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Di�erential privacy is a widely studied theory for analyzing sensitive data with a strong privacy guarantee—

any change in an individual’s data can have only a small statistical e�ect on the result—and a growing number

of programming languages now support di�erentially private data analysis. A common shortcoming of these

languages is poor support for adaptivity. In practice, a data analyst rarely wants to run just one function over

a sensitive database, nor even a predetermined sequence of functions with �xed privacy parameters; rather,

she wants to engage in an interaction where, at each step, both the choice of the next function and its privacy

parameters are informed by the results of prior functions. Existing languages support this scenario using a

simple composition theorem, which often gives rather loose bounds on the actual privacy cost of composite

functions, substantially reducing how much computation can be performed within a given privacy budget.

The theory of di�erential privacy includes other theorems with much better bounds, but these have not yet

been incorporated into programming languages.

We propose a novel framework for adaptive composition that is elegant, practical, and implementable.

It consists of a reformulation based on typed functional programming of the privacy �lters of Rogers et al.

(2016), together with a concrete realization of this framework in the design and implementation of a new

language, called Adaptive Fuzz. Adaptive Fuzz transplants the core static type system of Fuzz (Haeberlen

et al. 2011) to the adaptive setting by wrapping the Fuzz typechecker and runtime system in an outer adaptive

layer, allowing Fuzz programs to be conveniently constructed and typechecked on the �y. We describe an

interpreter for Adaptive Fuzz and report results from two case studies demonstrating its e�ectiveness for

implementing common statistical algorithms over real data sets.
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1 INTRODUCTION
Computing with sensitive data always involves a compromise between releasing useful results on

one hand, and protecting the privacy of individuals on the other. Among the numerous proposals
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for negotiating this inherent tension, di�erential privacy (Dwork et al. 2006b), with its �rm statis-

tical foundation and minimal assumptions on attacker knowledge, is appealingly resilient to the

vulnerabilities that have plagued other mechanisms (Mills 2006; Narayanan and Shmatikov 2008;

Singel 2009, etc.). It has become a topic of intense interest in the algorithms community (Dwork and

Roth 2014), with applications ranging from data mining (McSherry and Mironov 2009) and medical

research (Johnson and Shmatikov 2013) to collecting browser statistics in a deployed system at

Google (Erlingsson et al. 2014). Because the theory is somewhat subtle and typically requires

expert training to put into practice correctly, researchers have created a number of tools to assist

non-experts in using it (Barthe et al. 2012; Gaboardi et al. aper; Haeberlen et al. 2011; McSherry

2009; Narayan and Haeberlen 2012; Reed and Pierce 2010; Roy et al. 2010). Many take the form of

programming languages.

The most common presentation of di�erential privacy divides the world into a curator who is

responsible for protecting the privacy of some sensitive database, and an analyst who wants to

extract information from this database by asking the curator to evaluate probabilistic functions

against it and return their (sampled) results. Each of these functions must be (ε,δ )-di�erentially
private, where the parameters ε and δ quantify the amount of privacy lost when running this

function.
1

We refer to these functions as pieces, to emphasize the fact that the analyst generally

wants to combine many of them while performing some larger data analysis. (Coining the new

term “piece” also avoids misunderstandings that may arise from existing terms like “query,” which

have divergent meanings in various communities.)

For each new piece proposed by the analyst, the curator must decide whether the aggregate

privacy loss resulting from answering this piece together with the already-released results of

previous pieces will exceed a global privacy budget (εд ,δд) associated with the database. Formally,

the curator needs to check that the composite piece formed from all previous pieces plus this one is

(εд ,δд)-di�erentially private. The di�erential privacy literature provides many tools to help carry

out this check, ranging from simple (Dwork et al. 2006a,b) to sophisticated (Dwork et al. 2010;

Kairouz et al. 2015; Murtagh and Vadhan 2016), each with its own strengths and weaknesses.

More sophisticated tools often allow a user to run many more pieces within the same budget than

would be possible with simpler tools. However, until recently, most advanced tools did not support

parameter adaptive choice of pieces—in other words, the ε and δ parameters of the individual

pieces could not depend on the results from previous pieces and instead had to be �xed up front.

This explains why programming languages for di�erential privacy have only used the simplest

tools until now. However, the recent introduction of a new set of theoretical tools for parameter

adaptivity called privacy �lters (Rogers et al. 2016) opens the door to programming languages for

di�erential privacy that can execute vastly more pieces with the same budget.

Example. Suppose a curator has assembled a database of census data for a million people, each

represented as a record of 146 features. He sets the total privacy budget to (εд ,δд) = (2−1, 2−30).
The ε parameter indicates that he considers it acceptable that an adversary, after seeing the output,

will have at most a e2
−1
=
√
e ≈ 1.65× advantage over random guessing

2
in determining whether

the analysis was run with or without a given individual’s speci�c row of data, and the δ parameter

essentially bounds the chance that the output gives a larger advantage to about one in a billion.

1
Because our work focuses on cases where δ > 0, it lives in the realm of approximate di�erential privacy, which provides a

somewhat weaker guarantee than the δ = 0 pure di�erential privacy.

2
If the probability that an individual is in the dataset is p , then, before observing the outcome, no method an adversary

might use to guess the truth will be correct with probability ≥ p . Di�erential privacy promises that, even after the adversary

observes the outcome, no method he might employ will correctly guess the truth with probability greater than ≈ 1.65 · p .
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The analyst would like to use this data to generate a predictor for one of these features—whether

the person makes more than $50,000 annually—based on the values of the other 145.

The analyst suspects that a good predictor for this feature can be made by �nding some set

of linear relationships between features, so she decides to use a di�erentially private gradient-

descent algorithm, which can generate a linear polynomial predictor by iteratively deducing better

coe�cients, asymptotically approaching a best �t. Each round of the algorithm requires an (ε, 0)-
piece for each of the features in the database (where ε can be “tuned” based on desired accuracy

and size of the database—the optimal choice of ε in practice is an empirical question (Hsu et al.

2014), requiring running experiments of the sort that we describe in §5). For her particular needs,

the analyst chooses ε = 2
−11

, and she would like to continue performing rounds of the algorithm

until the per-round gain in predictor accuracy falls below a certain threshold.

The most basic tool for analyzing a sequence of pieces is the simple composition theorem, which

reports the aggregate cost of the sequence as the sum of the costs of the pieces; if the curator

uses this, he will permit exactly 1024 pieces (because 2
−11 × 1024 = 2

−1
), allowing the analyst

only 7 full rounds of her gradient descent algorithm (in aggregate, about a (.495, 0)-piece, since

145× 7× 2−11 ≈ 0.495). This is likely not enough, and because the curator must discard the database

once its budget is exhausted, it means any further computation—by any analyst, not just this

one—will require performing another census!

Another option for the curator is to use the advanced composition theorem, which uses the δ
portion of the budget (2

−30
in this case) to allow the ε cost of a sequence of pieces to grow much

more slowly. Using this theorem, the curator could allow about 24,000 pieces to be run, which

would permit well over 150 rounds of gradient descent, but it can only be used if the analyst declares

how many pieces she intends to run before she starts running them. In this case, she would only be

allowed to run those 150 rounds if she decided to use her entire budget on gradient descent before

seeing any of its results, which means that even if the algorithm converged to a result in many

fewer rounds, the rest of the budget would be wasted. Estimating how many pieces she will need in

advance is tricky, considering she will not know when to stop until she starts seeing intermediate

results from the algorithm, and while overestimating wastes the budget, underestimating means

incurring a high budget cost to continue. For this reason, most languages do not even bother to

support advanced composition tools. (Psi (Gaboardi et al. aper) is a notable exception, which we

discuss in §7.)

To solve this problem, the curator can use privacy �lters, which allow pieces to be adaptively

composed, meaning that subsequent pieces can be progressively checked against the budget instead

of needing to be declared up front. Indeed, if the curator uses the advanced privacy �lter, the analyst

can perform over 10,000 (2−11, 0)-pieces, and, when she decides to stop, any remaining budget is

preserved for use on future pieces that may have di�erent privacy parameters. This freedom comes

with some cost in ε over the advanced composition theorem (10,000 pieces instead of 24,000 in this

example), because the best known theoretical analysis of adaptive privacy �lters involves higher

constant factors, but it still represents more than a ten-fold improvement compared to simple

composition.

Contributions. We present the formal foundation, design, implementation, and evaluation of the

�rst di�erential privacy language to support advanced adaptive composition: Adaptive Fuzz. To

begin, we propose a new semantic presentation of adaptive composition. The existing model of

Dwork et al. (2010) is phrased in terms of total but not necessarily computable functions, whereas in

reality the curator, the analyst, and the pieces proposed by the analyst are all computable functions

that may sometimes diverge. Our presentation also cleanly distinguishes the roles of curator and

PACM Progr. Lang., Vol. 1, No. 1, Article 10. Publication date: September 2017.
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analyst by re-casting Dwork et al. (2010)’s model in the setting of typed functional programming

over streams.

Next, we sketch the design of a new programming language that implements this semantics.

This language, Adaptive Fuzz, supports two di�erent modes of programming. Functions in the data

mode represent individual pieces or their sub-functions; they are given direct access to the privacy-

sensitive database, and must therefore be proven to be di�erentially private. The adaptive mode

is used to assemble and combine individual data-mode pieces; successive pieces are constructed

in light of the results from executing earlier pieces. This mode-based design allows pieces to be

constructed adaptively and then proven private in between rounds of adaptivity by using a static

system in a piecewise static way.

We illustrate the programming style supported by Adaptive Fuzz by showing implementations

of two common statistical algorithms—gradient descent and stagewise regression—and measuring

the results of executing them on a million-entry database of U.S. census data. These case studies

demonstrate the gains that advanced privacy tools have over simple ones. In general, we see

e�ective gains of ten times as many pieces over simple tools (up to 40× in some cases), meaning

that Adaptive Fuzz programs can achieve the same accuracy with a signi�cantly smaller budget

than the same algorithms coded in other di�erentially private languages, or they can achieve higher

accuracy with the same budget.

In summary, our main contributions are:

• We o�er a novel semantic presentation of adaptive di�erential privacy, transposing the

privacy �lters of Rogers et al. to the world of typed functional programs over streams (§3).

Our presentation cleanly separates the roles of curator and analyst and enriches the original

total-functions-only account to deal with the possibility of divergent subcomputations.

• On the basis of this semantic account, we design an adaptively private programming

language, Adaptive Fuzz, using the static type system of Fuzz together with an outer

“adaptive layer” in which pieces are adaptively constructed and typechecked on the �y (§4).

We prove that Adaptive Fuzz programs �t the requirements of §3 and are thus guaranteed

to be di�erentially private.

• We demonstrate that Adaptive Fuzz achieves better privacy budget performance than

languages based on simple composition by implementing and measuring two common

statistical algorithms, gradient descent and stagewise regression (§5).

We conclude with discussions of limitations (§6), related work (§7), and future work (§8).

2 BACKGROUND
Di�erential Privacy is a notion of algorithmic stability introduced by Dwork et al. (2006b). This

section recapitulates key de�nitions and theorems from the literature presented in their original

form, modulo trivial notational changes (Dwork and Roth (2014) provide a more thorough intro-

duction); in particular, “functions” in this section should be understood as arbitrary total functions,

rather than computable partial functions.

Probabilities. A probability distribution π over X (written π : #X ) is a function f from reals

on the interval [0, 1] to values of type X where the probability of x is the integral of its indicator

function:

∫
1

0
1x (f r ) dr . (Here 1x , the indicator function for x , returns 1 when its argument is x and

0 otherwise. Thus, the integral indicates how much of the domain [0, 1] causes f to output x .)
3

We

3
A simpler approach, such as taken by Reed and Pierce (2010), is to represent probability distributions as lists of pairs

(pi , vi ) where the probability of the distribution taking the value vi is pi . However, this representation has the unintended

e�ect that, during evaluation, if one possible output of a distribution diverges, then the entire distribution diverges as

PACM Progr. Lang., Vol. 1, No. 1, Article 10. Publication date: September 2017.
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write Pr

x∼π
[x ∈E] for the probability of event E when x is sampled according to π . A randomized

function is a function that yields a probability distribution. Probability distributions form a monad

π �= f = λr . let (r1, r2) = split r in f (π r1) r2
return v = λr . v

where split is a surjective function that generates two real numbers from one in such a way that,

if its inputs are randomly distributed, then its outputs are too (e.g., by constructing the �rst one

using the odd digits of its input and the second using the even digits). We use this notation for

de�ning operations involving distributions.

As an example, the distribution representing a fair coin could be written as

fairCoin = λr . if r > 0.5 then “Heads” else “Tails”

and fairCoin would have the type #String.

Di�erential Privacy. Informally, di�erential privacy requires that small changes to the input of

an algorithm induce only small changes to the distribution of its outputs. Formally, these small

changes are measured using metrics dX : X × X → R≥0 for both the input and outcome spaces.

The input space represents the sensitive data and is typically a multiset of “rows” of data, each

representing a single individual. Its metric is hamming distance, where the distance between two

multisets is the number of rows that need to be added or removed to turn one into the other. The

output space is typically R with its usual metric. For all types X , two values x ,x ′ : X are neighbors

if dX (x ,x ′) ≤ 1.

Definition 2.1. A randomized function ϕ : D → #X is (ε,δ )-di�erentially private if, for every

pair of neighboring data sets d,d ′ ∈ D and for every event S ⊆ X ,

Pr

o∼ϕ(d )
[o ∈ S] ≤ eε · Pr

o∼ϕ(d ′)
[o ∈ S] + δ .

That is, for any set S of possible outputs, the probability that ϕ(d) will yield an output in S
di�ers from the probability that ϕ(d ′) will do so by at most a multiplicative factor of eε with an

additive o�set of δ . This guarantee also means roughly that either eε is a multiplicative bound on

the probability di�erence (with probability (1 − δ )), or the di�erence may be arbitrarily large (with

probability δ ).
4

Thus, as long as the probability of an event is non-zero, then as ε grows toward

in�nity, the allowable di�erence in the probabilities grows as well; of course, if the event has zero

probability in d , then its probability in d ′ is entirely constrained by δ . We usually use the shorter

name piece or (ε,δ )-piece to refer to an (ε,δ )-di�erentially private algorithm.

To keep his database entirely private, a curator might think to choose ε = δ = 0; this would

prevent any chance of leaking private data to the analyst, but it also restricts the analyst from

learning anything about the database. Instead, a typical curator must compromise: he does not

want the analyst learning an arbitrary amount very often, so he restricts δ to be very small, e.g.

2
−30

, but he allows ε to be large enough to permit useful results, e.g. 2
−1

.

well. Although our approach (distributions as functions) means that there is no unique representation for a distribution, it

permits enough laziness to prevent partial distributions from diverging.

4
This description is “rough” because it actually describes a property called “pointwise indistinguishability” rather than

di�erential privacy. Precisely, a function ϕ is (ε, δ )-pointwise indistinguishable over its input if, with probability 1 − δ ,

it satis�es log(Pr[ϕ(d ) = x ]/Pr[ϕ(d ′) = x ]) ≤ ε . This easily implies (ε, δ )-di�erential privacy, but the reverse direction

is true only up to a loss in parameters (as Kasiviswanathan and Smith (2014) show, (ε, δ )-di�erential privacy implies

(2ε, δ/(ε · eε ))-pointwise indistinguishability). Thus, our description is roughly valid because the notion of pointwise

indistinguishability carries over to di�erential privacy.
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Composition. Di�erential privacy is robust to both post-processing and composition, properties that

support modular programming. Informally, post-processing—database-independent computation

over the outcome of a di�erentially private computation—does not degrade privacy.

Lemma 2.2 (Robustness to Post-processing, Dwork et al. 2006b). Let ϕ : D → #X1 be any

(ε,δ )-piece, and let f : X1 → #X2 be an arbitrary randomized function. Then

λd . ϕ(d) �= f : D → #X2

is (ε,δ )-di�erentially private.

The composition of multiple pieces is itself always a piece (i.e., the composite is also di�erentially

private), with well-behaved degradation of the privacy parameters. Indeed, a number of di�erent

“composition theorems” can be found in the literature, each specifying a di�erent way of calculating

a bound on the privacy loss from a composite piece. The most commonly used are simple composition

and advanced composition.

Definition 2.3. A sequence ofk algorithmsϕ0, . . . ,ϕk−1 (writtenϕ
k
) with typesϕi : D×X i → #X ,

is a composable sequence. The k-fold composition of ϕ
k
is the algorithm ϕ : D → #

(
X k )

de�ned as

ϕ(d) = loop 0 nil, where

loop i σ =

{
return σ if i ≥ k
ϕi (d,σ ) �= (λx . loop (i + 1) (σ :: x)) if i < k,

nil is the empty sequence, and σ :: x and x :: σ are notations for attaching an element x to the end

or the beginning of a sequence σ respectively. We will use the notation oi to represent sequences of
realized outcomes (o0, . . . ,oi−1) ∈ X i

produced by the �rst i pieces in the sequence.

Note that we force each ϕi to have the same output type X rather than letting them be polymor-

phic. We could generalize slightly and de�ne composition with arbitrary output types, but since all

of the types must be �xed in advance, this generalization is not actually very useful. We therefore

assume all the output types are the same (e.g., a large sum type).

Theorem 2.4 (Simple Composition, Dwork et al. 2006a,b). Let ϕ
k
be a composable sequence

such that each ϕi , once provided with the X i
portion of its argument (which we write as ϕi (·,oi ) and

think of as having the type D → #X ), is (εi ,δi )-di�erentially private for every choice of realized

outcome vector oi (that is, regardless of what outcomes have been produced by the functions ϕ0 . . .ϕi−1).

Then the k-fold composition of ϕ
k
is (ε,δ )-di�erentially private for ε =

∑
i εi and δ =

∑
i δi .

The simple composition theorem bounds the privacy cost of a sequence of pieces by the sum of

their individual costs, pessimistically assuming every piece will behave like its worst case. However,

if we treat each piece as producing an independently random result, we can instead consider their

average privacy loss. Now ε grows only by the square root of the number of pieces being composed,

but a small amount of δ must be added to account for the low probability that all the pieces indeed

behave in a worst-case way. This argument is captured by the following “advanced composition”

theorem:

Theorem 2.5 (Advanced Composition, Dwork et al. 2010). Let ϕ
k
be a composable sequence

such that each ϕi (·,oi ) is (ε,δ )-di�erentially private for every choice of realized outcome vector oi .

Then, for all δ ′ > 0, the k-fold composition of ϕ
k
is (ε ′,kδ + δ ′)-di�erentially private, where

ε ′ = k · ε · (eε − 1) + ε ·
√
2k · ln(1/δ ′).

PACM Progr. Lang., Vol. 1, No. 1, Article 10. Publication date: September 2017.



A Framework for Adaptive Di�erential Privacy 10:7

Advanced composition often yields a signi�cantly better bound, even for very small choices of

δ ′ (as long as k is large enough and ε is small enough). For instance, suppose the analyst needs

to run k = 2000 (10−4, 0)-pieces. Simple composition tells us that the composite is a (0.2, 0)-piece,

whereas advanced composition, choosing δ ′ = 2
−30

, shows it is a (0.029, 2−30)-piece—a nearly 7×
improvement. Thus, if the curator permits this tiny δ , the analyst can run her algorithm using

much less budget.

Privacy Filters. The requirement in Theorem 2.5 that each ϕi be (ε,δ )-di�erentially private for

the same ε and δ may seem arti�cial. Indeed, with a little work the theorem can be generalized

so that each ϕi has di�erent (εi ,δi ) parameters; however, this is less useful than it might seem,

because these parameters must all be chosen before seeing any of the intermediate results. In

fact, the theorem actually fails to hold in the parameter-adaptive case, when these parameters can

themselves be chosen as functions of the outcome of previously run pieces ϕ0, . . . ,ϕi−1 (Rogers

et al. 2016). Indeed, even the de�nition of di�erential privacy becomes problematic when the εi and

δi parameters are not �xed constants: if εi and δi are functions of the previous realized outcomes

of the mechanism, then they cannot appear outside of the probability operator, as they do in

De�nition 2.1, because there they are unde�ned.

What we need is a more general de�nition of di�erential privacy that makes sense in the

parameter-adaptive case and that coincides with the standard de�nition when the parameters are

�xed. The idea for this, due to Rogers et al. (2016), is to build the sequence of pieces directly into

the de�nition and then, instead of looking simply at the �nal outcome distribution, look at the

di�erence in outcome probabilities for each piece.

Definition 2.6 (Privacy Loss with Adaptive Parameters, Rogers et al. 2016). Let ϕ
k
be a

composable sequence whose k-fold composition is ϕ, let εi and δi be functions of type X
i → R, and let

each ϕi (·,oi ) be (εi (oi ),δi (oi ))-di�erentially private for every choice of realized outcome vector oi . For
every pair of neighboring databases d and d ′, de�ne the realized privacy loss of ϕ over realized output

vectors to be

Lϕ (ok ,d,d ′) = ln

(∏k−1
i=0 Prx∼ϕi (d, oi )[x = oi ]∏k−1
i=0 Prx∼ϕi (d ′,oi )[x = oi ]

)
.

The de�nition of realized loss bears a strong resemblance to the de�nition of di�erential privacy.

To see this, consider the case where k = 1 (and obviously ϕ
1

= ϕ):

L(o,d,d ′) = ln

(
Prx∼ϕ(d ) [x = o]
Prx∼ϕ(d ′)[x = o]

)
.

Exponentiating both sides and multiplying by the denominator yields an equation similar to the

one in De�nition 2.1 (with ε = Lϕ (o,d,d ′), δ = 0, and S the singleton set containing o). Indeed, if

it can be proven that if Pro∼ϕ(d )[Lϕ (o,d,d ′) > ε] ≤ δ , then it follows that ϕ is (ε,δ )-di�erentially

private. This reasoning can be expanded to the k > 1 non-adaptive parameter setting, where all

the εi (oi ) and δi (oi ) are constants that do not vary with oi . In this case, ϕ is (ε,δ )-di�erentially

private (up to a small loss in the parameters—Kasiviswanathan and Smith (2014) provide an exact

statement) if Prok∼ϕ(d )[Lϕ (o
k ,d,d ′) > ε] ≤ δ .

To extend this idea to the parameter adaptive case, Rogers et al. (2016) de�ne privacy �lters,

which capture one of the main roles of composition theorems: providing a rule that allows the

curator to halt the analyst’s computation before the privacy budget is exceeded. Formally, a valid

privacy �lter provides a way to halt the computation, with probability 1 − δ , before the realized

privacy loss exceeds ε .

PACM Progr. Lang., Vol. 1, No. 1, Article 10. Publication date: September 2017.
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Definition 2.7 (Valid Privacy Filter, Rogers et al. 2016). Given a privacy budget εд ,δд ≥ 0,

a function f : (R≥0 × R≥0)∗ → {Cont,Halt} is an (εд ,δд)-valid privacy �lter if, for every k-fold

composition ϕ of a composable sequence ϕ
k
and for every pair of neighboring databases d and d ′,

Pr

ok∼ϕ(d )

[
Lϕ (ok ,d,d ′) > εд and f [ed0, · · · , edk−1] = Cont

where edi = (εi (oi ),δi (oi ))

]
≤ δд .

We can use a valid privacy �lter to compose parameter-adaptive pieces in such a way that, if

running some piece ever exceeds the budget, then no subsequent piece will run. That is, rather than

de�ne exactly the privacy cost for a �xed number of pieces as conventional composition theorems

do, we simply de�ne a valid composition of parameter-adaptive pieces to be the composition of as

many of those pieces as can be run before the �lter returns Halt. This is captured in the following

de�nition.

Definition 2.8 (Filtered Composition). Given an (εд ,δд)-valid privacy �lter f , the �ltered

composition ϕ : D → #(X ∗) of a composable sequence ϕ
k
is de�ned as ϕ(d) = loop 0 nil nil, where

loop i σ ed =



return σ
}

if i ≥ k

let ed ′ = ed :: (εi (σ ),δi (σ )) in
mat� f ed

′ with
| Halt → return σ
| Cont→ ϕi (d,σ ) �=
(λx . loop (i + 1) (σ :: x) ed ′)


if i < k .

The i argument to loop counts up to k , σ represents the sequence of results produced so far, and ed

is the sequence of (ε,δ ) pairs seen so far.

Choosing the privacy parameters of the next piece gives us an extra freedom of not needing to

worry about how many pieces to run; that is, parameter adaptivity allows us to, depending on any

intermediate result, set all future parameters to zero, e�ectively terminating all future querying.

Indeed, this is exactly what we made use of in our introductory example.

A simple result connecting privacy �lters to adaptive-parameter di�erential privacy is the

following:

Lemma 2.9 (Filtered Composition is Differentially Private, Rogers et al. 2016). If f is

an (εд ,δд)-valid privacy �lter, then the �ltered composition of a composable sequence ϕ
k
is (εд ,δд)-

di�erentially private.

Simple composition (Theorem 2.4) has a straightforward analog as a privacy �lter.

Theorem 2.10 (Simple Filter for Adaptive Parameters, Rogers et al. 2016). For all global

privacy budgets εд ,δд ≥ 0, the function

f [(ε0,δ0), · · · , (εk−1,δk−1)] =
{
Halt if

∑k−1
i=0 εi > εд or

∑k−1
i=0 δi > δд

Cont otherwise

is an (εд ,δд)-valid privacy �lter.

The analog of advanced composition (Theorem 2.5) has a more complex form.

Theorem 2.11 (Advanced Filter for Adaptive Parameters, Rogers et al. 2016). For a �xed

privacy budget εд ,δд > 0, the function

f [(ε0,δ0), · · · , (εk−1,δk−1)] =
{
Halt if

∑k−1
i=0 δi >

δд
2
or K > εд

Cont otherwise
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where

K =

k−1∑
j=0

εj

(
eεj − 1

2

)
+

√√√
2

(
k−1∑
i=0

ε 2i +
ε 2д

28.04 · ln(1/δд )

) (
1 +

1

2

ln

(
28.04 · ln(1/δд )

∑k−1
i=0 ε

2

i

ε 2д
+ 1

))
ln(2/δд )

is an (εд ,δд)-valid privacy �lter.
5

K looks a bit intimidating at �rst (and second) glance, but it shares a common structure with

ε ′ from Theorem 2.5. The �rst term is the sum of the ε values (which, if they were all the same,

would be kε) times an eε − 1 term. Then, instead of ε outside of the square root, K has a k · ε2 term

inside. The next term in the root is one plus the log of an ε2 term divided by an ε2д term, which

together behave as a scaling factor, and the last term is just a log of 1/δ term. Indeed, although this

de�nition is more complicated and has worse constants, it stems from the same core principles as

Theorem 2.5.

3 SEMANTICS OF ADAPTIVE COMPOSITION
We next describe a more “PL-oriented” presentation of adaptive di�erential privacy with �ltered

composition, using the language of typed functional programming. This alternative presentation

cleanly distinguishes the roles of curator and analyst, using the familiar concept of streams to

connect them in an intuitive framework. This framework handles all communication between

the two actors, allowing them to be de�ned simply as ordinary, independent functions, with no

need for, say, linear types (to prevent the curator from being called more than once in the same

state), built-in state (for either actor to recall information from earlier), or explicit random sampling

(because the curator cannot release a whole distribution to the analyst without fear that she will

sample it more than once).

Our semantics also addresses a number of smaller nits present in the previous section’s design,

such as: the number of algorithms to compose together being required up front, disallowing

divergence but allowing uncomputable functions, and halting �ltered composition entirely the �rst

time the curator rejects an analyst’s proposed piece.

We begin with some low-level components, next curators and analysts, and then the framework

that connects them. Finally, we describe how using the framework guarantees di�erential privacy.

In this section, all functions are computable and strict; they are also total unless indicated in the

type (where X⊥ includes both divergence and proper values of type X ).

Domain. As in §2, we �x a typeX to be the common output type of every piece. Simplistically, we

might take X to be R≥0, but more realistically, X will be some large union type. (In §4 it will include

all Adaptive Fuzz values, both atomic and structured, as long as they do not contain functions.)

Pieces. As in §2, a piece is conceptually just a di�erentially private function. To represent this

so that the curator is able to verify its privacy claim, the function is stored as code, together

with claimed ε and δ bounds on its privacy cost; when compiled, this code should yield an (ε,δ )-
di�erentially private function with type D → #X⊥ (note that⊥ binds more tightly than #, meaning

that here we are describing a distribution over potentially diverging values). Formally, the type of

pieces is

P = Code × R≥0 × R≥0.
The two numbers represent ε and δ , and given a piece p, we will write pε and pδ to access them.

To verify and compile pieces, we use a veri�er, of type

V = P → {VerRej | VerAcc : (D → #X⊥ )},
5K is su�cient but is not known to be a tight bound. Rogers et al. (2016) discuss this in more detail.
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where {Name1 : . . . | Name2 : . . . } is syntactic sugar for a binary sum type where we can name

(and later pattern match on) the two sides. A valid veri�er is one that returns VerAcc ϕ only

when it can prove that the code of the provided piece can be compiled into an appropriately typed

function ϕ that is di�erentially private with the given piece’s privacy parameters; it should return

VerRej otherwise.

Filters. Filters remain unchanged from the previous section except for a few syntactic di�erences:

F = (R≥0 × R≥0) list→ {FilRej | FilAcc}

In the previous section, we used the notation τ k to refer to sequences of a particular length. In an

e�ort to avoid complicating our type system with dependent types, we use only arbitrary length

sequences, and we use the familiar notation τ list instead of τ ∗ to refer to them (the nil, ::, and [· · · ]
notation stays the same).

Curators and Analysts. To clarify the interplay between curators and analysts, we model their

behaviors as streams. In particular, curators are modeled as functions on pieces. If an input piece

meets the curator’s constraints (that is, it satis�es a valid veri�er and its privacy parameters are

accepted by a valid �lter), then the result is a distribution over outputs; otherwise, the piece is

rejected. If it accepts the piece, it also returns a new curator (with an appropriately updated privacy

budget).

C = P →
{
CurRej | CurAcc : (#X⊥ ×C)

}
The analyst represents the (generally untrusted) user who wants to compute over the curator’s

private data. At each point, the analyst has the option to either end the interaction or propose a

piece, after which she is able to react to the curator’s response. We model this back-and-forth with

a continuation that is able to deal with either a sampled result from the curator or None, if the

curator rejected her piece. In both cases, the analyst’s continuation speci�es what she will do on

the next round of interaction (which may include diverging while thinking about what to do next).

A =
{
AnDone | AnNext : P ×

(
{Some : X | None} → A⊥

)}
Framework. The last piece of the puzzle is a framework that links an analyst together with a

curator, allowing the two to communicate in the expected way: the analyst proposes a piece, which

the framework passes on to the curator; the curator uses this to produce a new curator along

with a distribution of results (or CurRej); the framework uses this distribution and the analyst’s

continuation to produce a new analyst; and so on ad in�nitum until either one of the pieces diverges

or the analyst decides to halt or diverges herself. After each “round” we come back to where we

started, except that the analyst has presumably learned something and the curator has subtracted

the cost of the previous piece from his budget. An example interaction can be seen in Figure 1.

One subtlety of the curator-analyst interaction is that, if an analyst’s proposed piece is rejected by

the curator, the analyst should still have an opportunity to propose a new one. Because the analyst

itself is deterministic, and getting rejected by the curator is independent of the sensitive database,

it is a deterministic process to �nd the next piece that is acceptable. Therefore, the framework can

�nd the analyst’s next good piece (i.e. the next value that the curator will accept) using the function

advA de�ned in Figure 2. Then, the main function of the framework, to act as a communication

conduit between curator and analyst, can be de�ned as in Figure 3.

The run function takes a curator generator (a function from databases to curators), an analyst,

and a database, and it produces a probabilistic stream of results—that is, each time we poke it by

applying it to a trivial unit argument, it returns either Done or else a distribution over pairs of an
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v(p
1
) = VERREJ

CA

Curator provides result:

CURREJ

Piece p
2

is passed to 

Curator for processing.

Analyst proposes:

ANNEXT(p
2
,κ
2
)

Piece p
1

is passed to 

Curator for processing.

v(p
1
) = VERACC ϕ

f(ed :: (p
1ε

, p
1δ

)) = FILACC

ϕ(d) = π

Curator provides result:

CURACC(π,c′)

Analyst is done and so tells 

the framework: ANDONE.

Framework samples x from 

π and calls κ
1

with SOME x.

Framework calls κ
2

with 

NONE.

Analyst proposes:

ANNEXT(p
1
,κ
1
)

Framework halts execution.

Framework

Fig. 1. A sample interaction between analyst and
curator

advA : C → A→ A⊥
advA = λc . λa.
mat� a with
| AnDone→ a
| AnNext (p,κ) → mat� c p with
| CurRej→ advA c (κ None)
| CurAcc _→ a

Fig. 2. The advA function

run : (D → C) → A→ D → S
run = λд. λa. λd . run′ (д d) a
run
′= λc . λa. λ().
let a′ = advA c a in

mat� a′ with
| AnDone→ Done

| AnNext (p,κ) → mat� c p with
| CurRej→ ⊥
| CurAcc (π , c ′) → Next (π �= λx .
(x , run′ c ′ (κ (Some x))))

Fig. 3. The run function

X value and a new stream (or ⊥). Formally, the stream type is de�ned as

S = 1→ {Done | Next : #(X × S)⊥ }.

The database is provided as a separate argument to run so that we can talk about the di�erential

privacy of run applied to its �rst two arguments. The �rst step of run is to supply the database to

the curator generator and call run
′
. Then, the next acceptable piece by the analyst is found (or she

is done, in which case the stream is capped o� with a Done value), and it is provided to the curator.

Because the de�nition of advA guarantees that the curator will accept it, the rejecting case is left

unde�ned. In the accepting case, the distribution is used to create a Next value.

Correctness. If run is called with a generator that yields well-behaved curators and (importantly)

any analyst whatsoever, it yields a �ltered composition. The proof of this fact has to deal with

two issues. First, strictly speaking, the standard de�nition of di�erential privacy from §2 does not

actually apply to streams—it requires the output to be a distribution of values while streams have a

nested distribution structure—so we need to generalize it. We propose the following de�nition,

which meshes cleanly with the existing theory of adaptive composition.
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s ::= R≥0 | ∞ | e
τ ::= α | b | 1 | τ ([s] τ | τ + τ | (τ × τ ) | µα . τ | #τ
e ::= x | c | op e . . . e | fun (x : [s] τ ) {e} | e e | x = e; e | (e, e) | let (x ,x) = e; e

| inl e | inr e | case e of {inl(x) ⇒ e | inr(x) ⇒ e} | sample x = e; e | return e
| foldτ e | unfold e | forall t .e | e [t] | runfuzz [t] e e

Fig. 4. Adaptive Fuzz core syntax (in examples, we will use some standard syntactic sugar)

Definition 3.1. A function f : D → S is said to be (ε,δ )-di�erentially private if, for all k ∈ N,
the function fk d = unrollk 0 nil (f d) is (ε,δ )-di�erentially private in the standard sense, where

unrollk : N→ X list→ S → #(X list)⊥
unrollk = λi . λσ . λs .
if i ≥ k then return σ
else mat� s () with
| Done→ return σ
| Next π → π �= λ(x , s ′). unrollk (i + 1) (σ :: x) s ′.

Intuitively, if every �nite pre�x of a stream can be produced in a di�erentially private way, then

the stream can too.

Second, we need a “well-behaved curator generator.” We use this one:

mkC : V → F → (R≥0 × R≥0) list→ D → C
mkC = λv . λ f . λed. λd . λp.
mat� v p with
| VerRej→ CurRej

| VerAcc ϕ → let ed ′ = ed :: (pε ,pδ ) in
mat� f ed

′ with
| FilRej→ CurRej

| FilAcc→ CurAcc (ϕ d, mkC v f ed
′ d)

The mkC function accepts a veri�er, a �lter, a list of (ε,δ ) pairs representing the costs of prior

pieces, and a database. It then accepts and runs a piece only if it satis�es both the veri�er and the

�lter, in which case the “next” curator is the same but with an updated history of piece costs.

Theorem 3.2. If a is an analyst, v is a valid veri�er, and f is an (εд ,δд)-valid privacy �lter, then

the function run (mkC v f nil) a is (εд ,δд)-di�erentially private.

The full proof can be found in Appendix A.

4 LANGUAGE DESIGN
The semantics in §3 is abstracted on three parameters: a privacy �lter, a veri�er, and an analyst. In

our Adaptive Fuzz implementation, the �rst two are �xed—the �lter is built from the functions in

Theorems 2.10 and 2.11, and the veri�er is the typechecker for pieces that we sketch later in this

section—while the analyst is a program written in Adaptive Fuzz.

An Adaptive Fuzz program starts running in the so-called adaptive mode, where it has no direct

access to the private database and, accordingly, no need to worry about privacy. At some point, it

may need to run a subcomputation over the database—a piece; this requires switching into the data

mode, where the program is given access to the database but where its behavior is constrained by a
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stringent typechecker, which ensures that the database is handled in a di�erentially private way. If

the typechecker accepts the piece and there is enough global budget remaining to cover its privacy

cost, then the database is provided as an argument to the piece and the runtime system samples

from the resulting distribution to yield a concrete value. This value is globally published, meaning

that the analyst, now back in the adaptive mode, can use it to help determine the next piece she

will submit. The output of the whole program is the sequence of published results returned by

evaluation of successive pieces, plus anything else that the analyst cares to print.

This dual-mode design requires that the programmer code in two distinct styles, but the language

is built to make this easy. To minimize cognitive overhead and maximize opportunities for sharing

code (e.g., of library functions) between the two modes, both modes use exactly the same syntax,

which is shown in Figure 4. The di�erence is that functions in the data mode must pass the stringent

data-mode typechecker, while typing of adaptive-mode functions is looser. Speci�cally, the data-

mode typechecker uses elements of linear typing and makes explicit use of the s annotations in

the function type form τ ( [s] τ , while the adaptive mode typechecker uses a System-F-like

typechecker that ignores the annotations entirely.

After introducing the basics of a running example for the section, we will dive into speci�cs of

the data and adaptive modes and then conclude with a discussion about implementation details.

4.1 Running Example: Gradient Descent
We use a di�erentially private gradient-descent algorithm as a running example to demonstrate

various aspects of Adaptive Fuzz. This is not merely a toy example designed simply to show o�

language features; indeed, it is a bit more complex than that and will be the focus of our �rst case

study in §5. We begin with a brief primer on gradient descent.

Gradient descent is a simple and widely used optimization method that works to train many

machine learning models—particularly d-dimensional linear regression with the standard mean-

squared-error objective. Given a set of n records, xi ∈ Rd , each with a real-valued label yi , the goal

is to �nd a parameter vector θ ∈ Rd that minimizes the di�erence between the labels and their

estimates, where the estimate of a label yi is the inner product 〈xi ,θ〉 of θ and the corresponding

record. That is, the goal is to minimize the following loss function:

L(θ , (x ,y)) = 1

n
·

n∑
i=1

(〈xi ,θ〉 − yi )2

The algorithm starts with an initial parameter vector such as (0, . . . , 0), and it iteratively produces

subsequent θ vectors until some termination criterion is reached. For simplicity, we assume here

that the process continues until the privacy budget is exhausted, but of course, in practice, the

analyst may well choose to stop earlier if she �nds the accuracy gains per iteration are no longer

worth the cost.

Each iteration proceeds as follows. First, the algorithm computes the di�erence between the

actual label of each example and its estimate. This quantity is called the residual:

resid(θ , i, (x ,y)) = 〈xi ,θ〉 − yi =
d∑̀
=1

θ` · xi, ` − yi

The residual is weighted according to the value of each feature and summed over all records to �nd

the gradient vector of the loss function ∇L(θ , (x ,y)); the jth coordinate of the gradient is:

∇L(θ , (x ,y))j =
2

n
·

n∑
i=1

xi, j · resid(θ , i, (x ,y))
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This is then multiplied by the learning rate η (a parameter of the algorithm that acts as a scaling

factor) to yield a new parameter vector, which becomes the θ for the next round of the algorithm.

A simple way to make this algorithm private is to add noise to the gradient vector after each

round—i.e., to each individual component of ∇L(θ , (x ,y)). This noise must be scaled based on the

magnitude of the values in x and y (i.e., the sensitive values in the database)—the bigger the values,

the more noise must be added. However, if we allow this noise to get arbitrarily large, then we

cannot make any claims about how accurate the algorithm is. Therefore, we must bound the values

in the database; here, we will assume that they are all between 0 and 1. We can then leverage the

elegant accuracy analysis of Bassily et al. (2014).

4.2 Data Mode
The veri�er for Adaptive Fuzz needs to be able to prove that a given code fragment denotes a

di�erentially private piece. Fortunately, this is precisely what the Fuzz type system (Reed and

Pierce 2010) was designed to do. This is why the syntax of Adaptive Fuzz (shown in Figure 4) is

modeled after Fuzz itself:
6

so that we can use the Fuzz typechecking algorithm as our veri�er,

essentially unchanged. This section describes informally how the Fuzz typechecker works, aiming

for just enough detail that the reader can understand the empirical results and additional examples

in the following section. Reed and Pierce (2010) provide a full treatment.

The Fuzz type system proves di�erential privacy by tracking function sensitivity, a measure of

how strongly the output of a function can vary as its input varies. (Recall from §2 that dτ is the

metric over the type τ .)

Definition 4.1 (Function sensitivity, Dwork et al. 2006b). A function f : τ1 → τ2 is said to
be c-sensitive if and only if dτ2 (f (x), f (y)) ≤ c · dτ1 (x ,y) for all x ,y ∈ τ1.

For instance, f (x) = 2x is 2-sensitive because if |x − x ′ | ≤ 1, then | f (x) − f (x ′)| ≤ 2; similarly,

д(x) = x + 3 is 1-sensitive, while h(x) = x2 is not c-sensitive for any �nite c . The Adaptive Fuzz

type τ1 ([c] τ2 classi�es functions with c as a measure of their sensitivity; here, f would have the

type R([2] R, while д would have type R([1] R and h would have type R([∞] R, meaning

that it may use its argument an arbitrary number of times. Furthermore, because any function

that is c-sensitive is clearly c ′-sensitive for any c ′ > c , our use of the∞ annotation serves as a nice

pun: all functions that have the type τ1 ([c] τ2 also have the type τ1 ([∞] τ2 just as all �nite

values of c are less than in�nity. To extend sensitivity to functions over non-numeric types, we

equip every type with a distance metric. The typechecking process uses these metrics, along with

techniques drawn from linear type systems (Wadler 1990), to calculate sensitivities. The form of the

Fuzz typing judgment is

(x1 :s1 τ1, . . . ,xn :sn τn) ` e : τ .
This says that the open expression e is sk -sensitive in the variable xk for all 1 ≤ k ≤ n, or, in linear

typing terms, that e can use xk at most sk times. If sk = ∞, then e can use xk arbitrarily.

6
We do make two small technical changes to the formulation of Reed and Pierce (2010). First, rather than having a unique

!s operator for modifying the sensitivity of a variable, we merge this annotation into function de�nitions. Speci�cally,

the type τ1 ([s] τ2 can be thought of as desugaring to !sτ1 ( τ2 when s ∈ R≥0 and to τ1 → τ2 when s = ∞, and the

expression fun (x : [s] τ ) {e } to λx ′. let !x = x ′ in e when s ∈ R≥0 and to λx .e when s = ∞. Second, in Fuzz’s original

semantics, probability distributions are represented as lists of pairs of (non-lifted) values with their probabilities. Evaluating

an expression that results in a distribution requires evaluating every possible outcome of the expression, which means that,

if the expression has a non-zero probability of diverging, then its evaluation will simply diverge. Here, we instead use the

conventions of §2, where probability distributions are de�ned as functions from real numbers on the unit interval to (lifted)

output values. Because these functions are only evaluated on one sampled real number, they diverge precisely with the

probability of divergence and otherwise return a value. The proofs of Reed and Pierce (2010) go through unchanged. Lastly,

we omit &-pairs from this discussion, though they are handled by our implementation.
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Γ ` e1 : #τ Γ′,x :∞ τ ` e2 : #τ ′
Γ + Γ′ ` sample x = e1; e2 : #τ ′

Γ ` e : τ
∞Γ ` return e : #τ

Fig. 5. The typing rules for sample and return.

Function sensitivity by itself is not enough to prove di�erential privacy; in addition, the Fuzz

type system makes sure that the output of a piece is properly randomized—i.e., that each piece’s

result type is #τ , where # is the probability monad described in §2. A key insight in Fuzz is exactly

how sensitivity is tracked through the monad: the typing rules for this are shown in Figure 5. The

typing rule for the bind operator, written sample x = e1; e2, says that if e1 is c1-sensitive in some

argument and e2 is c2-sensitive in it, then no matter how e2 uses x , the whole expression will still

only be (c1 + c2)-sensitive in the argument. (This is described by the sum of the environments

Γ and Γ′, which combines the environments while adding together the sensitivities of matching

variables.) Basically, this means that sampled values can be used arbitrarily—that is, that they are

added to the context with an∞ annotation when e2 is typechecked. The typing rule for the return
operator simply de�nes return to be a function with no �nite sensitivity, re�ecting the fact that

the operation of injecting a value into the probability monad as a “point distribution” (assigning

probability 1 to that value) is not �nitely sensitive. This means that the argument of return cannot

depend on any �nite-sensitivity variables, which is expressed in the rule by scaling every sensitivity

in the environment Γ by∞.

To get useful (�nite-sensitivity) randomized computations, Adaptive Fuzz provides three prim-

itives implementing basic di�erential privacy mechanisms: the Laplace mechanism for adding

random noise, the exponential mechanism for privatizing non-real-valued queries, and the report-

noisy-max primitive for privately determining which of a group of counting queries has the highest

value (Dwork and Roth 2014).

Together, sensitivity checking and the probability monad give rise to the type system’s key

theorem:

Theorem 4.2 (Typing Guarantees Differential Privacy, Reed and Pierce 2010). A closed

piece e of type τ1 ([ε] #τ2 denotes an (ε, 0)-di�erentially private function from τ1 to τ2.

To make a formal connection between this soundness theorem and the framework proposed

in §3, we de�ne the Fuzz Veri�er to be a program that accepts a proposed piece coming from

the analyst, comprising an abstract syntax tree and a claimed privacy bound ε , uses the Fuzz

typechecking algorithm to check that the code has the type D ([ε] #τ , and, if so, produces a

VerAcc value containing the function produced by compiling the code (and otherwise returns

VerRej). Theorem 4.2 establishes that this veri�er is indeed valid in the sense of §3.

One subtlety worth noting is that the data-mode type system only deals in (ε, 0)-di�erential

privacy: all pieces have δ = 0, and the typechecker uses only the simple composition theorem

internally (it is essentially the typing rule for the bind operator of the probability monad). Non-zero

δ values arise only when many pieces are composed in the adaptive mode, where we apply an

advanced privacy �lter in �ltered (advanced adaptive) composition to calculate the privacy cost of

a whole computation.

Example. Figure 6 shows a data-mode piece that is ready to be inspected by the Fuzz Veri�er. It

implements the portion of gradient descent that updates a single parameter of the estimate vector θ .

The �rst line of Figure 6 de�nes a function updateParameter of �ve arguments. The �rst four

arguments are simple: ε is the amount of privacy budget the piece will use, p is the index of the
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function updateParameter (ε : R) (p : Z) (θ : R list) (n : Z) (db : [ε] (I × I list) bag) : #R {
v = calcGrad n θ p db;

sample vsample = add_noise (ε/2) v ;
return (2/n · vsample)
}
function calcGrad (n : Z) (θ : R list) (p : Z) (db : [2] (I × I list) bag) : R {
rowOp = fun (yrow : (I × I list)) : I {

let (y, row) = yrow;

x = listindex [I] p row;

clip

(
((calcResid θ row y) · x + 1)/2

)
};

v = bagsum (bagmap [I × I list→ I] rowOp db) ;
v +v − n
}
function calcResid (θ : R list) (row : I list) (y : I) : R {(

clip

(
listsum (listzip [R→ R→ R] mult θ row)

) )
− y

}

Fig. 6. Data-mode code defining the piece that is used for each parameter-update step of gradient descent

parameter that this piece will update, θ is the current estimate vector, and n is the size of the

database.
7

The �fth argument is the sensitive database, with type (I × (I list)) bag, where bag is the

built-in type of multisets. Here, the elements of the bag are pairs of a label and a list of features. I is a

special “clipped real” type that represents numbers in the unit interval [0, 1]. Following Theorem 4.2,

the output type of every piece must be in the probability monad; here it is a distribution over reals.

The next line of updateParameter is a call to calcGrad. The calcGrad function is 2-sensitive

in its database argument (as can be seen from the type annotation on its db parameter). This

is important for the next line, which injects v into the probability monad using add_noise, the

primitive implementing the Laplace mechanism (Dwork and Roth 2014). The �rst argument to

add_noise is the amplitude of the noise that will be added to the second argument. To make the

distribution ε-sensitive in db, this means adding noise with amplitude ε/2. Because this is in a

sample statement, this distribution is sampled, and the result is bound to vsample. The �nal line

scales vsample by 2/n and injects it back into the probability monad. Because return is not �nitely

sensitive in its argument, this means that the whole expression requires that vsample have an ∞
annotation in the context, but because sample does this (that is, it allows a sampled value to be used

arbitrarily without changing the sensitivity of the distribution it’s sampling), the whole expression

is still only ε-sensitive in db as required.

Next we have calcGrad, which calculates the gradient at a single parameter. It begins by de�ning

a function rowOp, which takes a row of the database and returns the residual at that row (using the

function calcResid) times the value of the parameter over which we are calculating the gradient

(extracted using a simple listindex function). It is critical that rowOp returns a clipped value (type I),
so it adjusts the resulting value to be between 0 and 1 with some simple arithmetic. (The function

7
Although there are formulations of di�erential privacy in which the metric on bags permits bag size to be public information,

the one we use considers it to be private. For our purposes here, we assume that the size of the database has been previously

released, perhaps as the result of a di�erentially private query (obviously, using up some of the privacy budget).
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rowOp has no explicit sensitivity declaration, so Adaptive Fuzz assumes that it is in�nite.) With

rowOp de�ned, calcGrad then maps it over the database and sums the resulting bag. Recall from

§2 that the distance between two multisets is the number of di�ering elements, which means

that mapping (which does not change the shape of the multiset) is 1-sensitive regardless of the

sensitivity of the mapped function, and because the map results in a bag of clipped values, summing

is 1-sensitive too (while if the values were arbitrary reals, summing would be in�nitely sensitive).

Finally, the last line of calcGrad doubles the result and subtracts the size of the database to “undo” the

simple arithmetic done in rowOp and recover the true gradient value; it is this last operation—adding

together two 1-sensitive values—that makes the function 2-sensitive in db in total.

The last function, calcResid, is simpler than the �rst two because it has no sensitive arguments.

It simply calculates the dot product of θ and the given parameter list by pairwise multiplying the

lists and summing the results and then subtracts the label value. By clipping the dot product, this

function guarantees that its result is between −1 and 1.

4.3 Adaptive Mode
In terms of syntax, the adaptive mode and the data mode are the same, a choice we made consciously

to allow code to be used in either mode. That said, while functions running in the data mode must

be carefully constructed so that the Fuzz veri�er can verify them, code in the adaptive mode is much

less restrictive. Instead of using the Fuzz typechecker, it uses a simple System-F-like typechecker

that uses the standard rules for a monad and ignores the annotations on arrows (treating ([c]
simply as→).

8
This typechecker is used primarily as a basic sanity check and is not essential to

the Adaptive Fuzz design: the adaptive mode could just as well be untyped.

The major additional feature of the adaptive mode over the data mode is the primitive form

runfuzz [τ ] ε e , which allows the analyst to enter the data mode and propose a piece.
9

Its parameters

are a result type τ (which must not contain any arrows), a privacy bound ε , and an expression e
representing a piece to be run. To evaluate this expression, we �rst run a partial evaluation pass over

e to make it easier to verify. This partial-evaluation step is a crucial detail, without which the Fuzz

veri�er would almost never be able to verify pieces built in Adaptive Fuzz. The Fuzz typechecker

requires all sensitivity annotations to be constants, but Adaptive Fuzz allows the annotations

to be arbitrary expressions to enable more adaptive programs. Thus, partial evaluation is used

to reduce the sensitivity annotations within e to constants, allowing Adaptive Fuzz programs

to be written with arbitrary expressions in sensitivity annotations. For instance, the function

updateParameter from Figure 6 will not be accepted by the Fuzz typechecker until it is provided

with its �rst argument, ε , and then partially evaluated so that the ε in the annotation for db is

reduced to a constant. Indeed, it is this partial evaluation that allows us to write code that looks like

it has dependent types (e.g., updateParameter) without having to actually support dependent types.

Partial evaluation also monomorphizes polymorphic functions (since the Fuzz type system is also

monomorphic) and unrolls loops involving sensitive data, allowing more sensitivity annotations to

be reduced to constants.

Finally, the Fuzz veri�er is used to check that the partially evaluated piece has type D ([ε] #τ
for some τ . If not, runfuzz returns inl (), signaling failure. If so, the piece is executed, yielding a

distribution over results of type τ ; a concrete value v is sampled from this distribution, and inr v is

returned as the result of runfuzz.

8
Additionally, it collapses both tensor product pairs and &-pairs into the same type.

9
Of course, because it is part of the syntax, runfuzz could technically be used in the data mode, but the Fuzz veri�er will

always reject it, so it will never run there.
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evaluate : Exp→ A
evaluate exp = eval (exp, λx .AnDone)

eval : (Exp × (Val → A)) → A
eval (exp, κ) = mat� exp with
| x → ⊥
| c → κ c
| op e1 . . . ek →

evalList (toList e1 . . . ek , λl . κ (runPrim op l ))
| fun (x : [s] τ ) {e } → κ exp

| e1 e2 → eval (e1, λv1 . eval (e2, λv2 .
mat� v1 with
| fun (x : [s] τ ) {e

body
} → eval ([v2/x ]ebody, κ)

| otherwise→ ⊥))
| x = e ; e

body
→ eval (e, λv . eval ([v/x ]e

body
, κ))

| inl e → eval (e, λv . κ (inl v))
| inr e → eval (e, λv . κ (inr v))
| case e of {inl(x ) ⇒ el | inr(x ) ⇒ er } →

eval (e, λv .
mat� v with
| inl vl → eval ([vl /x ]el , κ)
| inr vr → eval ([vr /x ]er , κ)
| otherwise→ ⊥)

| (e1, e2) → eval (e1, λv1 . eval (e2, λv2 . κ (v1, v2)))
| let (x1, x2) = e ; ebody → eval (e, λv .

mat� v with
| (v1, v2) → eval ([v1/x1][v2/x2]ebody, κ)
| otherwise→ ⊥)

| foldτ e → eval (e, λv . κ (foldτ v))
| unfold e → eval (e, λv .

mat� v with
| foldτ v → κ v
| otherwise→ ⊥)

| sample x = e ; e
body
→ κ exp

| return e → κ exp

| runfuzz es e → eval (es , λs .
AnNext ((peval e, s, 0), λr .

mat� r with
| None→ κ (inl ())
| Some x → κ (inr x )))

evalList : (Exp list × (Val list→ a)) → a
evalList (lst, κ) = mat� lst with
| nil → κ nil

| (e :: es) → eval (e, λv . evalList (es, λvs. κ (v :: vs)))

Fig. 7. Adaptive Fuzz operational semantics

Operational Semantics. The operational semantics for Adaptive Fuzz is written in continuation-

passing style to mimic the analyst de�nition from §3. The types Exp and Val are type synonyms for

the type of abstract syntax trees and are used as the instantiation of the typeX as well as the type of

code used inside pieces; this makes it easy to generate pieces, and the Fuzz Veri�er de�ned earlier,

which works on ASTs, meets the speci�cation exactly. The type D is de�ned on a case-by-case

basis by the curator (this would have to be arranged with the analyst ahead of time). The other

types de�ned in §3 are all type synonyms. We examine a few cases in detail.

To evaluate let (x1,x2) = e; ebody , we �rst evaluate e . In the continuation, if the result of

evaluating e is a pair, then the elements of the pair are substituted for the variables x1 and x2 in

ebody , which is then evaluated (with the original continuation). Otherwise, evaluation fails (which

we model as diverging).

Because analysts are deterministic, they do not perform any computation within the probability

monad. Therefore, return and sample expressions are treated as values; they can be bound with

let and substituted elsewhere, but they are only truly evaluated by the curator when they are part

of a piece.

To evaluate runfuzz es e , the semantics says to �rst evaluate es , which should yield the expected

sensitivity of e . Then, we return an AnNext value to the framework. This value packages up the

partial evaluation of the expression to be evaluated (i.e., peval e), the ε bound s , the constant 0 for

δ , and a continuation that takes a result from the framework, converts None into an inl-tagged

value and Some : X into an inr-tagged value, and passes it to the current continuation. Because the
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function gradient (ε : R) (η : R) (θ : R list) (n : Z) : R list {
function inner (p : Z) : R list {
if p ≥ length [R] θ then {
nil [R]
} else {
case runfuzz ε (updateParameter ε p θ n) of {

inl (s) ⇒ nil [R]
| inr (v) ⇒ cons [R] (η · v) (inner (p + 1))

}}}
θ ′ = listzip [R] [R] [R] minus θ (inner 0);
if length [R] θ ′ < length [R] θ then { θ } else { gradient ε η θ ′ }
}

Fig. 8. Adaptive mode code that implements the outer loop of gradient descent by repeatedly calling
updateParameter (from Figure 6)

result of the query (i.e., the type X in §3) is represented as an abstract syntax tree just like the type

Exp (Figure 4), it can be immediately provided to κ as an inr-tagged value.

Example. Continuing with the gradient descent example, Figure 8 shows the full gradient descent

algorithm written in Adaptive Fuzz: on each iteration of gradient, it creates and runs a sequence of

pieces (using updateParameter from Figure 6) for each parameter in θ .

The �rst line declares the gradient function. It accepts four parameters—ε is the budget it will

use for each piece, η is the scaling parameter of the algorithm, θ is the initial parameter list, and n
is the size of the database—and produces an estimate vector as a result.

Internally, the function de�nes another recursive function, inner . The goal of inner is to run one

updateParameter piece for each parameter in θ . It is called initially with p = 0, and it iterates p until

it reaches the length of θ . On each iteration, it runs the updateParameter piece, and assuming it

completes successfully (i.e., the curator had enough budget to run it), the sampled result v is scaled

by η and cons’d onto the recursive call to inner . When p is greater than the number of parameters,

inner just returns an empty list (nil).

The gradient function continues by simply calling inner and then pointwise subtracting the

resulting list from θ . If the budget is ever exhausted, inner will stop early, and θ ′ will be shorter

than θ . At this point, gradient will stop as well, but otherwise, it will recur.

4.4 Implementation
Our Adaptive Fuzz prototype comprises about 4000 lines of OCaml plus a few hundred lines of

library code written in Adaptive Fuzz. The adaptive mode is interpreted; the data mode, where most

computation happens, is compiled. At calls to runfuzz, the data mode piece is partially evaluated

as described above, typechecked using the Fuzz typechecking algorithm, transliterated to OCaml

(assuming it typechecks), compiled using the OCaml compiler, and executed against the database

(in a separate process) to produce a sampled result, which is internalized as an adaptive mode value.

The runtime system uses both simple and advanced �lters to check privacy bounds. It �rst

tries the simple �lter; if this comes out over budget, it instead tries the advanced �lter. Because

the advanced �lter has large constant factors, this two-part check can be bene�cial for programs

involving only a small number of high-ε pieces.
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4.5 Shi�ing the Data-Zone / Adaptive-Zone Border
The gradient descent running example shows one implementation of private gradient descent, but

another can be easily de�ned if we shift the border between the data mode and the adaptive mode.

In Figure 8, each iteration of our implementation performs k ε-pieces (where the database has k
parameters); if we move the inner loop of gradient into the data mode, each iteration will instead

perform a single piece that updates all of θ ’s parameters at once.

In general, the advantage of putting more computation in the data mode is that it gives the

analyst a stronger up-front guarantee of privacy usage. In essence, putting more code in the data

mode e�ectively limits the amount of adaptivity in the algorithm, which means at each invocation

of runfuzz, there is more static knowledge about the piece. For instance, in our implementation of

gradient descent, it is possible that the budget will run out in the middle of computing the gradient,

and the portion of the budget used up to that point would be essentially wasted. However, if it

were written so that the gradient were computed in one piece, then that piece would be accepted

or rejected altogether without wasting any of the budget.

On the other hand, putting the computation in the adaptive mode like we did increases adaptivity,

which allows the advanced �lter to be more e�ective. It is very likely that k ε-pieces will adaptively

compose to use up less than kε worth of the privacy budget, and, because the Fuzz Veri�er uses

simple composition, kε is exactly how much the one big piece would use. Furthermore, by the

nature of the adaptive �lter, the savings will compound with every subsequent iteration of the

algorithm. We cannot say exactly how much the budget is reduced—it depends on what pieces run

before and after—but because we can always fall back to the simple �lter (Theorem 2.10), we are

guaranteed that this adaptive method will never be worse.

5 CASE STUDIES
We next report results from two case studies in which we implemented widely used statistical

algorithms in Adaptive Fuzz and ran them on a real data set. Our main goals are (1) to show that

Adaptive Fuzz is powerful enough to express these algorithms and (2) to estimate how many more

queries an analyst is able to run with Adaptive Fuzz, compared to a language with only simple

composition. In these examples, Adaptive Fuzz typically sees a 5× to 10× increase in the number of

pieces it can run, with that number rising in some cases to above 40. Additionally, we explore the

accuracy that these algorithms achieve for di�erent values of ε .
We implemented two machine-learning algorithms that predict a person’s income based on a

database of census data generated from the USCensus1990raw data set (UCI KDD Archive 2016),

which contains person records from the 1990 census conducted by the U.S. Census Bureau. The

two algorithms support only numerical features, but the raw data set contains many categorical

features as well, so we applied a transformation to convert categorical features to numerical ones.

(For example, military service, which was initially coded as a discrete set of options such as “Now

on active duty”, “Active duty in the past”, and “No service”, was converted into 5 separate values

that answer the binary question of whether each of those statements is true or false, which can

easily be represented as a numerical feature ranging from 0 for false to 1 for true.) We took as the

label—the feature for which the algorithms try to produce a predictor—the feature that indicates

whether the person’s total income was above $50,000. In total, our database contains one million

records, each with 145 features in addition to the label. A full description of how we generated our

database can be found in Appendix B.

In the graphs in this section, each line represents a single run of the given algorithm, rather

than an average of many runs. This highlights the randomness inherent in di�erential privacy

and provides a realistic view of the kinds of results an analyst may see, but it also introduces
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some artifacts in the graphs: higher-noise runs sometimes “get lucky” and perform better than

lower-noise ones, or vice versa.

5.1 Gradient Descent
Experimental Results. We ran this algorithm, implemented as in Figures 6 and 8, on our database

with a global budget of (2−1, 2−30) and ε values ranging from 2
−8

to 2
−13

(and ε = ∞, i.e., no noise)

and a �xed value of η = 1/2. (This value of η was chosen experimentally as one that works well

for the database—much lower values reduce the performance of the algorithm and much higher

values cause θ to diverge.) To show how accuracy is a�ected by ε , we plotted the mean squared

error per iteration as a function of the chosen value of ε in Figure 9, and we let the algorithm run

until the budget was exhausted or a maximum of forty iterations. Going further than 40 would

have told us how well the algorithm continues to perform, but since only the runs with ε ≥ 2
−11

run for more than 40 iterations, and these runs are mostly dominated by noise past this point, they

are not worth showing. (One technical subtlety is that the analyst does not have direct access to

the “true mean squared errors” shown in this graph. They could be calculated in a di�erentially

private way, but then they would necessarily be only estimates, and the calculation would itself

use some of the privacy budget.)

As the graph shows, the advanced �lter allows much more analysis to be done. For instance,

when ε = 2
−10

, the advanced �lter allows six times as many rounds (18 instead of 3), yielding a

30% improvement in accuracy. In fact, as ε shrinks, the gap between simple and advanced grows:

when ε = 2
−11

, the advanced �lter allows 10 times as many rounds (72 instead of 7), at ε = 2
−12

,

this grows to 20 times (290 instead of 14), and at ε = 2
−13

, 41 times (1163 instead of 28). Of course,

there are diminishing returns in accuracy much earlier than that, and, with ε too small (ε ≥ 2
−12

),

the noise overwhelms the signal. Looking at this graph, a thrifty analyst might choose ε = 2
−11

. By

using the advanced �lter instead of simple composition, she could run 15 to 20 rounds and still

have budget remaining for other tasks.

Recall that, if the curator had been using a non-parameter-adaptive composition theorem like

standard advanced composition, then the analyst would have been forced to set the desired number

of iterations in advance. Using a privacy �lter, she can instead choose to stop the computation

whenever the observed error has fallen to a satisfactory level.

5.2 Stagewise Regression
Stagewise regression is a commonly used variable-selection procedure for regression problems; a

detailed description and analysis can be found in Tibshirani (2015). Its goal is to select the variables

that are most highly correlated to the label and thus will be most useful as predictors.

The algorithm initializes a weight vector over all features in the dataset (typically (0, . . . , 0)) and

then proceeds in rounds. Each round, it begins by computing the residual with the weight vector

and �nding the feature i that is most highly correlated with it (i.e., the coordinate of the gradient

with the highest magnitude). It then increments the weight on feature i by a small step size η, in

the opposite direction of its correlation with the residual. It can be run until an analyst-de�ned

stopping condition is met, and at completion, the set of features with non-zero weight is the set of

features selected by the algorithm.

Di�erentially private stagewise regression can be achieved by adding noise to the correlations

between the features and the residual before determining which is the highest. This can be done so

that each round uses a constant amount of privacy budget regardless of how many features there

are.
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Fig. 9. The mean squared error a�er each iteration of gradient descent. The graph above shows just the first
quarter of the iterations (1-10), and the graph below shows all of them (1-40). The lines extend until the filter
cuts o� computation (also marked by a vertical dash), and the larger dots indicate where it would stop using
only simple composition (there is no large dot for ε = 2

−8 because, using simple composition, it was unable
to perform even one iteration, and the vertical dash on the y-axis indicates that it performed exactly one
iteration before being cut o� by the filter). The line ε = ∞ indicates no noise, or how the algorithm would
perform without di�erential privacy (there is no large dot because we are not tracking privacy budget in this
case). The first point indicates MSE a�er one iteration, and the di�erences (as well as their convergence a�er
iteration 2) are largely due to an artifact of starting at a vector of all zeros interacting with clipping done in
calculating the residual.
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function stagewise (ε : R) (η : R) (threshold : R) (θ : R list) (n : Z) : R list {
case runfuzz (2ε) (selectParam ε threshold θ n) of {
inl (s) ⇒ θ
| inr (iv) ⇒ let (i,v) = iv;

if (i < 0) then { θ } else {
θ ′ =

(
listUpdate [R] i

(
+ (negate (sign v) · η)

)
θ
)
;

stagewise ε η threshold θ ′

}}}

function selectParam (ε : R) (threshold : R) (θ : R list) (n : Z)
(db : [2ε] (I × I list) bag) : #(Z × R) {

sample i = reportNoisyMax [Z] ε 2 ©«
fun (t : Z) { fun (b : [2] (I × I list) bag) : R {
if t < 0 then { threshold }

else { calcGrad n θ t b }}}
ª®¬(

listtobag [Z]
(
countfrom (−1) (length [R] θ )

))
db;

if i < 0 then { return (i, 0) } else {
sample val = add_noise (ε/2) (calcGrad θ i b);
return (i, val)

}}

Fig. 10. The implementation of stagewise regression, presented as adaptive- and data-mode functions

Implementation. The implementation of stagewise regression is shown in Figure 10, where it

is split into an adaptive-mode function (stagewise) and a data-mode function (selectParam). The

algorithm begins in the adaptive mode with stagewise, where the �rst action is to run the piece

produced by selectParam. The result is a pair of the selected parameter index and the value of the

gradient at that parameter, which is used to update the value of that parameter in θ by η in the

right direction. Note that sign returns the sign of a value (either 1 or −1), and listUpdate takes an

index i , an update function, and a list, and applies the function to the ith element of the list. If

selectParam ever returns a parameter index less than zero, then stagewise halts, and otherwise, it

recurs with the updated weight vector θ ′.
The bulk of the computation occurs in selectParam, which relies critically on the report-noisy-

max mechanism (Dwork and Roth 2014). This takes a set of values and a quality function and

selects the maximum-quality value from the set after a bit of ε-sensitive noise is added to each of

the quality scores. Adaptive Fuzz implements this algorithm via the primitive

reportNoisyMax : forall T . (ε : R) → (k : R) → (qual : T → D ([k] R)
→ (ts : T bag) → (db : D)([ε] #T .

The �rst two arguments provide the sensitivity values for the future ones. The qual argument is

the quality function, which produces a score for a value given the value and the database. The

ts argument is the set of values, and the �nal argument is the database itself. The result is a

distribution over the values in ts.

The idea behind selectParam is to use the features of the database as the set of values for report-

noisy-max, and those features’ gradient parameters as their quality, along with a dummy value
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whose score acts as a minimum threshold. Most of the function is just the call to reportNoisyMax.

The �rst two arguments of this call declare that it will be ε di�erentially private and that its quality

function is 2-sensitive. The quality function is the next argument; it calculates the feature’s gradient

parameter using the calcGrad function from Figure 6 (or returns the threshold when it is passed

−1, the dummy value). The set of features is next, and it is produced by using a simple function

countfrom to produce a list from −1 to the length of θ and then converting it to a bag. The �nal

argument is the database.

In the event that sampling reportNoisyMax produces an actual feature (not −1), the gradient at

that feature is calculated, and because calcGrad is 2-sensitive, ε/2-sensitive Laplace noise is added

to it. This is returned along with the index of the parameter. If sampling reportNoisyMax produces

−1, then no feature was found to have a correlation higher than the threshold, and −1 is returned as

the index (with an unused dummy value 0). In this case, stagewise does not recur, and the algorithm

terminates.

Experimental Results. Stagewise regression is useful as a variable selection procedure before

running gradient descent (since the privacy cost of gradient descent grows with the number of

variables it is run on). Thus, we ran stagewise regression on our database with a �xed value of

η = 0.03 and a threshold of 5% (maxing out at 50 iterations if the threshold is never reached) and

followed this by gradient descent until the budget was exhausted (or maxing out at 200 rounds).

We used ε values ranging from 2
−8

to 2
−13

(as well as once with ε = ∞, i.e., no noise), but note that

stagewise regression runs with 2ε per iteration.

When ε = ∞, 9 features were selected after 38 rounds. For the other ε values, these numbers

varied, but in general, the number of features selected grew as ε shrank. The selected features were

not always the same, but certain ones were more common than others, e.g., sex, marital status,

education, etc.

The mean squared error from the rounds of gradient descent after stagewise regression are shown

in Figure 11. Using fewer variables has a slight negative impact on the accuracy, but it means that

each round of the algorithm uses quite a bit less of the budget, so that many more rounds can be

run. For instance, when ε = 2
−10

, stagewise regression completes with 23 selected features, which

means that gradient descent will require 23 ε-pieces per round instead of the 145 that would be

required without stagewise regression. Thus, rather than stopping at 18 rounds as vanilla gradient

descent was forced to, it can run for 109 rounds, leading to a 20% overall improvement in accuracy

with the same privacy budget.

6 LIMITATIONS
Adaptive Fuzz uses OCaml’s built-in random-number generator to sample distributions. However,

these are pseudo-random numbers rather than truly random ones, which may lead to weaknesses

in the di�erential privacy claim. This is not a fundamental �aw but rather an artifact of the

prototype implementation; the Random library could easily be replaced with, e.g., a hardware-based,

cryptographically secure random-number generator.

The runtime is also limited by physical processing capabilities since it needs to run on a real

machine, and the analyst and curator are able to detect how long that processing takes, which

opens the door to side channel and timing attacks. That is, the analyst could create a piece designed

to take a long time (or even diverge) in certain conditions and then make strong assumptions when

she does not receive results from the framework immediately. Haeberlen et al. (2011) addressed

these types of attacks, but they are beyond the scope of this work.

Lastly, although the semantics for Adaptive Fuzz allows any type of value to be returned by a

call to runfuzz, our implementation does not support returning functions. This would be tricky to
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Fig. 11. The mean squared error of gradient descent performed a�er using stagewise regression for feature
selection. The graph above shows just the first quarter of the iterations (1-50), and the graph below shows
all of them (1-200). Again, the lines extend until the filter cuts o� computation (also marked with a vertical
dash), and the larger dots indicate where the algorithm would stop using simple composition. The line ε = ∞
indicates no noise, or how the algorithm would perform without di�erential privacy.

implement, since Fuzz pieces are compiled and executed in a separate process, but even if it were

easy to implement, it would add little bene�t: for such a function to be approved as an output by

the Fuzz typechecker, its dependence on the database would have to be so limited that it would be

no more useful than just returning a constant and using it to build a function later, in the adaptive

mode.
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7 RELATED WORK
Di�erential privacy. Adaptive Fuzz provides di�erential privacy (Dwork et al. 2006b), which

stands among the strongest privacy guarantees that have yet been proposed. A variety of other

privacy guarantees have been introduced over the years, including randomization (Agrawal and

Srikant 2000), k-anonymity (Sweeney 2002), and l-diversity (Machanavajjhala et al. 2006). These

models are less restrictive than di�erential privacy, but they have been shown to be vulnerable

to certain attacks (Ev�mievski et al. 2002; Ganta et al. 2008; Kifer 2009; Li et al. 2007) that can

cause private data to be disclosed. In contrast, di�erential privacy’s provable guarantees hold even

against worst case attackers with access to arbitrary auxiliary information.

Adaptive Fuzz’s semantics shares a resemblance to the interactive structure proposed by Dwork

et al. (2010). Our semantics is slightly more general in that it can handle arbitrary adaptive compo-

sition instead of k-fold adaptive composition, and more realistic in that it handles computational

issues such as non-termination, but that of Dwork et al. (2010) is more general in that it allows the

analyst to choose di�erent databases at di�erent rounds.

Di�erential privacy implementations can be vulnerable to attacks, mostly having to do with the

fact that computers use �oating point numbers rather than true reals (Andrysco et al. 2015; Mironov

2012). We consider these attacks important but orthogonal to our current work. A real deployed

system based on Adaptive Fuzz would need to deal with them, using the methods suggested in

these papers.

Privacy-preserving analysis tools. A number of existing tools (Barthe et al. 2015, 2012; Erlingsson

et al. 2014; Gaboardi et al. 2013, aper; Haeberlen et al. 2011; McSherry 2009; Mohan et al. 2012;

Narayan and Haeberlen 2012; Roy et al. 2010) can be used to work with sensitive data while

preserving di�erential privacy. The main innovation in Adaptive Fuzz relative to these tools is

support for advanced parameter-adaptive composition using �lters. To the best of our knowledge, no

current tool uses privacy �lters, and existing tools support only basic sequential composition, with

the exception of Psi (Gaboardi et al. aper), which uses an approximation of the exact composition

theorem. Psi’s goals are rather di�erent from ours: it provides a user-friendly framework to run a

collection of standard statistical analyses while managing privacy budgets, while Adaptive Fuzz is

a general purpose programming language for private algorithms. One might imagine combining

the two systems, allowing Psi power-users to write new analyses with Adaptive Fuzz.

Adaptive Fuzz is hardly the �rst di�erential privacy language to support adaptivity, especially

considering that any system that only uses simple composition to string together pieces can be

adaptive for free. Indeed, PINQ-like systems (Ebadi and Sands 2015; McSherry 2009) are based on a

similar formalization to ours, including the clear distinction between analyst and curator, the use

of streams to computationally sequence the probabilistic functions, and the release of intermediate

results as observable outputs.

The semantics in §3 and the two-mode design of Adaptive Fuzz can be used to describe many

languages that support di�erential privacy. For instance, PINQ (McSherry 2009) could be said to

have a data mode consisting of just its primitives, each with a proof of their privacy, in which case

its adaptive mode is all of C#. On the other end of the spectrum, Fuzz (Haeberlen et al. 2011) is a

language entirely in the data mode, foregoing an adaptive mode altogether. Our semantics uni�es

this design space; with Adaptive Fuzz, we allow the programmer more freedom as to when and

where she would like to switch between modes, which allows her to write complex pieces as well

as adaptive behaviors between them.

Adaptive Fuzz builds on prior work using a combination of static analysis and linear typing (Reed

and Pierce 2010) to certify di�erential privacy. In contrast to approaches that rely on run-time
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tracking, such as PINQ (McSherry 2009), this approach immediately rejects pieces that cannot be

safely executed with the remaining privacy budget. The Fuzz type system is expressive enough to

encode real examples; however, despite later extensions to richer type systems (such as the depen-

dent types in DFuzz (Gaboardi et al. 2013) and the relational re�nement types in HOARe
2

(Barthe

et al. 2015)), it has proved challenging, with purely static analysis, to capture the end-to-end privacy

cost of adaptive algorithms such as gradient descent after feature selection. Adaptive Fuzz’s hybrid

model of “piecewise static veri�cation” is an attempt to get the best of both worlds.

Adaptive Fuzz uses the standard Fuzz typechecker as its veri�er, but the system would also work

with other, more complex veri�ers. Notably, the natural extensions to Fuzz, such as DFuzz (Gaboardi

et al. 2013) and HOARe
2

(Barthe et al. 2015), can be easily adapted into veri�ers. However, due to

how partial evaluation during runfuzz enables the use of arbitrary expressions at the type level and

can even unroll loops, Adaptive Fuzz’s typing is essentially as expressive as the more sophisticated

dependent type analysis of DFuzz without requiring the complexity.

CertiPriv (Barthe et al. 2012) is a Coq-based framework that can be used to prove di�erential

privacy from �rst principles. This approach is expressive enough to handle almost any piece, in

principle, but it places a substantial burden on the analyst, who must have both time and expertise

to write an end-to-end proof of privacy in Coq.

An alternative to verifying the privacy cost of individual pieces is simply to enforce an upper

bound, e.g., by clipping outliers, as in Airavat (Roy et al. 2010), or using sample-and-aggregate

techniques, as in GUPT (Mohan et al. 2012). Unlike Adaptive Fuzz, this approach works for black-

box computations written in any language, but it requires precise estimates of sensitivity: low

estimates can waste precious privacy budget, while high estimates can lead to distorted results.

8 FUTURE WORK
More and Larger Case Studies. We are working to expand our experimental evaluations to other

statistical and machine learning algorithms that empirical scientists use in adaptive work �ows,

including other regression, classi�cation, and hypothesis testing methods.

More Primitives. Adaptive Fuzz provides three di�erentially private primitives: the Laplace

mechanism, the report-noisy-max mechanism, and the exponential mechanism (present in the

language, although not used in this paper). We plan to expand its capabilities with primitives such

as sparse vector (Dwork and Roth 2014) and Propose-Test-Release (Dwork and Lei 2009), which

will allow the language to express a richer set of di�erentially private algorithms. Longer term, we

hope to support user-de�ned plugins with accompanying machine-checked proofs.

Variants and Extensions to Di�erential Privacy. Our work describes the most common form of

di�erential privacy—that of a single curator with a single database and an analyst that queries this—

but other forms exist as well. Another popular form is where the curator has multiple databases

and the analyst can choose which to query from at every step. There is also a distributed form

where di�erent curators each hold a portion of a sensitive database. We would like to extend our

formulation to permit more of these models.

Partial evaluation for typechecking. As discussed in § 4, Adaptive Fuzz does a bit of partial

evaluation on the code given to a runfuzz expression before passing it to the veri�er. This use of

partial evaluation to enable typechecking appears to be novel, and we are currently investigating

its theoretical properties (e.g., completeness of the partial evaluator / typechecker with respect to a

declarative speci�cation).
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A SEMANTICS CORRECTNESS PROOF
We will prove this theorem by showing that run called in this way is equivalent to �ltered composi-

tion (De�nition 2.8). We accomplish this in three main steps. First, we match the format of the

de�nition by transforming the function into one in which the analyst is not provided recursively.

Second we rewrite its internal machinery so that it is visually identical to De�nition 2.8, properly

parameterized by a set of functions ϕi , εi , and δi . Finally, we perform a simple transformation

on these parameters to turn them into total functions so that we can guarantee their di�erential

privacy over �ltered composition by Theorem 2.9. We note that post-composing this composition

with a database-independent function that reintroduces divergence in the right places behaves

identically to the function before the simple transformation.

To begin, consider the function

runk : N→ X list→ C → A→ #(X list)⊥
runk = λi . λσ . λc . λa.

if i ≥ k then return σ
else let a′ = advA c a in
mat� a′ with
| AnDone→ return σ
| AnNext (p,κ) → mat� c p with
| CurRej→ ⊥
| CurAcc (π , c ′) → π �= λx .
runk (i + 1) (σ :: x) c ′ (κ (Some x))

and note that runk trivially satis�es that

∀k : N, i : N,σ : X list,v : V , f : F ,a : A,d : D.
runk i σ (mkC v f nil d) a = unrollk i σ (run (mkC v f nil) a d).

For the remainder of this proof, we will use the terms cinit and ainit to refer to the initial curator

(mkC v f nil d) and analyst respectively. Thus, we need to show that runk k nil cinit ainit is

di�erentially private (in its now hidden database argument d) for any k .

At this point, we would like to transform runk into a function that does not recur on the analyst,

which means that the “current” analyst must be reconstructed from the initial analyst and the

current list of realized results on each iteration. Indeed, this is possible because analysts are

deterministic and stateless, so that there is a unique analyst that can be produced in this way. To

facilitate this restructuring, we begin by de�ning the following two step functions: one to step an

analyst when it is provided with a result,

stepA : X → A→ A⊥
stepA = λx . λa.

mat� a with
| AnDone→ a
| AnNext (p,κ) → κ (Some x)

and another to step the curator when it is provided with a piece:

stepC : P → C → C
stepC = λp. λc .
mat� c p with
| CurRej→ c
| CurAcc (π , c ′) → c ′.
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The following function uses these step functions to take an initial analyst and curator along with

a list of realized outcomes and produce the current analyst and curator:

catchup : X list→ (A ×C) → (A ×C)⊥
catchup = λσ . λ(a, c).

let a′ = advA c a in
mat� σ with
| nil → (a′, c)
| x :: σ ′→ mat� a′ with
| AnDone→ (a′, c)
| AnNext (p,κ) → catchup σ ′ (stepA x a′, stepC p c)

A careful reader may notice that catchup could have been written without relying on the stepA
function (indeed, stepA x a′ in the �nal line could be replaced by κ (Some x)). However, de�ning it

this way will make the statements and proofs of our future lemmas clearer and more intuitive.

The step functions and catchup can be used together to de�ne:

runka : N→ X list→ C → #(X list)⊥
runka = λi . λσ . λc .
if i ≥ k then return σ
else mat� fst (catchup σ (ainit, cinit)) with
| AnDone→ return σ
| AnNext (p,κ) → mat� c p with
| CurRej→ ⊥
| CurAcc (π , c ′) → π �= λx . runka (i + 1) (σ :: x) (stepC p c).

Now, we want to show that runk 0 cinit nil ainit = runka 0 cinit nil. We do this by proving a more

general lemma:

Lemma A.1. For all a : A, c : C , i : N, σ : X list, if (advA c a, c) = catchup σ (ainit , cinit) then
runk i c σ a = runka i c σ .

This lemma is di�cult to prove without showing some properties of catchup. For instance,

note that ∀c,a. catchup nil (a, c) = (advA c a, c), which is obvious by inspection of catchup. Fur-

thermore, ∀c,a. advA c a = advA c (advA c a), and it follows that ∀c,a,σ . catchup σ (a, c) =
catchup σ (advA c a, c). These facts help prove the following lemma:

LemmaA.2. For alla : A, c : C , σ1,σ2 : X list, catchup (σ1++σ2) (a, c) = catchup σ2 (catchup σ1 (a, c)).

Proof. We proceed by induction on σ1. When σ1 = nil, this is trivially true. Otherwise

catchup (x :: σ1 ++ σ2) (a, c) =
let a′ = advA c a in
mat� a′ with
| AnDone→ (a′, c)
| AnNext (p,κ) → catchup (σ1 ++ σ2) (stepA x a′, stepC p c)

after simpli�cation. The AnDone case is satis�ed trivially, and in the AnNext case, we use the

induction hypothesis. It then su�ces to show that

catchup (x :: σ1) (a, c) = catchup σ1 (stepA x a′, stepC p c),

which follows by the same simpli�cation (this time on catchup (x :: σ1) (a, c)) as above. �
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Corollary A.3. If catchup σ (a, c) = (a1, c1), then
catchup (σ :: x) (a, c) = (advA c2 (stepA x a1), c2).

Proof. This follows directly from the previous lemma by letting σ1 = σ and σ2 = [x], the

singleton list containing x , and then simplifying the result. �

This corollary is a critical component for the proof of Theorem A.1, which follows.

Proof. First, we rewrite our de�nition of runk slightly:

runk = λi . λσ . λc . λa.
if i ≥ k then return σ
else mat� advA c a with
| AnDone→ return σ
| AnNext (p,κ) → mat� c p with
| CurRej→ ⊥
| CurAcc (π , c ′) → π �= λx . runk (i + 1) (σ :: x) (stepC p c) (stepA x (advA c a))

Notice that we have replaced explicit uses of κ and c ′ with calls to stepA and stepC , and we have

inlined the let de�nition of a′. These changes are inconsequential to the behavior of runk but will

make the proof proceed more smoothly.

From here, we would like to proceed by induction on i , but the base case is actually when i ≥ k ,

and the inductive cases are when i is smaller. We instead proceed by induction on the value (k − i).
When k − i = 0, i = k , and both runk and runka return σ .

For the inductive case, we choose to let k − i = k − (n + 1) for our inductive hypothesis, meaning

that we assume the lemma holds when i = n + 1 and must show that it holds when i = n. We also

have the lemma condition that (advA c a, c) = catchup σ (ainit , cinit)
Looking syntactically at runk and runka , the only di�erences are on the second and last lines. On

the second line, the lemma condition forces equality, and for the last line, the inductive hypothesis

forces equality as long as:

(advA (stepC p c) (stepA x (advA c a)), stepC p c) = catchup (σ :: x) (ainit , cinit)
But, given the lemma hypothesis, this is simply a statement of Theorem A.3 with stepC p c chosen

as c2. �

With this lemma proven, it is obvious that runk 0 cinit nil ainit = runka 0 cinit nil because

(advA cinit ainit , cinit) = catchup nil (ainit , cinit) trivially. At this point, we inline the de�nitions of the

step functions as well as the de�nition of c (and mkC) and simplify the result:

runka = λi . λσ . λv . λ f . λed. λd .
if i ≥ k then return σ
else mat� fst (catchup σ (ainit, cinit)) with
| AnDone→ return σ
| AnNext (p,κ) → mat� v p with
| VerRej→ ⊥
| VerAcc ϕ → let ed ′ = ed :: (pε ,pδ ) in
mat� f ed

′ with
| FilRej→ ⊥
| FilAcc→ (ϕ d) �= λx . runka (i + 1) (σ :: x) v f ed

′ d

Notice that there are really only two cases to consider here. In the �rst, catchup σ (ainit, cinit)
returns a done analyst, and the whole function returns σ . In the second, it returns an analyst with
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a further piece. By the de�nition of catchup, this piece is guaranteed to satisfy both v and f , so the

only possible outcome is the �nal two lines.

We use this idea to de�ne our �nal version of this run function:

run
′
ka = λi . λσ . λv . λ f . λed. λd .
if i ≥ k then return σ
else let ed ′ = ed :: (εia σ ,δia σ ) in

mat� f ed
′ with

| FilRej→ return σ
| FilAcc→ (ϕia d σ ) �= λx . run′ka (i + 1) (σ :: x) v f ed

′ d

where

ϕia : D → X List→ #X⊥
ϕia = λd . λσ .

mat� fst (catchup σ (ainit, cinit)) with
| AnDone→ return ⊥
| AnNext (p,κ) → mat� v p with
| VerRej→ return ⊥
| VerAcc ϕ → ϕ d

εia : X List→ (R≥0)⊥
εia = λσ .

mat� fst (catchup σ (ainit, cinit)) with
| AnDone→ εд + 1
| AnNext (p,κ) → pε

δia : X List→ (R≥0)⊥
δia = λσ .

mat� fst (catchup σ (ainit, cinit)) with
| AnDone→ δд + 1
| AnNext (p,κ) → pδ

Note that, when the analyst wishes to end interaction in this version, the functions εia and δia
return εд + 1 and δд + 1 respectively, and as there is no way for this to ever be part of a composable

sequence whose total bound is within (εд ,δд), a valid privacy �lter is guaranteed to produce a

VerRej result when it sees this.

Lemma A.4. For all i : N, σ : X list, v : V a valid veri�er, f : F an (εд ,δд)-valid privacy �lter,

ed : (R≥0×R≥0) list, and d : D, if catchup σ (ainit, cinit) = (a,mkC v f ed d), then runka i σ v f ed d =
run
′
ka i σ v f ed d

Proof. The proof proceeds once again by induction on the value k − i . The base case is trivial.

For the inductive case, we will consider the two possibilities of catchup σ (ainit, cinit).
If the output is a done analyst, then runka returns σ . In run

′
ka , two values are produced by εia and

δia , and these two values are necessarily εд + 1 and δд + 1 respectively. These values are appended

to ed and passed to f , and because f is valid, and these values are de�ned as over budget, f must

return FilRej, which leads to the function returning σ .

If the output is an analyst with a next piece, then we can use similar logic from the preceding

case to recognize that both functions will be equal to ϕ d bound to their recursive call. We can

apply the inductive hypothesis so long as catchup (σ :: x) (ainit, cinit) = (a,mkC v f ed
′ d). This is

easily shown by applying Theorem A.3 and inlining the de�nition of the curator. �
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The function run
′
ka is identical to De�nition 2.8 (�ltered composition) up to some small syntactic

di�erences in the language used to de�ne them. However, we cannot yet make any claims about the

di�erential privacy of run
′
ka because it lives in a di�erent semantic space as De�nition 2.8. Speci�-

cally, De�nition 2.8 requires that the functions it uses (i.e., the ϕ functions and their parameters) be

total, but ϕia , εia , and δia are not.

Now, consider the following three functions,

ϕi (d,σ ) =
{
return null if ϕia d σ diverges

ϕia d σ otherwise

εi (σ ) =

{
εд + 1 if εia σ diverges

εia σ otherwise

δi (σ ) =

{
δд + 1 if δia σ diverges

δia σ otherwise

where null is a distinguished element of the domain X that is otherwise unused and where the

metric on X puts null in�nitely far away from every other value. These three functions will always

produce the same values as their ϕia , εia , and δia counterparts, but when those functions would

diverge, these functions return null. Of course, these functions are not computable, but they are

total, which means that by Theorem 2.9, their �ltered composition is di�erentially private.

As a �nal step, consider post-composing the �ltered composition of the ϕi functions with a

function that returns null if it �nds the value null anywhere in the list of outputs and otherwise

returns the list unchanged. By Theorem 2.2, this post-composition does not a�ect the di�erential

privacy of the result. Lastly, because this new result exactly matches the result of run
′
ka (where

null is simply the uncomputable “result” of divergence), we conclude that run
′
ka has the same

di�erential privacy properties.

B MODIFICATIONS TO CENSUS DATABASE
The USCensus1990raw data set (UCI KDD Archive 2016) contains a one-percent sample (2,458,285

rows) of the full 1990 census sample conducted by the U.S. Census Bureau. The elements of the set

are Public Use Microdata Samples (PUMS) person records, which, as described in the attributes

�le accompanying the data, have 125 features each, including age, education, citizenship status,

immigration year, and many more.

To generate our database, we �rst randomly selected one million records. Next, we took the

feature that indicates whether the person’s total income was above $50,000 or not, which our

algorithms will try to produce a predictor for, and marked it as the label for the row. The algorithms

we intend to use support only numerical features, but this database contains both numerical

features (e.g., age, time worked, and social security income) as well as categorical features (e.g.,

race, occupation, or means of transportation to work).

As an example, the “occupation” feature is coded as a 3 digit number and has hundreds of

di�erent options. The encoding is de�ned in the coding �le that accompanies the data, with, e.g.,

084 corresponding to “Physicians” and 425 to “Crossing guards”. These are further assigned general

categories; for instance, all occupations 403-472 are “Service Occupations”, within that, 413-432 are

“Protective Service Occupations”, and within that, 425-432 are “Guards”.

Categorical to Numerical. We converted the categorical features to numerical ones by creating a

new feature for each option the feature can take such that the new feature that corresponds to the

selection of the original feature is 1 and the rest are 0. For example, consider the “Military” feature,

which can be valued at:
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• 0, indicating “N/a Less Than 16 Yrs. Old”

• 1, indicating “Yes, Now on Active Duty”

• 2, indicating “Yes, on Active Duty in Past, But Not Now”

• 3, indicating “Yes, Srvc. in Reserves or Nat. Guard Only”

• 4, indicating “No Srvc.”

Our process would replace this feature with 5 new features, “Military0” through “Military4”,

representing each of the given options. If a row had previously contained the value 3 for the

“Military” feature, it would now contain the value 1 for the “Military3” feature and 0 for the others.

These new features are appropriate for gradient descent and stagewise regression.

Feature Selection. Unfortunately, because many of the categorical features have many options

(some upwards of one thousand), this bloated our feature set too much, and we opted to trim

it. From the original 125 features, we chose features that we believed would correlate well with

the label (e.g., education, job sector, marital status, etc.). In total, we selected the following 14

continuous and 9 categorical features, which we transformed into 145 continuous features:

• “SEX”: Sex (Boolean valued)

• “DISABL1”: Disabled such that it limits work (Boolean valued)

• “AGE”: Age (numerical)

• “ENGLISH”: Ability to speak English (numerical from �uent to none)

• “HOURS”: Hours worked per week (numerical)

• “WEEK89”: Number of weeks worked the previous year (numerical)

• “INCOME1”: Wages or salary income in the previous year (numerical)

• “INCOME2”: Non-farm self employment income in the previous year (numerical)

• “INCOME3”: Farm self employment income in the previous year (numerical)

• “INCOME4”: Interest, dividend, and rental income in the previous year (numerical)

• “INCOME5”: Social security income in the previous year (numerical)

• “INCOME6”: Public Assistant income in the previous year (numerical)

• “INCOME7”: Retirement income in the previous year (numerical)

• “INCOME8”: All other income in the previous year (numerical)

• “YEARSCH”: Education attainment level (categorical, but converted to 8 features)

• “CLASS”: Class of worker (categorical, but converted to 10 features)

• “MEANS”: Means of transportation to work (categorical, but converted to 13 features)

• “MILITARY”: Military service (categorical, but converted to 5 features)

• “RSPOUSE”: Marriage status (categorical, but converted to 7 features)

• “OCCUP”: Occupation (categorical, but converted to 23 features based on general occupation

categories)

• “RACE”: Detailed Race (categorical, but converted to 36 features based on general race

categories)

• “RPOB”: Place of birth (categorical, but converted to 14 features)

• “INDUSTRY”: Industry worked (categorical, but converted to 15 features based on general

industry categories)

For each numerical value, we divided its value by the maximum possible value it could be to

normalize all features to lie on the unit interval.
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