becomes more 

complicated, the rules become more obfuscated. 

The networks I test will vary in how many hidden nodes they have and how they are 

connected to the inputs.  Although one of the primary reasons for choosing neural networks for 

this project is so that I would not have to exert any influence on how they learn, in practice, 

some guidance is necessary.  Meaningful rules may prove too difficult to extract from fully 

connected neural networks, even with only one hidden layer. 

Training 

Because Bridge is not a perfect information game, a minimax algorithm cannot be used.  

Moreover, it is not even certain that every player will make optimal plays.  Therefore, for the 

purposes of this project, I will be analyzing perfectly played hands of Double Dummy (DD) 
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Bridge rather than actual Bridge.  DD Bridge is a perfect information variant of Bridge that can 

easily be solved for each hand.  It is so similar to actual Bridge that it is commonly used to 

predict “par” for the hands. 

Although DD Bridge is easy to solve, it is still time consuming.  Luckily, Dr. Matt Ginsberg, 

creator of the GIB Bridge AI (Ginsberg, 2001), has graciously provided me with a database of 

over 700,000 deals and their DD results.  Thus, all of the networks will be trained using 

supervised learning with results from these solved DD hands. 

The learning rates and momentums will be adjusted as necessary as a fine-tuning step of 

network creation and training, and an annealing algorithm is used to help find good minimums 

as well.  The number of training patterns will also be varied to maximize the accuracy of the 

trained system: too few training examples could result in inaccuracies due to insufficient data, 

but too many examples could cause problems with overtraining.  Only data from the best-

trained networks is presented. 

Performance Analysis 

There are two types of errors that any binary system can produce: it can predict success 

when it should predict failure, and it can predict failure when it should predict success.  I will 

refer to these as “set errors” and “miss errors” respectively because a team will get “set” if the 

system inaccurately predicts success and will “miss” an opportunity if the system inaccurately 

predicts failure.  In the game of Bridge, these errors should not necessarily be treated equally.  

Missing the potential of a hand because of an overly strict system is bad, but bidding too high 

and getting set is often much worse.  Luckily, the output of a network is a real number between 

zero and one where zero indicates failure and one indicates success.  When analyzing this data, 

I need to choose an appropriate cutoff to minimize the total error.  Therefore, each system 

tested will output as its result a graph of its errors as a function of this cutoff. 

To measure the performance of a given network, I will compare it to that of a modified HCP 

system (the team needs at least eight trump as well as 26 high card points to complete their 

game contract). 

Rule Extraction 

If a network performs exceptionally well, I will apply the rule extraction techniques on it.  I 

have three methods for extracting meaning from a trained neural network: 

Zeroing Weights 

I assume that the important information that a node receives has a large magnitude weight.  

Therefore, to simplify the node, I will set small values to zero.  This can diminish the accuracy, 

but it is a fast way to simplify a set of hidden nodes. 
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Rounding Weights 

Similar to zeroing weights, the process of rounding weights allows all weights to be only a 

certain set of values.  This does not have as significant an impact on the performance as zeroing 

the weights as it leaves more information that the network has learned intact.  However, the 

more information the network has, the harder it is to find patterns in it that will lead to rules. 

Examining Hidden Values 

I will examine individual hidden nodes to deduce their effect on the final output of the 

network.  One way to determine influence on the final output is by examining the ratios of 

weights of the inputs to the final output: a large weight indicates a strong influence.  Also, if a 

node mimics the value of the final output closely, it may be of primary importance where the 

others are there mainly to correct some of its mistakes.  Alternatively, if a node has a very small 

weight or comes out consistently close to zero or one, then it does not have a significant impact 

on the final result. 

Implementation 

All code for this project is written in Java.  I utilize two outside libraries to assist in the 

coding: Joone (Marrone, 2008) and Jama (JAMA: Java Matrix Package, 2005).  Joone, a Java 

Object Oriented Neural Engine, allows me to create neural networks of varying structure 

quickly and easily.  I simply position the nodes and connections, supply training information and 

learning parameters, and run the neural network for the desired number of generations.  It 

uses a form of gradient descent to lower the root mean square error of the outputs.  

Unfortunately, Joone was designed to make neural networks that solve problems rather than 

neural networks that are used to find rules.  Ultimately, I use Joone to train the network and 

then Jama, a Java matrix package, to examine the weights and verify their accuracy. 

Input Data 

To train the network, I want to use information about the partners’ hands as input and 

whether they will complete their contract as output.  The hands themselves will dictate which 

contract the partners will try to complete, the nature of the bidding system will direct them to 

an ultimate bid, and their opponents’ hands will impact how many tricks they take.  In fact, 

even if we fix two players’ hands and choose an appropriate contract, there is no sure way to 

tell if they will succeed because the opponents hands are still unknown.  To avoid these 

complications, we will be using Double Dummy results instead. 

To further simplify the data, we will consider only the information necessary for a team to 

take ten tricks when Spades are trump (this is known as a game bid in a major suit and has 

significance in scoring). 
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I formatted the data from Matt Ginsberg’s Double Dummy database into 104 binary digits 

representing whether, for each card, the player or his partner had it.  That is, the first 52 bits 

represent each card and if the first player has it, and the second 52 bits represent each card and 

if his partner has it.  Unfortunately, there are redundancies in this data (clearly, if one player 

has a card, the other certainly will not), but neural networks train much better on binary 

systems than trinary ones.  Success is a binary digit based solely on whether the partnership can 

make 10 tricks with Spades as trump. 

Tested Neural Networks 

I have chosen seven neural network designs that may provide good results when trained 

and examined.  I will briefly describe them here. 

Full 50 Network 

The 104 input nodes are fully connected to 50 hidden nodes that all feed directly into the 

output node. 

Full 5 Network 

This network is similar to the previous one, but here only five hidden nodes to simplify rule 

extraction. 

High Network 

This network only connects the high cards (10, jack, queen, king, and ace) and the trump 

suit cards to the five hidden nodes.  It is similar to the Full 50 and Full 5 networks, but all 

connections from a low card in a non-trump suit are zero, and so those inputs are ignored.  The 

purpose of this net is to find rules specifically having to do with trump length and high cards.  

Hopefully, the result will be similar to, if not better than, the HCP model. 

Custom 34 Network 

This network has many specified hidden nodes that may take on special tasks.  The first and 

second hidden nodes receive information only from the trump cards for the first and second 

player respectively.  The third and fourth hidden nodes receive information only from the jacks, 

queens, kings, and aces of the first and second player respectively.  The next 10 nodes have 

access to all of the first hand, and the following 10 nodes have access to only the second hand.  

The final 10 nodes are fully connected. 

Custom 9 Network 

This is identical to the previous except that it has only 2 nodes for each hand and 1 node for 

all of the inputs. 
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Distribution Network 

This network examines only the distributions of the suits in the hands.  The data is pre-

processed so that there are eight sets of inputs, each corresponding to a suit in one of the 

hands.  Each set of inputs consists of 14 values where the first represents having 0 cards of the 

given suit in the hand, the second represents having 1 of that suit, and so on.  Thus, for each set 

of 14 values, one will be set to one and the others to zero.  Each suit’s 14 inputs is connected to 

a different hidden node, and, as usual, all of the hidden nodes are connected to the output. 

HCP Seeded Network 

This network is designed to model how HCP works.  It has two hidden nodes, one for high 

card points and one for trump cards.  Further, its weights and biases are pre-seeded to match 

the HCP.  That is, it counts each trump card as 1 and returns success only if there are more than 

8 total.  Also, it weights the high cards just as HCP does, and it returns success only if there are 

more than 26 points. 

Results 

An Analytical Look at HCP 

Using a simple decision tree on the Double Dummy results, I was able to determine the set 

error rate and miss error rate with various HCP demands.  These graphs are shown below in 

figures 1 through 3. 
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Figure 2 

 
Figure 3 

Performance 

The graphs below (Figures 4 through 10) show the set error rate versus the miss error rate 

of the seven neural networks: 
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Figure 4 
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Figure 6 

 
Figure 7 

80.5%
82.1%

83.8%
85.7%

87.5%
89.2%

91.1%
93.0%

95.2%

97.4% 97.9% 98.5% 99.2% 99.7%

70.0%

80.0%

90.0%

100.0%
M

is
s 

Er
ro

r 
R

at
e

Set Error Rate

High Network

19.0%
21.9%

25.0%
28.4%

32.2% 37.0%
42.5%

50.1%

59.3%

71.1%
75.5%

80.4%

87.5%

92.9%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

M
is

s 
Er

ro
r 

R
at

e

Set Error Rate

Custom 34 Network



11 

 

 
Figure 8 

 
Figure 9 
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Figure 10 

Rule Extraction 

The two most promising networks for rule extraction are the Full 5 Network and the Custom 

9 Network.  Rule extraction results follow here. 

Full 5 Network 

The following graph (Figure 11) shows the network with all weights with magnitude less 

than 15 set to zero: 

 
Figure 11 Full 5 Network with all weights  set to zero 
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This next graph (Figure 12) shows the network with the weights rounded to the nearest 10 

(i.e. -40, -30, …, 30, 40): 

 

Figure 12 Full 5 Network with all weights rounded to –  

This final rule extraction graph (Figure 13) shows the individual hidden nodes and their error 

rates: 

 
Figure 13 
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Custom 9 Network 

The following graph (Figure 14) shows the network with all weights with rounded to the 

nearest 5: 

 

Figure 14 Custom 9 Network with all weights rounded to –  

This graph (Figure 15) shows the individual hidden nodes and their error rates: 

 
Figure 15 
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Conclusions 

First, I will examine the HCP graphs (Figure 1, Figure 2, Figure 3).  It is interesting to note 

that at the standard HCP values (26 HCP and at least 8 trump), there is only a 0.2% chance of 

getting set, but 77.1% of hands that can make the contract will never get bid.  These values are 

far from equal; clearly, Bridge players prefer a system that keeps the set error rate very low and 

are less concerned with the miss error rate.  Because the output node of a neural network is a 

real value between zero and one, it is a simple matter to adjust the cutoff of what is a success 

or failure to produce a given set error rate.  Thus, the graphs of network performance are all 

shown as one error rate versus the other. 

Performance 

The High Network (Figure 6), the Distribution Network (Figure 9), and the HCP Seeded 

Network (Figure 10) all have exceptionally high error rates.  The common link between these 

networks is that not all of the original data is used in determining the output.  The apparent 

conclusion is that the missing inputs are vital to determining success; however, HCP is only 

given the number of trump and the number of jacks, queens, kings, and aces, and it can 

determine success to a much better accuracy. 

Graphs of the remaining networks clearly show that they have been trained to minimize 

both errors equally rather than weight one as more important than the other, which is a 

problem because I am looking for a system that will appease Bridge players who want a 

specifically small set rate error.  Joone uses the root mean square error as the error function 

that it tries to minimize in training, but to get data that has a low miss error rate at the 0.2% set 

error rate level, it may be necessary to use a function that specifically tries to minimize set 

errors.  It is evident from most of the graphs (especially the Full Networks: Figure 4 and Figure 

5) that the networks performs better than standard HCP when the set error rate is allowed to 

be higher.  However, the networks’ miss error rates rise drastically as the set error rate is 

lowered to very small values. 

Contrary to expectation, the Full 5 Network (Figure 5) outperforms the Full 50 Network 

(Figure 4) and the Custom 9 Network (Figure 8) outperforms the Custom 34 Network (Figure 7).  

The most logical explanation is overtraining.  The extra hidden nodes allow the networks to find 

random relationships among the training inputs that have no causal relation to the output but 

reduce the root mean square error anyway.  When tested on new data, the over trained 

networks perform worse than those that did not have enough nodes to find these meaningless 

relationships. 

The only network that actually predicts success with better accuracy than the HCP model is 

the Full 5 Network.  However, because the Custom 9 Network performs reasonably well and is 

another type of network, I use them both in further analysis. 
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Rule Extraction 

As can be seen in the graph of performance with zeroed weights (Figure 11), zeroing has 

large negative effects on performance.  At the 0.2% set error rate level, the miss error rate 

climbs from 76.4% to 99.1%.  No usable rules can be extracted from this data. 

Rounded weights prove more useful.  Performance after weight rounding is shown for the 

Full 5 Network and the Custom 9 Network in Figure 12 and Figure 14 respectively.  The 

rounding parameters were chosen to maximize the simplification while minimizing the damage 

to the network’s performance.  For example, rounding to the nearest 7 for the Custom 9 

Network increases the miss error rate by over 10% (at set error rate = 0.2%) compared to the 

nearest 5, but rounding to the nearest 3 only decreases it by less than 1%.  Although the 

performance has gotten worse (the HCP model is now slightly better), the weights are greatly 

simplified, and rule extraction seems possible.  However, I am unable to deduce any meaning 

from the tables of weights (see Table 1 and Table 2 at the end of this document). 

Examining individual hidden nodes reveals little useful rule-making information.  The 

weights of the different nodes are fairly similar, and no one node accurately predicts the final 

output (the weights can be seen at the bottoms of Table 1 and Table 2). 

Discussion and Further Research 

I did not determine a better system than the HCP system to use for determining accurate 

contracts, but that does not mean that another does not exist.  In fact, there are already known 

modifications to HCP that increase its accuracy (Rubens, 1969).  It is plausible that a system that 

looks at relationships between hands can predict success at even greater accuracy than 

currently used methods. 

The next step in this research is to build a new neural network engine that does not solely 

try to reduce the root mean square error, but rather tries to reduce a custom error that can be 

adjusted to assure a very small set failure error.  From there, new network structures as well as 

ones like the ones I tested here should be trained and tested.  The results from this experiment 

can act as a guide to determining appropriate test network structures.  Future neural networks 

should have fewer than thirty-four hidden nodes (and possibly fewer than that) as too many 

causes overtraining.  Also, the neural networks should have access to the entire input of the 

two hands; some input values can be set to zero so long as those values are not zero across all 

hidden nodes. 

Another path to pursue would be to use more advanced rule extraction techniques as mine 

failed to adequately extract a small set of rules. 

If a set of information is found that seems suitable, it must be tested and verified. First, it 

should be tested using a typical decision tree that branches on whether the conditions of the 

set of information are met or not.  Next, it should be tested using a standard Bridge simulation 
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(single dummy as opposed to Double Dummy).  Because Bridge is not a perfect information 

game, each player’s knowledge must be declared; for this simulation, each player would know 

his hand, the dummy’s hand, and the set of information that is being tested.  In a real game, 

that set of information would be made known through the bidding, so in the simulation, the 

players should know about it.  If the experimental information set performs well on these tests 

(if it continues to accurately place teams in appropriate contracts, then all that is left to be done 

is the challenging task of creating a new bidding system that can communicate the information 

effectively enough to get a team to their desired bid. 

Appendix of Bridge Terminology 

A Round of Bridge 

Each player is dealt thirteen cards randomly from a standard deck of 52; this is the player’s 

hand.  The round is then split into two phase: bidding and gameplay.  During bidding, the 

players bid, auction style, for the contract of the round.  Each subsequent bid raises the 

contract, and if there are three passes in a row, the last player to bid wins the contract. 

Once the bidding is over, the gameplay begins.  One of the players who won the contract 

reveals his hand to the table (he is the dummy); his hand is controlled by his partner (who is 

known as the declarer).  Thirteen tricks are played, and the score is calculated based on the 

contract decided during the bidding and how many tricks each team won: the contract winning 

team gains points if they took enough tricks to satisfy their contract, and the opposing team 

gains points if they did not. 

Double Dummy Bridge 

Double Dummy (DD) Bridge is a perfect information variant of Bridge useful for simulations.  

As stated above, in a round of Bridge, one player is declared the dummy and lays his hand on 

the table for all the other players to see.  In DD Bridge, one player from each team is a dummy.  

Each remaining player knows his own hand and two other hands and can then perfectly predict 

his opponent’s hand.  Thus, it is a game of perfect information and can be solved to find the 

perfect plays using a minimax algorithm. 

In the world of Bridge research, there is serious discussion about the accuracy of the Double 

Dummy result as compared to the actual Bridge result.  The reasoning behind it has to do with 

special scenarios that may arise in Bridge gameplay where, because not all of the information is 

known, a player may inadvertently make a sub-optimal play that may change the number of 

tricks a team takes.  However, Double Dummy results are often used in studies such as this one 

as they tend to be a good estimate of how a real hand of Bridge will go (Ginsberg, 2001). 
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Contract 

The highest bid made during the bidding phase becomes the contract for the round.  The 

team that made that bid is under contract to take a certain number of tricks during the 

gameplay.  If your team has the contract, and you take that number of tricks, then you gain 

points.  However, if you do not take enough tricks to satisfy your contract, your opponents gain 

many points.  The penalties for missing the contract (known as “getting set”) are severe. 

Game Bid 

A Game Bid is a contract that one team makes that is so valuable that, if it is successful, that 

team wins the game.  Note that Bridge is played in matches, so although winning a game is 

important, it does not mean that the players stop playing.  One strives to always bid at least as 

high as one of the possible game bids (there are five) as they provide significantly more points 

than the bids just below them.  This paper looks at the Major Suit Game Bid, a contract where 

either Spades or Hearts is trump and the team must take ten of the possible thirteen tricks. 

Trick 

Each trick consists of one player leading a card and the other three players playing one of 

their cards on it.  Thus, each trick is 4 cards, and there are 13 tricks total.  The rules of trick 

taking are not relevant to this paper. 

Trump 

One suit may be determined as trump (this would happen in the bidding phase).  If this is 

the case, than a player can use a card in that suit to take a trick that a higher card in a different 

suit would have taken.  The specific rules are not necessary for this paper, but the fact that 

having more trump than your opponents greatly increases your chance of success is. 
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Rounded Node Weights from the Trivial Network that has 5 Hidden Nodes 
Card Node 1 Node 2 Node 3 Node 4 Node 5 

Contribution from Player: 1 2 1 2 1 2 1 2 1 2 

      
     

trump 0 0 10 0 0 0 -10 -10 -10 -10 

trump 0 0 10 10 -10 0 -10 -10 -10 -10 

trump 0 10 0 0 0 10 -10 -10 -10 -10 

trump 0 0 10 10 0 0 -10 -10 -10 -10 

trump 10 0 10 0 0 0 -10 -10 -10 -10 

trump 0 10 10 0 0 0 -10 -10 -10 -10 

trump 10 0 0 0 10 10 -10 -10 0 -10 

trump 0 10 10 0 10 0 -10 -10 0 -10 

10 trump 10 10 0 0 10 0 -20 -10 -10 -20 

J trump 10 10 10 10 10 10 -20 -30 -10 -10 

Q trump 20 10 20 10 10 10 -30 -30 -20 -10 

K trump 20 20 20 20 20 20 -30 -40 -30 -30 

A trump 30 30 30 30 30 30 -40 -40 -40 -40 

2 -10 -10 -10 -10 0 -10 10 10 10 10 

3 -10 -10 -20 -10 0 -10 10 10 10 10 

4 -10 0 -10 -10 0 -10 10 10 10 10 

5 -10 -10 -10 -10 -10 -10 10 10 0 10 

6 -10 -10 -10 -10 -10 -10 0 10 10 10 

7 -10 -20 -10 -10 0 0 10 10 10 10 

8 -10 -10 -10 -10 -10 0 10 10 10 10 

9 -10 -10 -10 -10 0 0 10 10 10 10 

10 0 -10 -10 0 0 0 10 10 10 10 

J 0 -10 -10 -10 -10 0 10 10 10 10 

Q 0 0 -10 -10 10 10 10 0 0 0 

K 0 10 10 0 10 10 0 0 -10 0 

A 10 20 20 10 20 30 -10 -10 -10 -10 

2 0 -10 -10 0 -20 -10 10 10 10 10 

3 -10 -10 -10 0 0 -10 10 10 10 10 

4 0 -10 -10 0 -10 -10 10 10 10 10 

5 -10 -10 -10 0 -10 -20 10 10 10 10 

6 -10 -10 0 0 -10 -20 10 10 10 10 

7 0 -10 -10 0 -10 -20 10 10 10 10 

8 0 -10 -10 0 -10 -10 10 10 10 10 

9 0 -10 -10 0 -10 -10 0 10 10 10 

10 0 0 -10 -10 -10 -10 10 10 0 10 

J 0 -10 0 0 -10 -10 0 10 10 0 

Q 10 0 0 0 -10 -10 0 0 0 0 

K 20 10 10 10 0 -10 0 0 0 -10 

A 20 20 20 20 20 10 -10 -10 -20 -20 

2 -10 -10 -10 -10 -10 -10 10 10 0 10 

3 -10 -10 -10 -10 -10 -10 10 10 10 10 

4 -20 -10 -10 -10 0 0 10 10 10 10 

5 -10 0 0 -10 -10 -10 10 10 10 10 

6 -10 -20 -10 -10 0 0 10 10 10 10 

7 -10 -10 -10 -20 -10 0 0 10 10 10 

8 -10 -10 0 -10 0 0 10 10 10 10 

9 -10 -10 -10 -10 0 -10 10 10 10 0 

10 0 -10 -10 -10 -10 0 10 10 0 0 

J -10 0 -10 -10 -10 0 10 10 0 10 

Q 0 -10 0 -10 0 10 0 0 0 0 

K 0 0 10 0 10 10 0 0 0 0 

A 10 10 20 10 30 30 -10 -10 -10 -10 

      
Biases -4.94444 -5.51157 -4.65767 1.881697 3.257047 

Weight of Result 
toward Output 

1.893407 1.658424 2.468913 -2.92167 -2.11999 

Table 1 
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Rounded Node Weights from the Custom Network that has fewer (9) Hidden Nodes 

Card Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 

Contribution from Player: 1 2 1 2 1 1 2 2 1 2 

         
  

trump 5 0 0 0 5 -5 0 0 -10 -10 

trump 0 0 0 0 5 -5 0 -5 -10 -10 

trump 0 -5 0 0 5 0 0 0 -10 -10 

trump 0 0 0 0 5 -5 0 -5 -10 -5 

trump 0 -5 0 0 0 -5 0 5 -10 -10 

trump 0 -5 0 0 0 -5 0 0 -10 -10 

trump 0 0 0 0 5 -5 0 -5 -10 -10 

trump 0 0 0 0 5 -5 0 -5 -10 -10 

10 trump 0 -5 0 0 5 -5 0 -5 -10 -15 

J trump 0 -5 0 0 5 -5 5 -5 -15 -20 

Q trump 0 -5 0 0 10 -10 0 -10 -25 -20 

K trump -5 -5 0 -5 10 -10 10 -5 -35 -30 

A trump -10 -5 -5 -5 15 -10 15 -15 -40 -40 

2 0 0 0 0 0 0 -5 5 15 10 

3 0 0 0 0 -5 5 -5 5 10 15 

4 0 0 0 0 -5 0 -5 5 10 10 

5 0 0 0 0 -5 5 -5 5 10 10 

6 0 0 0 0 -5 10 -5 5 10 10 

7 0 0 0 0 -5 5 -5 5 10 10 

8 0 0 0 0 -5 0 -5 5 10 10 

9 0 0 0 0 -5 0 0 0 10 10 

10 0 0 0 0 0 0 -5 5 10 5 

J 0 0 0 0 -5 5 -5 -5 5 10 

Q 0 0 0 0 -5 5 0 0 0 5 

K 0 0 0 -5 0 0 5 0 -5 -5 

A 0 0 -5 -5 5 -10 10 -15 -15 -15 

2 0 0 0 0 -10 5 -5 5 10 10 

3 0 0 0 0 -5 5 -5 0 10 10 

4 0 0 0 0 -5 5 -5 0 10 10 

5 0 0 0 0 -5 5 -5 5 10 10 

6 0 0 0 0 0 5 -5 0 10 10 

7 0 0 0 0 -5 5 -5 5 10 10 

8 0 0 0 0 -5 5 -5 0 10 10 

9 0 0 0 0 -5 5 -5 5 10 10 

10 0 0 0 0 -5 0 -5 0 10 10 

J 0 0 0 0 -5 5 0 5 5 5 

Q 0 0 0 0 0 0 0 5 5 0 

K 0 0 0 0 5 -5 5 -10 -5 -5 

A 0 0 -5 -5 5 -5 10 -10 -15 -15 

2 0 0 0 0 -5 0 -5 0 10 10 

3 0 0 0 0 -5 5 -5 5 10 10 

4 0 0 0 0 0 5 -5 5 10 10 

5 0 0 0 0 -5 5 -5 5 10 10 

6 0 0 0 0 -5 0 -5 0 10 10 

7 0 0 0 0 -5 5 -5 5 10 10 

8 0 0 0 0 -5 5 -5 5 10 10 

9 0 0 0 0 -5 0 -5 5 10 10 

10 0 0 0 0 -5 5 -5 5 5 10 

J 0 0 0 0 -5 5 0 0 5 10 

Q 0 0 0 0 -5 5 0 0 0 0 

K 0 0 -5 -5 5 0 5 -5 -5 -5 

A 0 0 -5 -5 5 -10 10 -10 -15 -15 

         
 

Biases         -4.94444 

Weight of Result toward Output         1.893407 

Table 2 
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