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Abstract

Functional reactive programming facilitates programming with time-varying datactm be perceived
as streams flowing through time. Thus, one can think of FRP as an invefdiow@ontrol from the struc-
ture of the program to the structure of the data itself. In a typical (say, etige) program, the structure of
the program governs how the program will behave over time; as time momearth the program sequen-
tially executes its statements, and at any line of code, one can make a cleatidistietween code that
has already been run (the past) and code that has yet to be run (tte.fidowever, in FRP, the program
acts as a signal function, and, as such, we are allowed to assume thabdhenp executesontinuously
on its time-varying inputs—essentially, it behaves as if it is running infinitelydad infinitely often. We
consider this to be the core principle of the design and call ifuhdamental abstraction of FRP

Design and Performance

This work is specifically rooted iArrowizedFRP, where these signal functions remain static as they process
the dynamic signals they act upon. However, in practice, it is often valtalble able to dynamically alter
the way that a signal function behaves over time. Typically, this is achievéd“switching” or other
monadic features, but this significantly reduces the usefulness of thesarr

We develop an extension to arrows to allow “predictably dynamic” behavagawith a notion of
settability, which together recover the desired dynamic power. We further denatestrat optimizations
designed specifically for arrowized FRP and which do not apply to morRIR; such as those for Causal
Commutative Arrows, are applicable to the system. Thus, it can be powesfutilyized.

Effectful FRP

In its purest form, functional reactive programming permits no side effeajs mutation, state, interaction
with the physical world), and as such, all effects must be performeddeut$ the FRP scope. In practice,
this means that FRP programs must route input data streams to where theigmalinused and likewise
route output streams back out to the edge of the FRP context. | call this (WG Rottleneck This design
inhibits modularity and also creates a security vulnerability whereby paigrdldunctions have complete
access to their children’s inputs and outputs. Allowing signal functions thleessto perform effects would
alleviate this problem, but it can interfere with the fundamental abstraction.

We present the notion gésource typeso address this issue and allow the fundamental abstraction to
hold in the presence of effects. Resource types are phantom typmgiara that are added to the type
signatures of signal functions that indicate what effects those signetifuns are performing and leverage
the type-checker to prevent resource usage that would break ttiectios. We show type judgments and
operational semantics for a resource-typed model as well as an implemeofatie system in Haskell.



Asynchronous FRP

FRP typically relies on a notion agfynchrony or the idea that all streams of data are synchronized across
time. In fact, this synchrony is a key component of maintaining the fundamasadaction as it ensures
that two disparate portions of the program will receive the same determillisasaociated (synchronous)
input values and that their separate results will coordinate in the same eatpas. However, in many
applications, this synchrony is too strong.

We discuss a notion of treating time not as a global constant that goveresttteeprogram uniformly,
but rather aselative to a given processin one process, time will appear to progress at one rate, but in
another, time can proceed differently. Although we forfeit the global imp&ithe fundamental abstraction,
this allows us to retain its effects on a per-process scale. That is, wessama each process processes its
inputs continuously despite the whole network having different notions of time

To allow communication between these asynchronous processes, waidgveormholes which act
as specialized connections that apply a sortimie dilation to information passing through them. We
additionally show that they can be used to subsume other common FRP opemtanas looping and
causality.

Application

We apply the concepts of all of these ideas into a functional reactive yitioargraphical user interfaces
called UISF. Thus, this work concludes with an overview and exampleggtipally using our version of
FRP.
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Chapter 1

Introduction

Functional Reactive Programming (FRP) is based on the idea of programtingignals or time-varying
values. Signals can be continuous, in which case they are definedefgrraement in time, or they can be
discrete event streams, in which case they are defined only at particulaem® Indeed, the signal is the
fundamental and primary component of FRP, and the core purposeRoisiRat it provides a denotational
semantics for signals as functions defined over time:

Signala = Time— a

Thus, FRP is designed to allow one to easily define behaviors for streatnedlchas the streams change
over time.

This idea of using continuous modeling for dynamic, reactive behavior i@h&RP) is due to Elliott,
beginning with early work on TBAG, a C++ based model for animatigltiqgtt et al., 1994. Subsequent
work on Fran (“functional reactive animation”) embedded the ideas irkélagElliott and Hudak 1997,
Hudak 2000, and more recently, there have been a plethora of FRP models. Baxfatss@herent signal-
based design, FRP is a natural choice for real-time and continuousaprogng. Indeed, it has been used
in such realms as animation, robotics, GUI design, networking, and auntiessing, among others.

Due to its time-varying nature, one can think of FRP as a system that shiftentmIcflow from the
structure of the program to the structure of the data itself. In a typicali(epgrative) program, the structure
of the program itself governs how it will behave over time; as time moves fokyilae program sequentially
executes its statements, and at any line of code, one can make a clear distietti@en code that has
already been run (the past) and code that has yet to be run (the fitloregver, in FRP, the program acts as
a signal transformer, and, as such, we are allowed to assume that gii@rprexecutesontinuouslyon its
time-varying inputs—essentially, it behaves as if it is running infinitely fadtiafinitely often. This design
structure allows one to think of all data in the program as bsymghronizedh time, an idea consistent with
the family of synchronous languages such as Luslespi et al.1987, Esterel Berry and Cosserai 984,
and Signal Gautier et al.1987. We consider this to be the core principle of the design and thus declare:

Key Principle (Fundamental Abstraction of FRPA functional reactive program must be perceived to run
simultaneously and continuously, and it is in the data itself that one can egamnpast, present, and
future.

FRP systems that follow this abstraction have a number of practical, adeant&features. First, if
the program has no sense of time, then it cannot describe sequentialtationy which means that any
effects that the program performs will be able to freely commute with each witieén a given moment in
time. Second, common temporal pitfalls that programmers fall into, such asoadéions and deadlocks,
cannot occur. Lastly, if the program is deterministic on individual inpues; its behavior over time will be
deterministic as well.



A problem with classic FRP systems (such as FEhdtt and Hudak1997) is their propensity toward
space and time leak&il and Hudak 2007. One method for addressing these leaks is by usimgws
[Hughes 200Q Lindley et al, 201Q in so calledarrowizedFRP (AFRP), which has been usedYampa
[Nilsson et al. 2002 Hudak et al. 2003 Courtney et al.2003 (for animation, robotics, GUI design, and
more), Nettle [Voellmy and Hudak2011] (for networking), andEuterpea[Hudak 2014 (for audio pro-
cessing and sound synthesis). In AFRP, instead of treating the sigadiras class value, one treats the
signal functionas the core component:

o ~ 3 = Signala — Signalf

The arrow structure then allows the signal functions to be composed qtutelha

Furthermore, the arrow abstraction lends itself well to aggressive optinmzatin arrow’s structure
must be defined statically, and once defined, it cannot be altered mid-tatiopu Therefore, regardless of
what data the signals contain, the arrow’s overall behavior is fikadet al. [201]] use this restriction to
design an optimization for a certain class of arrows, naroalysal commutative arron(€CA), which can
often improve their performance in Haskell (using GHC) by an order ofnitade.

1.1 To Switch or Not To Switch

One problem with AFRP is that it does not naturally support the full rarig@jpabilities that classic FRP
provides. As mentioned, an arrow’s structure must be fixed at compile-boteglassic FRP typically
provides behavior-switching mechanisms. Thus, arrows are often auganeith a higher-ordeswitch
operator to recover this ability.

1.1.1 Switch

After the arrow framework was proposed Byighes[200(, it was quickly adopted for use in FRP in the
GUI language FruitCourtney and Elliott2001a Courtney 2004, which also introduced the first switch
function (before then, higher-order signals were dealt with by a fundyipically calleduntil). The design
of Yampa Nilsson et al.2002 Hudak et al.2003 Courtney et a].2003 built off of this and expanded the
idea to a variety of uses, eventually introducing fourteen different flawbswitch operators.

Switching allows a program to accept and utilize a stream of signal functioms allowing for higher-
order signal function expression in which the program can update itstweture during execution. Addi-
tionally, in the realm of signal functions, a higher-order ability like this presgithe only means of starting
and stopping signals mid-computation, which is often necessary for gotatpance. For instance, new
signal functions can be provided at runtime and “switched on” to augmeutiient behavior of a program.
Likewise, given an event that a certain signal is no longer neededrdlyegm can “switch off” the portion
of itself that is computing values for that signal, thus preventing unneealegwtations from being per-
formed. This ability to switch is very strong, and in fact, arrows with switchegpaivalent toArrowApply
arrows, which themselves are equivalent to monéflgyhes 200d.

Unfortunately, this power comes at a cost: the inherent higher-orderenaf switch that allows it to
run arbitrary signal functions from a stream makes certain compile-time optionizand static guarantees
much more difficult or even impossible. For example, arrows with switch dammtergo the CCA opti-
mizations. Likewise, in the realm of embedded systems, where static codeliietedue to strict time and
resource constraints, switch can be an intolerable hole in a static guarantee

IThese fourteen operators were mostly convenience functions builadéwpprimitive switchers, but they serve as an indication
of the widespread use of switching.



1.1.2 An Alternative to Switch

One motivation of this research is to ask whether switch is really necesgasy.FRP programmers would
be reluctant to give it up—indeed, some FRP programs would be ineXpeesith just first-order arrows—
but perhaps there is an operator that is powerful enough to repldats s most cases while still being
weak enough to allow for CCA-like optimizations. In order to consider thisfivge must examine more
closely exactly what switching provides.

Switch allows one to express two fundamental behaviors that are othemyisssible with just arrows.
First, it provides a way for signal functions to dynamically start and stopcoidputation, which is useful
not just for expressing certain programs but also for achieving bettéonmance. Second, it allows for
higher-order signal expression, essentially providing a way to flattgeans of streams into a single stream
or insert a dynamic signal function into the arrow structure itself.

The second of these effects isimpossible to replicate in classic (non-shlégharows, but there is some
hope for the first. The ability to choose between whether to run a signetidnnor not is similar to what
is provided byarrow choicelHughes200Q. Arrows extended with choice can make a dynamic decision of
how to process streaming data with the limitation that the possible choices mustitalgtdefined. An
additional difference lies in the fact that every effect from eachiptesshoice will be executed regardless
of the dynamic decision. This means that arrow choice cannot be usetryesuspend a branch in the
way that switch can suspend a “switched out” signal function becawseedftects from inactive branches
will happen.

To address this, we can modify arrow choice by adding a new law in ordeake itnon-interfering
Non-interfering choice asserts that effects from only one brancheothioice will happen, and so if one
branch is taken, it is as if the other does not exist.

Technically, non-interfering choice allows us only to pause signal funst@md not actually start or stop
them. For this reason, we additionally provide a method for making an aettable a settable arrow’s
state can be saved, reloaded, and even reset.

Combining settability with non-interfering choice gives us the full power offitst effect of switch.
That is, we can “start” a signal function by using choice and then resétsirggate, and we can “stop” a
signal function by indefinitely pausing it.

Interestingly, non-interfering choice allows for another unforesesrefit: arrowized recursion. Be-
cause only one branch’s effects can take place, we can do a foeowsion that allows behaviors that were
previously only possible with switch. Combining this with settability allows for somiprsing power.

1.1.3 Other Alternatives

Non-interfering choice and settability are not the only methods for trying & wéh the problems with
switch. Patai[201] presents an approach of embracing the higher-order mentality and showethod for
dealing with higher-order streams directly and efficiently using a monadidaterin this way, switching
becomes a core design propeityishnaswami and Bentdr2011 have a similar approach trying to bridge
the divide between a synchronous, imperative style and an FRP-likiaralace style. Their work has a
strong theoretical basis for handling causality when dealing with higliEraignals.

Another option is to allow switch in its normal form but then pursue other aa®otioptimization. For
instance ReactiveHlliott, 2009 and EIm [Czaplicki and Chong2013 focus on avoiding needless compu-
tation by using a “push” based design, which only recomputes values eifzarges are detected. Reactive
additionally uses deterministic concurrency for even better performance.

From a different perspective, one can think of the ideas of settabilitynaneinterfering choice not
as a way to recover behavior after removing switching from an FRP |gegvat instead as a way to add
expressive power to a more traditional synchronous dataflow langliageis, there are plenty of FRP-like



languages that do not have the reactive power of switch, and thésesfeaan be used to extend them.

For instance, EstereBerry and Cosserafl984 is an imperative reactive language that allows pro-
grammers to create deterministic, synchronous control systems. It allatwpé@llel and sequential com-
position, which makes it suitable for many complex systems, but it has no gbatewitching. Lus-
tre [Caspi et al.1987 and Signal Gautier et al.1987 are comparable.

Synchronous dataflow languages are often useful for describimtyvaee, which itself is determinis-
tic and synchronous. Furthermore, hardware cannot supportrhigtier signals for the obvious reason
that hardware wires cannot themselves carry hardware operatiomsVvr, settability and non-interfering
choice are both theoretically applicable to hardware domains.

1.2 Including Effects

An FRP program is still a pure functional program. That is, the signatdasmputations are performed
using pure functions, and the input and output of the program—which nedyd@ I/O commands—are
handled separately, i.e. outside of the program. In this sense, ther&@ laottleneckon either end of any
signal function that represents a complete program. All of the input databeiseparated from its source
so that it can be fed purely into the appropriate signal function, and Hikadutput data must be separately
piped to the proper output devices. We see this as an imperfect systeneallg itle sources and sinks
would be directly connected to their data.

1.2.1 General Side Effects

A purely functional language does not admit side effects. Indeed ripma Haskell Report (Version 1.0)
released in 1990, as well as the more widely publicized VersionHu@lgk et al. 1997 specified a pure
language, and the 1/0O system was defined in terms of both streams and ciotisuahich are equivalent
(one can be defined straightforwardly in terms of the other). In 1989gbetimonads to capture abstract
computations was suggestedMpggi[1989, subsequently introduced into Haskell Wadler[1992, and
further popularized byeyton Jones and Wadlgr993.

Originally conceived as a pure algebraic structure, and capturedhdiegaing Haskell’'s type classes,
it was soon apparent that monads could be used for I/O and other Kisitleceffects. Indeed, Version 1.3
of Haskell, released in 1996, specifies a monadic 1/0 system. The intdatentependencies induced by
the operators in the monad type class provide a way to sequence I/O actepsadictable, deterministic
manner (often called “single threaded”). The Haskell /O monad is simply dd@®geand primitive 1/0
operations are defined with this monadic type to allow essentially any kind oAli@onadic action that
returns a value of typa has typdO a.

To make this approach sound, a program engaged in I/O must havéQyaeand there can be no
function, sayrunlO :: 10 a — a, that allows one to “escape” from the I/O monad. It's easy to see why this
would be unsound. Consider the expression:

runlO my 4 runlO mp

If both my andny, produce I/O actions, then it is not clear in which order the 1/0 actions willipaince a
pure language does not normally express an order of evaluatign-joand in general we would like+)
to be commutative.

I/O is, of course, just one form of effect. For example, one might wahat@ mutable arrays (meaning
that updates can be done “in-place” in constant time). A purely functagmioach cannot provide constant-
time performance for both reads and writes. Haskell has two solutions tattikem: First, Haskell defines
anlOArray that can be allocated and manipulated in an imperative style. Predefinediopgon the array



are defined in terms of th® monad, and thus manipulating a mutable array becomes part of the single-
threaded flow of control induced by th® monad, as discussed earlier.

A problem with this approach is that it is common to want to define some local datigruusing an
array and hide the details of how the array is implemented. Requiring thatseabhocal computation
inject the array allocation and subsequent mutations into the global I/O stselius not modular, and
seems unnatural and restrictive.

What we would like is a monad within which we can allocate and manipulate mutalagsa(iout
not perform any 1/0), and then “escape” from that monad with someatkesasult. HaskellsST monad
[Launchbury and Peyton Jonel994 does just that. Haskell further defines a type construStbirray
that can be used to define arrays that can be allocated and manipulatékiejast IOArray. Once the
programmer is done with the local computation, 8lemonad can be escaped using the function:

runST:: (foralls. STsga— a

The “trick” that makes this sound is the use of the existential (phantom) tyfebles within the STmonad
and the operations defined on the arrays. For example, returning theeofadin array reference would be
unsound—it would mean that the mutable array could be further mutated inaothiexts, with potentially
unpredictable results. However, this is not possible in Hask8l'snonad, because the type of the array
reference contains the hidden existential type, thus resulting in a type erro

1.2.2 Effectsin FRP

Monads can be used for many pure computations as well as other kinifisaté but the above has focused
on two kinds of effects: I/O and mutable data structures. It is important to gissih these two, since there
are inherent conceptual differences. Mutable data structures caredied and allocated dynamically as
required by the program. Because they have no external or obteefédrts, two different data structures
can be guaranteed to be distinct, and we are only limited in their use by thedoitig system’s memory.
In contrast, 1/0O devices are generally fixed—each printer, monitor, maasabase, MIDI device, and so
on, is a unique physical device—and they cannot be created on thdtfipugh one could allocate multiple
virtual instances of any given device, they would all eventually be mafipétee same physical device.

It is also worth noting that for both I/O devices and mutable data structuresetipuence of actions
performed on each of them must generally be ordered, as it would berimpanative language, but concep-
tually, at least, distinct actions on a printer, a MIDI device, or some nunfissaparately allocated mutable
data structures, could be performed concurrently.

So the question now is, how do we introduce these kinds of effects into FieB&d, do these kinds of
effects even make sense in an FRP language? Without effects, FRP has fioviter and a constrictive de-
sign, but so far, work has only been on either the programmer interfasld@ourtney and Elliott20014 or
the system’s underlying connection to imperative-style effects libra@esper and Krishnamurth200§.
Can we bridge the gap between these by providing arbitrary effeceufiegrtly to the front interface in a
clear and safe way?

A normal Haskell variable is time-invariant, meaning that its value in a particu&adecontext and
in a particular invocation of a function that contains it, is fixed. In a languegped on FRP, variables can
be conceptually time-varying—their values in a particular lexical conteximadarticular invocation of a
function that contains them are not fixed, but rather depend on time.

A key insight is that the sequencing provided by a monad can be achiet#tPmy using the ordering
of events in an event stream. In the case of 1/0, another key insight isdbhtof the 1/O devices can be
viewed as a signal function that isvattualizedversion of that device. We can guarantee the soundness of
this at the type level by introducingsource types



1.2.3 Safely Virtualizing Resources

Virtualizing a real world object or device is simply the concept of viewing thigiect as a piece of the
program, or in FRP, as a signal function itself. For example, the consiofris produces events with string
values, the console’s output takes events of strings as input, and akeéybbard could take note events as
input as well as generate note events as output. So it would seem natsiraptg include these devices as
part of the program in the form of signal functions—i.e. to program withtlikrectly and independently
rather than merge everything together as one input and one output fehthe program. In this sense, the
real-world objects are beingrtualizedfor use in the program.

The only problem is that one could easily duplicate these virtualized objectsaiter all, once virtual-
ized, they are just values. This would cause the semantics of the proglssodme unclear. For example, a
virtualized object may be duplicated such that each instance is provided differ@nt input event stream,
but the object itself expects only one input stream—what do we do? We oouoldieterministically merge
the streams, but this seems imprecise and may not be the desired behaslty;, iRewant to ensure that
each of these virtualized devices is unique to the program. This seemsltiffiaahieve until we recognize
thatuniqueness of signal functions can be realized at the type. lavgarticular, we introduce the notion
of aresource typdo ensure that there is exactly one signal function that representsesdelarld device.
Because we are using arrows, we begin by re-typing the arrows thesagelinclude resource types, and
then we introduce type families and classes that capture the idea of a disjiming wf these resource types
and update the arrow combinators to use them. For example, the keyboltdewirtualized into a signal
function that produces keystroke events. We expect that everyr&kgsshould produce a unique event,
but if this signal function were duplicated, we can no longer easily gteeahat claim. Thus, we attach
a resource type to this signal function that will propagate throughoutritiie gorogram upon composition
and then restrict the program to allow only ddeyboardresource type. If a programmer attempts to use the
signal function more than once in the same program, the resource type péthiajwice, and the program
will produce a type error.

Resource types share similarities to other type-and-effect systems. dkande, the languagélean
[Brus et al, 1987 Plasmeijer and van EekeleB00] has a notion ofuniqueness typesin Clean, when
an /0O operation is performed on a device, a value is returned that egpses new instantiation of that
device; this value, in turn, must be threaded as an argument to the nexpé@tion, and so on. This
single-threadedness can also be tackled usiegr logic[Girard, 1987, and various authors have proposed
language extensions to incorporate linear typ&adler, 1991, Hawblitzel 2005 Tov and Pucella2011,
Wadler, 1990. In contrast, resource types are not concerned with single-thieads since there is only
one signal function to represent any particular 1/0O device. Rather,ghgiose is to ensure that resources
do not conflict. Additionally, they are specialized to handle FRP.

Resource types achieve their safety benefits by taking advantage ofrthertd nature of FRP. That
is, because of the fundamental abstraction of FRP, computations within sicigieof the clock cannot
share the same resource, but a computation that uses a given resiluroenopolize that resource for all
clock ticks. Another way to constrain the temporal behavior of reactiegrams is through linear-time
temporal logic (LTL) Peffrey, 2012 Jeltsch 2013 and the Curry-Howard correspondence between it and
FRP. IndeedJeffrey[2017 lays out the basis for an implementation of a constructive LTL in a depelyden
typed language such that reactive programs form proofs of LTLegots.

The advantages of resource types include:

1. Virtualization 1/O devices can be treated conveniently and independently as sigetbhmthat are
just like any other signal function in a program. 1/O is no longer a specsa tethe language design.

2. TransparencyFrom the type of a signal function, we can determine immediatiélyf the resources
that it uses. In particular, this means that we know all the resourcesrileattaeie program uses (as



opposed to with th€O monad, where all we know is that some kind of 1/O is being performed).

3. Safety If used properly, a signal function engaged in I/Gade—despite the side effects, equational
reasoning is not compromised.

4. Extensibility A user can add new resource types to the system that capture newokieffiscts or
that represent new 1/O devices.

1.2.4 Wormholes

In the realm of mutable data structures, we seem to come to a slightly diffeealiusion. We can start
with a similar approach of lifting the interaction from individual actions to a difunaction; for example,
we could define:

sfArray:: Size— (Event Request: Event Response

such thassfArray nis a signal function encapsulating a mutable array of siZEhat signal function would
take as input a stream Bfequesevents (such as read or write) and return a streaRegponsevents (such
as the value returned by a read, acknowledgement of a succesg&ylavran index-out-of-bounds error).
Note the similarity of this approach to the original stream I/O design in earlyéilgskudak et al. 1993.

This design is also analogous to tB&Arraydesign, in that in-place updates of the array are possible in
a sound way, and every invocationsiArray creates a new mutable array. The difference between this and
both theSTArraydesign as well as the virtualized resources of the previous subsectiat isotithanges
to the type system are required to ensure soundness (in particular,denteslistential types are needed,
nor are resource types). Using this idea, many kinds of mutable data stsieite possible, as well as
certain kinds of duplicable effects, for example, random number gémerdl hese types of effects, being
inherently local or duplicable, are readily available in other FRP formulations

However, although functionally sound, this design is somewhat unsatisiyithat the requests and
responses both need to be co-located. That is, these signal funcémephesent mutable data structure
are inherently complicated by the fact that they have both inputs and outpat®ace.

Thus, we next ask: What happens when we split the functionality into tyarate signal functions,
one for providing data and the other for producing output? In the simpéesst, ¢the data structure itself
could simply be a single mutable data cell, but by splitting it into two components, it itnims method
for communicating data between otherwise unconnected parts of a prodhamefer to the receiving
signal function as thelackhole the producing signal function as théitehole and the two together as a
wormhole By analogy, wormholes are a bit lik®Refs in Haskell: one signal function provides the effect
of writing and the other reading, but in the FRP framework, the details argaerably different.

It is notable that because a wormhole is no longer a single entity, we can gerlokearly distinguish
two wormholes merely by them being invoked in different places. In factywst even face the question of
what it may mean if twaf the samevhiteholes or blackholes are used in the same program. However, these
qguestions lead to the same place they did when we were exploring virtualizogroes, and we resolve
them in the same way as well: by using resource types. Upon constructingheghale, two fresh, virtual
resources must be created that are then associated with the whiteholaadmble of the wormhole.

At this point, wormholes may seem like something of a novelty—indeed, we sebav&built them
solely to see if we can—hbut as we shall see, they have a variety of plagtjglecations.

1.3 To Asynchrony and Beyond

As mentioned, FRP creates a synchronous model of programming, or ameidh time cannot affect
any portion of the program (or its data) without affecting its entirety. In te@m then, we can think of



asynchronousomputation as another form of effect. For instance, perhaps we twmgutation that runs

unpredictably longer or shorter than others, and we would like to let itnesiy. In another case, we may
simply want two unrelated tasks to run separately, free of needing to mymzé with each other on any
particular schedule.

This “asynchronous effect” seems fundamentally different than tleetsfliscussed previously. Rather
than dealing with how to achieve a clear ordering of events in time, we insteabtomeonsider the nature
of time itself, which should immediately give us pause. If an FRP program iscteg to uphold the
fundamental abstraction of FRP, that it is synchronous and can grottantaneous values infinitely fast,
then what is the point of asynchrony? If we are using this abstractiorasevéhcan assume that continuous
signals behave continuously, then what does it mean for one to take libvageanother? Thus, it appears
that even attempting to address asynchrony in FRP will destroy the main rteases FRP at all.

However, we need not lose all hope. Rather than think of time as a glohstard that governs the
entire program uniformly, we borrow an idea from physics and think of timeskative. In one process,
time will appear to progress at one rate, but in another, time can move differélthough we lose the
global impact of the fundamental abstraction, this allows us to retain its effie@gper-process scale. That
is, we can assume each process processes its inputs continuously tthesphiele network having different
notions of time.

1.3.1 Communicating Functional Reactive Processes

All that remains is a way for asynchronous processes to communicateessaey. Because of the time
difference between processes, this information must somehow be traesfas it moves from one “time
stream” to another. With a proper design, a wormhole can be made to do ekéstly

The solution is to build the wormhole over a data structure that can allow forme®sipn or expansion
of the underlying signal, essentially allowing for the time dilation that may occtwd®n two different
signal rates. For instance, if a signal is sent from a fast procesddw @rocess, then the signal will appear
sped up, or at a higher frequency on the receiving end compareetid Wwas submitted on the sending end.

These time dilating wormholes allow us to effectively create a new languagenohanicating func-
tional reactive processes (CFRP) that can add asynchrony to FR® retaining the fundamental FRP
abstraction on a per-process scale. Thus, CFRP includes an operallow the creation of a new process
with its own notion of timé, and it uses the concept of wormholes to create bridges between thossges.

1.3.2 General Parallelism

Although we introduced the asynchronous effect to provide new mefagmspoession, it provides a clear
model to allow signal functions to run in parallel, thus opening a new opportémitgerformance opti-
mization. Indeed, the design allows us to take advantage of multi-core atahéi®detting each functional
reactive process proceed through time on its own core.

Thus, along with our future discussion of asynchrony, we will presemimber of high-level parallel
and concurrency operators that are built using the simple ideas ofrasyiycand wormholes.

2The name “wormhole” may make more sense now, as it is a referertbe theoretical astronomical oddity, the “Einstein-
Rosen bridge,” a one-directional path through space-time such tligtrroan only flow in through the black hole and out through
the white hole and that has the capacity to permit certain forms of time travel.

3In the physics-based space-time model, one could think of this as aatopthat causes a new big bang or spawns a new
universe.



1.3.3 Other Efforts

While our work considers communicatifignctional reactivgprocesses, the seminal work on communicat-
ing sequentiaprocesses idHoare 1978 Milner, 1982 1999. Our ideas are similar, but obviously different
based on the domain.

In presenting CFRP, we will provide a full set of statics and dynamics terithesits functionality. How-
ever, there are other models that attempt to describe the behaviors aff@mor asynchronous programs.
For instance, thetr-calculus Milner, 1993 provides a model to describe concurrent programs through the
use of name generation and sharing via channels. Our asynchros@was resource types is similar, but
while names can be sent through channels, resources cannot liereegh wormholes. This restriction
allows us to maintain the fundamental abstraction of FRP by forcing all ressto be race-free.

Concurrency in functional languages has been explored previauslst notably in Concurrent ML
[Reppy 1993, concurrent and parallel Haskellgnes et al1996 Li and Zdancewic2006 Jones and Hudak
1993, and Erlang Virding et al, 1996, among others.

The termserializability [Papadimitriou 1979 typically refers to the idea that a parallel execution of a
set of transactions over multiple items is equivalergdmeserial execution, or in other words, that one can
find a total ordering of transactions. The idedin&arizability [Herlihy and Wing 199(Q is that updates to
an object can be thought of as acting instantaneously at some point dheingpdate operation. Both of
these notions are relevant to CFRP due to the fact that wormholes musditizdpudata structures that are
both serializable and linearizable.

Although our time dilating wormholes are a novel concept, using non-logahumication channels
to facilitate data transfer between multiple threads has been explored ptevasus teleport messaging
[Thies et al.2003. However, teleport messaging is designed particularly for parallelizedrs programs
while CFRP is designed for asynchronous communication.

Reactive Concurrency

CFRP can be seen as an instance of a Globally Asynchronous Locatiiii®yous (GALS) systenthapirqg
1984. Work on GALS systems tends to be in the realm of de-synchronizingsgnous programs to work
on asynchronous architectures without sacrificing determinism or symais semanticSangiovanni-Vincentelli et al.
200Q Benveniste et al1999. The design of CFRP was not led by architecture but rather by emigréwoén
forms of computation introduced by asynchrony without allowing them tovavelm the fundamental ab-
straction of FRP. The wormhole communication channel, which dilates data mibvuph it rather than
being a typical FIFO queue, exemplifies this difference.

A related idea is that of synchronous programming with multiple cloBesrly and Sentovich2001],
which relies on the idea that clocks tick and that these ticks can be usedds@yization points. This idea
of ticks forces an inherent discreteness which CFRP does not. Althoe&P cannot fully resynchronize
two asynchronous processes, it can express continuous signaddl as discrete ones.

Another way to handle multiple clock rates is to use a clock calculus of multiple statk &tes with
sampling between them as necessary, as first seen in LAsispi[et al.1987. This has more recently been
embedded in strongly typed functional languages (e.g. Eutehhedak 2014, Lucid SynchronePouzet
200€) by leveraging the type system and type inference.

Parallel FRP Peterson et 812000 allows concurrent signal processing by allowing multiple threads to
perform the same function on a stream of inputs. The by-product ofdisigia is that the ordering of events
on that stream may not be preserved in the output stream. Although CER&Mas the ordering of streams
by default, we can achieve a similar non-preserving behavior in CFRP wétit streams by asynchronizing
functions and gathering their results when they are ready. Thus, ifvam &kes a long time to process, it
will not hold up the rest of them.

Although not explicitly concurrent:lliott [2009 presents an FRP implementation that makes use of



concurrency “under the hood” with amambiguous choiceperator. While this may enhance performance,
it does not actually provide a method for asynchronous programming.

EIm [Czaplicki and Chong2013 is an asynchronous FRP language for creating GUIs. It providés bu
in asynchronizing capabilities similar to ones that can be built in CFRP, bueg dot provide access to
the lower operators (e.g. wormholes, etc.) that would enable users to keildwn custom concurrency
operators.

1.4 More Uses for Wormholes

Wormholes will be discussed in much more detail later, but it is worth pointinghatithey have many uses
beyond being a means of non-local communication between asynchrpramgsses. To consider this, we
will look at how wormholes must behave when both the whitehole and blackihel® the same process.

As mentioned, a wormhole applies a time dilation over its data. The primary usesds th allow data
to be converted between two time streams as it is communicated between pspbestke dilation will
occur even if both ends of the wormhole are in the same process. In teistisaglilation will appear as a
unit delay In a discrete-time context, this would be a delay of the smallest unit of time, andantinuous
model, it would be an infinitesimal delay, or a delay of change in time as thagehgpproaches 0. This
means that if the whitehole and blackhole are composed together in segtienoesulting structure will
act as adelayoperator. One implication of this is that wormholes are strictly causal entitieshichvthe
output of the whitehole is based on inputs to the blackhole that are strictlytfreipast.

More interestingly, one can consider the result of composing the blactdtte whitehole. Of course,
this would seemingly be a vacuous signal function, but with a suitable signedibn between the two, we
create a simple, causal feedback loop. Indeed, with wormholes in thedg@gone can typically forego the
classic arrow looping mechanisms altogether in favor of the strictly caugaihipof wormholes.

In total, this means that we can allow feedback and state within our signaidnsevhile maintaining
causality.Krishnaswami et al.l2012 also explore causality at the type level. They describe a language that
uses non-arrowized FRP yet still manages to restrict space-leakslbtafibés language seems somewhat
more expressive than ours as it allows a more generic loop operatat,ibutot clear whether it can be
easily adapted to allow mutation or other side effects.
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Chapter 2

Background

2.1 Arrows

2.1.1 Signal Processing

Programming with AFRP is a lot like expressing signal processing diagrantsera\signal processing
diagrams have lines, AFRP hagnals and where diagrams have boxes that act on those lines, AFRP has
signal functions These signals can represent either continuously-defined time-vagiunes or streams of
discrete events.

Because AFRP is based on arrows, we can use Pateanovg syntaxPaterson200] to make pro-
gramming with it easier. For example, we can turn this simple signal procedaigguh:

into just as simple a code snippet:

y « sigfun— x

In this examplesigfunis a signal function that takes the input streaand produces the output stregm

We will use Haskell's arrow syntax and operators to express code éasamphus, the above code
fragment cannot appear alone, but instead must be parpafcaconstruct. The expression in the middle
must be a signal function, whose type we writecas- 8 for some typesx and3. The expression on the
right may be any well-typed expression with tyge and the expression on the left must be a variable or
pattern of type3.

The purpose of the arrow notation is to allow the programmer to manipulate thetarsaus values of
the signals. For example, the following is a definition $ayfunthat integrates a signal and adds one to the
output:

sigfun= proc x — do
y < integral— x
returnA—<y—+1

The notation proc x — do ...” introduces a signal function, binding the nawi® the instantaneous values
of the input. The second line sends the input signal into an integratorewdudput is nameg. Finally, we
add one to the value and feed it into the signal functeinrnA that returns the result. The last line of this
notation has no binding component—instead, whatever value is producesl lasstHine is returned as the
output stream.
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arr (a—pB)— (a~pB)

first ::(a~B) = ((a,y) ~ (B.Y))

(=) n(a~B) = (B~y) = (a~y)

() =(a~~y)=(B~y) = (a+pB)~y)
loop = ((v.a)~ (y,B)) = (a ~ B)

delay :: B — (B~ B)
Figure 2.1: The types of the arrow operators.

Of course, one can use arrows without Haskell’s arrow syntax. wisrare made up of three basic
operators: constructior(r), partial applicationfirst), and composition=>). Furthermore, we extend our
arrows with choice|(]) [Hughes 2000 to allow dynamic control flow, loopingl¢op) [Paterson2001 to
allow value-level recursion, and delagelay). The types of these operators are shown in Figuie

For example, the signal functiaigfundefined earlier can be written without arrow syntax as follows:

sigfun= integral>=>arr (Ay. y+1)

Note thatreturnAis defined simply asrr id, which is why it is used for clarity to return values in the last
line of arrow syntax but is omitted from the above definitiorsigffun In later chapters, we will also make
use of the functiortonstA:: B — (a ~» ), which takes one static argument and returns a signal function
that ignores its input stream and returns a constant stream of the gilwen v

Events and Event Streams

The classical interpretation of a signal of types that it is a function from time tar defined for all points

in time. We call this acontinuoussignal. However, we frequently require the ability to define a signal that
has values at only discrete points in time and is undefined elsewhere. Jtvesdiedevent streamare
represented by encapsulating the signal’s type with an option type. We withegollowing:

data Eventa = Eventa | NoEvent

Note that we are overloading the naeentsuch that it is both the general type as well as the constructor
for an event. Thus, any signal that has typeenta is defined when it provides aaventand undefined
when it providesNoEvent

We will further make use of the fact thewentis a functor in the obvious way and fredimapfunctions
overEventvalues.

2.1.2 Strictly Causal Looping

Functional reactive programming itself does not need to be causal. Thalliss along a signal can, in fact,
depend on future values. Of course, in real-time systems, causality elftyde preserved by the nature
of the universe. For example, a program’s current output canmpardkon a user’s future input. Thus, in
the world of effectful FRP, we limit ourselves to causal signal functions.

The main impact of this limitation has to do with fixed points and looping in the signatitmdomain.
We restrict signal functions so that they cannot perform limitless requugithout moving forward in time.
That is, all loops must contain a delay such that the input only dependssbioptputs. We call thistrictly
causal looping
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We use thalelayoperator as an abstract form of causal computation
delay::a— (a~a)

Based solely on the type, the current outputlefay icould depend on the previous, current, or even future
inputs; however, the typical definition (and the one that we will use) is aét @elay operatct, and as such,
the current output would depend on only the previous inputs. Used ietamdth the arrowoop operator
from Figure2.1, one can define strictly causal loops:

dLoop::c— ((cxa) ~ (cxb)) — (a~b)

ThedLoopoperator takes an initial value for the looping parameter, which will update indirhalways be
slightly delayed. Notice that whedlLoopis given the simple swapping functioa (X, y).(y, X)) as its second
argument, it reduces to an instance of de¢ayfunction acting as a unit delay.

2.1.3 State via loop and delay

A key component of FRP systems (AFRP included) is the ability to performfstatemputation. For
example, Yampa includes thaegral function that integrates its input signal, a process impossible without
some form of internal state.

Although stateful signal functions can be achieved in a variety of wagsolow Liu et al. [201]] in
the use of thalelayoperator along withoop (or equivalently, thelLoopoperator defined above). In this
model, we use the loop as a feedback mechanism, allowing an auxiliary oatgatring the state to be fed
back as an input, and we use the delay to prevent an infinite feedbackltaged,Liu et al.[201]] even
demonstrate that in a fixed rate, discrete time systetegral can be defined using this method:

integral= proc x — do
rec v+« delayO—< v+ dtxx
returnA—v

Note here that theec keyword in arrow syntax invokes theop operator and that we assumgs a global
time step.

2.1.4 Switch

As discussed in the introduction, the ability to dynamicalyitchone signal function for another during
the execution of a program is a staple of most FRP systems. Considerirognénat our primary goals is to
show an alternative to switching, here we will describe switch’s capabilities.

The idea of switching was introduced along with the earliest models of ERiBtf and Hudak 1997.
These non-arrowized FRP implementations had the ability to sequence pargigisal function execution,
a process that is inherently monadic in nature. However, the move to thve @ostraction would not allow
this behavior, and to prevent any loss in expressivemdilson et al[2007 introduced theswitchfunction
in Yampa.

Actually, Yampa includes some 14 different variations on the switch funcéinging from the simplest
switch to the recurring, parallel, batch-input, decoupled switch. We willflgrexamine three of these
switchers.

1Although thedelayoperator has been around for some tirhie, et al. [2011] introduced the concept of this operator as the
basis of causal computation. That said, they referred toiitias

2As mentioned in the introduction, we use the idea of a unit of time to refer tovia#lesst amount of time when in a discrete-time
context and an infinitesimal delay in a continuous one.
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Switch
The most basic switch function has the following type:

switch :: (a ~ (B,Eventy))

= (y=(a~B))
— (a~B)

The first argument is the initial signal function that the result will behaveVdbken that signal function
produces an event, the switch will use the data from that event along withcibeid argument to produce a
new signal function. From then on, it will behave as that new signaliomc

Recurring Switch

A slightly more advanced version of switching allows for the signal functionetewitched out more than

once:
rSwitch :: (o ~ )

— ((a,Event(a ~ B)) ~ B)

Here, the resulting signal function takes an event stream of signaldas@long with the stream of inpat
values. When the event stream contains an event, it switches into thefsigci@dn contained in the event.

Parallel Switch

The parallel version of switch is significantly more intimidating from its type sigrsdéind likewise is also
quite powerful:
pSwitch :: Functor col
= col (a ~ B)
— ((a,col B) ~ Eventy)
— (col (a ~ B) — y— (a~-colB))
— (a ~col B)

The parallel switcher works arollectionsof signal functions, where a collection must béunctor(perhaps
a list). First, it is given an initial collection of signal functions to run and a aidanction that produces
update events. The third argument takes the current collection of sigraidns and the value from an event
in order to produce a new collection of signal functions. In tgt&@witchwill run every signal function in
its collection and produce as output a collection of their results.

Note that any one of these versions of switch is strong enough to implemerthéirs. The reason for
Yampa’s many varieties of switch is not due to power differences, bugrralie to ease of use. That is, for
example, usingwitchto do an operation that requireSwitchis tedious, so both varieties are provided.

2.2 Basic Language

In future chapters of this report, we will create new languages to denatesiew features and design
paradigms that we introduce. These languages all share a common basisestor language. We present
this basic language here.

We specify our language in a similar mannettondley et al.[2017. We start with the lambda calculus
extended with product and sum types and general recursion, am nduessary, we will refer to it as
Z{—x+}. We show the abstract syntax for this language in Figu2eWe letts range over typess over
variable namesgs over expressions, ariés over environments. A type judgment- e:: T indicates that
that it follows from the mappings in the environmdnthat expressiom has typer. Sums, products, and
functions satisfy3- andn-laws. This is a well established language, so rather than repeat the tyfesg
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Typ 1 = () unit
| T1XT2 binary product
| T1+T12 binary sum
| T1— 1 function
Var v
Exp e = v variable
| (e1,&) pair
| fste left-pair projection
| snde right-pair projection
| lefte left-sum injection
| righte right-sum injection
| casée;x;.e1;x2.€2) case analysis
| Ave abstraction
| et application
Env ' = viiT1,...,.VaiiTh  type environment

Figure 2.2: The abstract syntax.@f{— x+}.

it suffices to say that they are as expected. We also borrow an expgteational semantics that utilizes
lazy evaluation.

Note that theEventdata type we defined earlier is equivalent to the tgpe (), but we use the event
notation for readability.
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Chapter 3

Choice and Settability

3.1 A Case for Non-Interfering Choice

We will begin this section by exploring one of the main uses of switchers: asheooh allow the dynamic
starting and stopping of signal functions. We will present our first4oatternative and then demonstrate it
in a few practical settings.

3.1.1 Pausable Signal Functions

At a basic level, switch is often used to improve performance of an AFRgrgma Without switch, signal
functions will last forever, and this typically means that they will compute fut@ues indefinitely. Using
switch, one can “turn off” signal functions that are not currently ssaey and even turn them back on if
they are required again in the future.

For example, consider the scenario where we would like to integrate a stelgnmvhen a certain
condition holds. N&vely, we can write the following program:

integralWhege:: (Double Bool) ~» Double
integralWheg,;e = proc (i,b) — do
V<« integral <
Vprev < delay0 —< v
let va = V— Vprev
rec result« delay0 — if b then result+ v, elseresult
returnA— result

This program will only update the result when the booleafrig, but it is still unsatisfying that the integral
is being computed at all when it is not being used. If integral were insteadtdyy signal function and the
boolean were usualllyalse this could be seriously problematic to performance.

In cases like this, switch can be employed to prevent the integral fronimgimrien it is not needed:

integralWheg,,;ch:: (Double Event Boo) ~~ Double
integralWheg,,icp, = proc (i,e,) — do
rec v < rSwitch(constA0) — (i,
fmap(Ab—if b
then (integral>=s> arr (4v))
else (constAY) &)
returnA—v
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For this version, we modified the type to make it more amenable to switching bertimythe streaming
boolean value to an event stream that will send events only when the sirealth change fromTrue to
Falseor back. Internally, we use th&witchfunction that we introduced in Secti@il.4to switch between
integral and a constant function. Each time we switch imiegral, it is fresh and has no history from the
last time we were usingtegral, so we additionally compose it withrr (+V) so it can maintain its history.

3.1.2 Non-interfering Choice

Although the above example is a fairly common use for switch, careful exdionnaf the problem reveals
that switch is far more powerful that necessary. That is, while switch allesmo dynamically incorporate
new signal functions into the running computation, here, we are simply makihgieeof whether to run a
component signal function based on a dynamic value. Our solution to thigepravill thus be built around
arrow choice, so we will begin by examining it more closely.

The general choice operator we uggif Figure2.1) can actually be built from a simpler component:

left:: (a ~ B) = ((a+y)~ (B+Y))

whereleft f calls f when the input signal containseft values and acts as the identity function otherwise.
With theleft function, we can also define an analogag$t function and then use the two together to define
I

Choice also comes with a set of laws that we show in Figuie For us, the most notable law is the
exchangdaw, which acts as a weak form of commutativity betwésfhfunctions andight functions. One
may ask why choice does not demand full commutativity (e&. f > right g = right g >>> left f), and
in the context of signal processing, this question is very sensible. Aftérseems intuitively obvious that
either theleft function or theright function will run, but in no case will both run. However, because asrow
can have effects regardless of their dynamic inputs, and the composiiateal of these effects can alter
the program itself, choice is weakened. It is precisely this leniency thagsrakitching necessary in cases
such as the above example.

In order to give choice the extra power it needs to be an adequategematfor switch, we strengthen
theexchangdaw into the more powerful:

Non-interference arr Right>>>left f = arr Right

Indeed,non-interferencamplies exchange and even commutativity as it is stronger than either (see Ap-
pendixA.1 for details). It states that once the streaming value is taggedraghavalue, then it will not
be applicable tdeft f, and so it should behave as if theft f is not even there. Thus, by including the
non-interference law for choice, we assert that either signal fureciannot have static effects or that the
choice operation has the power to dynamically choose which effects trperf

We can see this in practice by considering a concrete example. Let's eptis&gdcase of the signal
function:

left integral>>> right integral

and we supply it with a signal that varies betwéeft 1.0 andRight2.0 every second (that is, on the interval
[0.0,1.0), the signal id_eft 1.0, on[1.0,2.0), it is Right1, and so on). Examining the output would reveal
the following pattern:

[0.0,1.0): Left0.0—Left1.0

[1.0,2.0) : Right0.0 — Right2.0

[2.0,3.0): Leftl.0— Left2.0

[3.0,4.0) : Right2.0 — Right4.0
In other words, when the “left” integral is inactive, it turns off, and &eds as if no time passes. The same
is true for the “right” integral.
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Extension left (arr f) = arr (left f)

Functor left (f >>g) = left f >>leftg
Exchange left f > arr (right g) = arr (right g) > left f
Unit f >> arr Left = arr Left>>>left f

Assoc. left (left f) >>>arr assoc. = arr assoc. >>> left f

assoq (Left(Leftx)) =Leftx
assoc (Left(Righty) = Right(Lefty)
assog (Right 2 = Right(Right 2

Non-interference arr Right>>>left f = arr Right

Figure 3.1: The standard laws for arrow choice with our new non-intamte law below.

3.1.3 Pausable Signal Functions Revisited

With non-interfering choice in our arsenal, we can define a new vergiantegralWwhenn an even more
intuitive and straightforward way:

integralWhegy,gice:: (Double Bool) ~~ Double
integralWhegy,qice = pProc (i,b) — do
recv « if bthenintegral <
else returnA—v
returnA—v

Because we are not actually switching out of ihiegral signal function, it will retain its state internally.
When it is executed, it will calculate and add the latest delta of integral, aedvate, it will simply wait.

3.1.4 A Single First-Order Switch

The most basic switching operation is to non-recursively switch out omelsfgnction for another dy-
namically. For example, we could write a simple guessing game that acceptedrarsieeam of guesses,
and when the correct answer was provided, it would switch into a signatibn that ignored its input and
declared that the game was over:

guess: Event Int~ ()
guess= switch(arr f) (A t — label t)
where f (Event|(i == 3) = ((), Event*You Win!")
f_ = ((), NoEvent

wherelabel is a signal function widget that ignores its streaming input and displays thé teas given

as its static argument. Note that we are using the plain, non-recurringparafiel version of switch that
we presented in Sectidhl1.4 In guesswhen the event containing 3 is processed, the string “You win!” is
given to the label, and the guessing is switched out for that label.
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runNTimes: Int — (o ~ B) — ([a] ~ [B])

runNTime - = constA] ]

runNTimes n s proc (b: bs) — do
c—sf=<b
cs< runNTimesn—1) sf—< bs
returnA— (c: cs)

Figure 3.2: The implementation ainNTimesusing structural recursion.

For this example again, switch is too strong. Notice that the argument giver switched-in signal
function is not itself a signal function. In fact, it's just a constant! We @mrite this with non-interfering
choice:

gueSshice:: INt~ ()
gueSgice= Proc i — do
rec haveWon— delay False< haveWor| (i == 3)
if haveWorthen label “You Win!” — ()
else returnA— ()

Note that we changed the input stream to a continuous stream as oppasegl/ant stream simply to make
the example clearer.

Reacting to dynamic events

The above versions ajuessare quite primitive, and although we use switching in the first one, we are
far from using its full power. We can make the example slightly more complexdojng an additional
component to the input such that the program is actually reactive:

guess:: Event(Int, String) ~ ()
guess= switch(arr f) (A t — label t)
where f (Event(i,s))|(i==3) = ((), Event$
f_ = ((), NoEvent

In guess the text to put in the label is no longer static and instead is part of the gusrss @nd in its current
form, switching is a necessity as it is the only way to provide the dynamicallymsingestring to the static
label function. However, we could once again lift the need for switching if weld¢oedesign the label to
instead take aimpulse An impulse is a one time event that initializes a signal function, so in this case, the
type forlabelwould change fronstring— (a ~ ()) to (Event String ~ ().
With an impulse driven label widget, we can once again convergtless function to a switch-free
alternative:
gues§ yice - (Int, String) ~ ()
gues$ ,ice= Proc (i,s) — do
rec haveWon— delay False< haveWor| (i == 3)
let imp=if not haveWo&& i ==
then Event selseNoEvent
if haveWorthen label—<imp
else returnA— ()
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runDynamic: (o ~ ) — ([a] ~ [B])
runDynamic sf= proc Ist — do
caselst of
[] — returnA— | |
(b:bs) — doc«+ sf<b
cs<— runDynamic sf< bs
returnA— (c: cs)

Figure 3.3: The implementation of the choice-basgtDynamicfunction using arrowized recursion.

3.1.5 Arrowized Recursion

As we have shown in the previous two examples, there is a direct usagerfanterfering choice, but the
non-interference law also gives us a less obvious benefit. By restribgreyrow effects to only one branch,
we open the door to the possibility of a new kind of recursion.

Typically, arrows can perform recursive behaviors in one of twoswdsirst, arrows can use theop
functionality to perform a value level recursion, or a sort of fix poilcursion. After all, one of the laws for
loopis:

loop (arr f) =arr (A b— fst(fix (A(c,d) — f (b,d))))

Second, there istructuralrecursion. Structural recursion happens when the host languageision
is used to create an arrow in a recursive way. For instance, we mighthawction like:

runNTimes: Int — (a ~ B) — ([a] ~ [B])

When defining this function, we use Haskell's conditional syntax to rectihe value of the first argument:
while it is greater than zero, we run the signal function and recur, arhwhs equal to zero, we return
a constant stream of the empty list. We show a definitiomuoNTimesusing this form of recursion in
Figure3.2

A key frustration with structural recursion is that the recursive argumestatic as opposed to streaming.
Thus, structural recursion is often performed in tandem with highezraditching to allow a streaming
value to be used in place of the static argument.

One may be inclined to perform recursion using arrow choice, but withtdrelard choice laws, this
can be problematic. In general, if both branches of an arrow choicersatgerform effects, then both of
those effects must be applied statically regardless of the dynamic strearhieg peovided. In other words,
recursion within arrows, even when guarded by arrow choice, cgnitwtefinitely in certain implementa-
tions.

The non-interference law forces us to delay effects until the dynamiesalte ready, which in turn
allows us to use arrow choice for recursion. We call this new form afrséonarrowizedrecursion. In
practice, itis very similar to structural recursion except that insteadingjtlse host language’s conditional,
we use arrow choice.

With arrowized recursion, we can write a function similar to the alvan® Timesut that needs no static
argument to perform its recursion. In fact, we can make the input stréastsathe recursive argument and
eliminate the need for an “N” altogether. We call this functtanDynamicand show it in Figur&.3.

When usedrunDynamichas exactly the behavior one would expect of using standard arroisecho
That is, any signal functions that are not in currently active branarestopped. For example, if we were
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to runrunDynamic integralvith a signal defined as:

0.0,1.0): [L.0]
[1.0,2.0): [2.0,3.0]
[2.0,3.0): [1.0]
[3.0,4.0): [2.0,3.0,4.0]
then we would see the following results:
[0.0,1.0): [0.0] — [1.0]
[1.0,2.0): [1.0,0.0] — [3.0,3.0]
[2.0,3.0): [3.0] — [4.0]
[3.0,4.0): [4.0,3.0,0.0] — [6.0,6.0,4.0]

It should be noted that using arrowized recursion creates new signetidns by need (i.e. the new
integralthat is created at= 3 above), but once they are created they are kept around in perp&tuigyis
discussed again in Secti@6.2

3.1.6 Dynamic GUI

One power of switch, showcased particularlyFmit [Courtney and Elliott20014, is the ability to allow a
dynamic number of signal functions to execute. That is, by default, ari@awe a fixed structure, and the
streaming values moving through an AFRP program cannot affect thiatgte. However, switch allows
one to dynamically alter the arrow at runtime based on the streaming values.

For example, one may desire a GUI that gathers the names of an unknmwnajipeople. If the size of
the group were fixed or at least known at compile time, then this is achievaiddiyrwith arrows, but if the
size is a parameter that is filled in by the user of the GUI, then standardsaarevstymied. One approach
is to use a switching mechanism.

For this example, we will assume a few GUI widgets:

label 2 String— (() ~ ()
getinteger :: ()~ Int
getintegerE:: () ~ Event Int
getName :: () ~» String

Note that we have both a regular and event-based versigetioiteger the event-based one, which produces
an event each time the value changes, is useful for our example with sartthye will use the regular one
with choice.

We can use these widgets in combination withr8eitchfunction to make our GUI:

getNames: () ~~ [String
getNames= proc () — do
+ label“How many people?”< ()
en + getintegerkE= ()
rSwitch(constA[ |) — (repeat(),
fmap(A n— runNTimes n getName,)

where theeunNTimedunction is the one we discussed in the previous subsection (that usesisttuecur-
sion to run the given signal function the given number of times, as showigimd=3.2).
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The above definition ofjetNamegsalthough correct, is using the higher order nature of switch when it
is not truly necessary. Switching gives the power to substitute in any newaldignction for the currently
running one, but here, the nature of the new signal function is alreaokyrk it will be some number of
getNamewidgets. Because this fact is known at compile time, we can use arrowizedsi@n instead to
create a simpler, switch-free GUI.

getNames: () ~» [String
getNames= proc () — do
_+ label“How many people?*< ()
n < getinteger< ()
runDynamic getNamex replicate n()

BecauseunDynamicuses arrow choice to do arrowized recursion, we do not need to yséching.

3.2 A Case for Settability

In this section, we will explore a second main use of switchers: the ability toastignal function mid-
computation with no prior state. Once again, we will begin with a simple yet camosxample before
describing our first-order alternative and some further usage examples

3.2.1 Restartable Computation

Although pausing signal functions is useful (as in thieegralWhenexample of Section8.1.1and3.1.3,
there are times when we really do want to restart a signal function, resiststgte to its initial defaults. In
fact, with switching, this is even easier than pausing considering that swatcinafly starts its new signal
function from the beginning.

For instance, let us consider the scenario where we would like to take tlyeaihté a stream, but at
any moment, we may be given an event that indicates that we should resetetp@l’'s accumulation to
its initial default. With switch, this is actually trivial: we simply lift thategral function into the resetting
event, and send everything into a recurring switcher:

integralRese},i.n:: (Double Event()) ~~ Double
integralResey,i..p= proc (i,e) — do
rSwitch integral< (i, fmap(const integraj e)

Without switch, this seems like a tough problem, and nothing about non-inteyfehoice lends any help.

One idea is to try to simulate the behavior of a restart without actually toudhiegral itself. That is,
because the function we are lifting is just an integral, we could take a sotagfsts output at the restarting
moment and then continuously subtract that value from future outputs:

integralResglqi.:: (Double Event()) ~~ Double
integralResegf,si.= proc (i,e) — do
0« integral <i
rec k < delay0 <k
let K = if isEvent e&hen o elsek
returnA—<o—k

Although this is a valid solution to this particular situation, a similar solution canmatya be found. To do

so requires a function that point-wise transforms the output to what it weavd been if the signal function
were started at the designated point in time, and this function must be comdutablihe output from that

point in time forward.
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3.2.2 Settability

At this point, the idea of lifting a signal function into the event stream, as we didteyralResef
above, should seem unnecessary. Indeed, we are not even switctirsome dynamically given new
signal function but rather just using a new instance of the same sigr@idaragain. Rather than switching,
our first-order approach is to develop a notion of signal funcsiettability, or a way to change the internal
state of a signal function at arbitrary points.

Because we are dealing with state, we will begin with an even more primitive égamg examine the
delayoperator directly. At first glance, it seems to suffer from the same pmob&ntegral—the delaywill
always output old values, so what can we do to reset it? However, nirglifyto be resettable requires only
the addition of a single input event stream:

resettableDelay. 8 — ((B,Event()) ~ B)
resettableDelay + proc (b,e) — do
out« delay i—<b
returnA— casee of
NoEvent— out
Event() — i

WheneveresettableDelays given an event, it will immediately output its initial value again, essentially
behaving as if it has only just started. In fact, we can take this one stéyefuand construct a version of
delaythat can be set to any value of our choosing:

settableDelay: B — ((8,Event(Maybef)) ~ )
settableDelay i proc (b,e) — do
out« delayi—<b
returnA— casee of
NoEvent — out
Event Nothing-— i
Event(Justy — s

With settableDelaythe event stream can potentially carry a new value to set the internalastdté,there
is no value, we perform a reset. It may seem superfluous to have ainoéaa option, but adding the ability
to set the state does not make resetting the state obsolete.

A fortuitous bonus to this function is that, in addition to being able to set the stateawalso capture
the current state. That is, because the input stream is necessarily Sedtitgyv current state, it can also be
made to provide it directly. Thus, we can usatableDelayo both “store” and “load” state.

General Settability

Although a settable version afelay may be useful on its own, it would be much more useful to have
any arbitrary signal function be settable. However, this would requireuaignchanging every internal
delayoperator to its settable alternative and then properly routing the state-settintg ¢o the appropriate
places. Additionally, if capturing the state at a given moment were importam @il inputs to thelelay
functions would also need to be grouped and appropriately routed totinetolihis would be exceptionally
cumbersome and not at all feasible. What we want is a function like:

settable: (a ~ B) — ((a,Event Statg~ (8, Statg)

that will automatically take a signal function and allow us to both pass in an optiewastate as well
as save its current state. For now, we will assume thaSthtetype can encode an arbitrary type (along
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settable: (a ~ B) — ((a,Event Statg~ (3, Statg)

Identity

{

Uniformity

settable sf
;/ %
delay NoEvent ]‘—[ arr Event

Default

Figure 3.4: Thesettablefunction and its laws.

with a special “reset” value), and we will discuss it in more detail when weudts the implementation of
settability in Sectior8.4.2

This settablefunction should hold to certain principles of behavior. For example, if it i®nprovided
with a state, then it should do nothing. Similarly, if the state it produces is usedd i then there should
be no observable difference in behavior. Additionally, there should fertécular value ofStatethat acts
as areset(in our settableDelayunction from earlier, this wakvent Nothiny Thus, if one were to feed a
constant stream of reset states, the output would always use thdt dafaas. We declare these principles
as laws of behavior fosettableand show them diagrammatically in Figuiet.

In fact, with an appropriate code transformation, any arrow can bededenith asettablefunction. We
will explore the details of this transformation in Secti®#d, but for now, it suffices to state that it is possible
and available in our examples.

3.2.3 Restartable Computation Revisited

With the settablefunction, definingntegralReseis just as trivial as with switch:

integralReset: (Double Event()) ~~ Double
integralReset= proc (i,e) — do
(v,s) + settable integrat< (i, fmap(const resete)
returnA—<v
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Rather than lifting a dynamic signal function to the signal level just to be aetiviay switch as we did
previously, we lift only a reset signal. The difference in the amount ofecbetween this function and
integralResey, i, IS Negligible (it basically comes down to ignoring the state output of the settalvlal sig
function), but the conceptual difference is quite important: rather thading to stop a currently running
signal function to replace it with a new, fresh instance of itself, it is possthlefresh it while leaving it
active.

3.2.4 Freezing and Duplicating

This settablefunction has applications beyond just resetting arbitrary, stateful signetions. By separat-
ing the state from the signal function, we are essentially separating trentbehavior from the structure.
That is, thesettablefunction gives us the power feeezesignal functions.

Typically freezing a signal function is thought of as a higher-orderatpmn achievable only with a
switch operator. Specifically, freezing is the process of stopping angreignal function mid-execution
and providing it as a piece of data to reuse. Later, it can be resumedgyauswitcher to reintegrate it into
the structure of the program.

Rather than providing a copy of itself, a function made settable will provideears of itsessencéi.e.
its current state), which can then be reinserted at any time later. It is watitigrihat this does not provide
any advantage over switch in terms of resources or memory, but it doesl@rthe ability to freeze and
resume without actually needing switch in the language.

Example

For this example, we will construct a GUI for drawing. The main window wilitiee a drawing pane,
but the user will be able to create new panes and switch between them. Wieangane is created, it is
automatically populated with a copy of whatever is currently on the curred.pa

For this example, we will assume a few widgets:

drawing = ()~ ()
choosePane: () ~ Int
button :2 String— (() ~ Event())

The drawing widget is a stateful, effectful widget that provides a canvas and allogvsigler to draw; the
choosePan&vidget returns armnt stream that represents the currently selected pane; armittoewidget
takes a static label and produces an event stream that indicates wheittdimenas been pressed.

With these widgets, we can create the GUI we described (shown in FighreThe state for the GUI
is kept as a list of drawing states, initialized in the sixth line as a one elementiiticing aresetstate.
This initial list describes a GUI with a single pane that has a blank drawingasaiWhen a user wishes to
duplicate the current pane, the current state is added to the list allowindthi Gave” the original pane
while providing a duplicate state for the new one. The key here is that insfdaping track of different
instances of the signal function, each with its own state, we keep track of laugtgies themselves and use
them with a single signal function.

To make a version of this GUI with switching is surprisingly complicated. Insté&eeping track of
multiple states for the singldrawing widget, we keep a collection of multiplgrawing widgets that we
can switch between as necessary. The only version of switch that psothis information is the parallel
pSwitch which processes collections of signal functions. Therefore, we twitt 8y using concepts bor-
rowed fromGiorgidze and Nilssoip2009 for the practical use of pswitch. However, because we are only
actually running a singldrawingwidget at a time, we are forced to use some clever engineering:
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guiz: () ~ ()
gui=proc () — do
€dup < button“Duplicate pane?”< ()
egel < button“Delete pane?™< ()
i + choosePanex ()
rec stateLsk— delay[resef < stateLstew
((), statgen) < settable drawing< ((), stateLst! i)
let stateLstew = case(equp, €gel) Of
(Event(),_) — set i stateLst statew-+- [Statgew
(NoEventEvent()) — delete i stateLst
_— seti statelLst statgy
returnA— ()

Figure 3.5: The implementation of the GUI from Secti®i.4

e First, in order to satisfy pswitch’s requirement for a collection, we creamnaindexed list data type
IList. Applying fmapover it applies the given function only to the currently indexed element.

e We need an event every time the user selects a different pane, andhiggeathis by using the
helper functionunique which converts a continuous stream to a discrete one by providing ah eve
containing the value of the stream whenever it changes.

e \We need the switching to be repeatable, so wepg@litchrecursively.

The result is shown in Figuré.6.

3.3 An Alternative to pSwitch

Here, we will pull together the ideas of both settability and non-interferirmjoehthat we have highlighted
in the previous sections to present a high power yet first-order veosimparallel switcher.

As we mentioned in Section.1.4 parallel switchers allow for whole collections of signal functions to
be managed and switched in or out at once. One example of the usefolriesskind of switcher can be
seen in the musical realm where one might have a program that plays musisoftitiare “instruments”
that are actually themselves signal functions. The music is given as anseqoie'On” and “Off” events,
where the “On” events provide the instrument to play and some initializing dat# ahat note to play, and
the “Off” events tell which instrument to stop:

data NoteEvt= NoteOn UID Instr InitData
| NoteOff UID Instr

type Instr = InitData — (() ~» Sound

sumSound [Sound ~~ Sound

Note that theJID type is a unique identifier that is used to connect a gNetreOnevent with itsNoteOff
counterpart, and thBounddata type represents the sound that an instrument producesuifi@oundignal
function is for summing dynamic lists of sounds together.
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data IList a = IList Int [a]
instanceFunctor IListwhere
fmap f(IListilst) = IList O [f (Ist!! i)]

gmswitch:: () ~ ()
QUigwitch = Proc () — do
€dup < button“Duplicate pane?”< ()
egel < button“Delete pane?™< ()
€ < uniquess> choosePanex ()
pSwitch initialSFgarr test) k< (€qup, €del, &)
returnA— ()
where initialSFs= IList O [drawing
test((NoEventNoEventNoEven}, ) = NoEvent
test(inp,-) = Event inp
K (IList iprey Ist)(NoEventNoEventEvent ) =
pSwitch(IList i (set prev ISt (Ist!! iprev))) (arr test) k
k (IList i Ist)(NoEventEvent(),_) =
pSwitch(IList i (delete ilIs}) (arr test) k
k (IList i Ist)(Event(),-,-) =
pSwitch(IList i (Ist+k [Istl!i])) (arr test) k
k ilst. = pSwitch ilst(arr test) k

Figure 3.6: The implementation of the GUI from Secti®@.4using switch instead of settability.
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Although we will use the sameSwitchthat we introduced in Sectigh 1.4 for clarity, we will show its
type signature again, this time with a few of the type variables instantiated fexaonple.

pSwitch:: [UID, () ~ B]
—+(() ~ Eventy)
= ([VID, () ~ B] =y = [UID, () ~ B])
= (0~ [B])

For our collection, we use a mappingID to signal function (which we implement as a list for simplicity),
and we set the input type to ().

For this musical example, the initial list of signal functions will be empty, the &svenchange that list
will be NoteEvs, and the function will use thidoteEvtdata to add or remove signal functions from the list
as necessary:

maestra: (() ~ Event|NoteEvt) — (() ~» Sound
maestro musie= pSwitch[ | music f>s sumSound
where f Ist[ ] =Ist
f Ist (NoteOn uiimprst) = f ((u,iimp) : Ist) rst
f Ist (NoteOff u i: rst) = f (filter ((5£ u) . fst) Ist) rst

In order to remove our reliance on switch, we need to make a few small ebdaghe layout of the
problem. First, as we did in Secti@nl.4 we will need to change the instruments from functions that take a
“static” initializing argument to functions that take that argument as an impukseorfsl, we need to know
statically what the different signal functions are, so we make use of a fiattetype and add one layer of
indirection:

data Instr = Trumpet| FHorn | Trombone Tuba

type Instrument= Event InitData~~ Sound

tolnstrument: Instr — Instrument

It is critically important that thenstr type is finite because, due to the fact that choice is not actually
higher order, we need to know exactly whittstrumentsignal functions can possibly be called. This
technique of representing functions by a first-order data type and tkenpiieting them later is known as
defunctionalizatiofiReynolds 1972 Danvy and Nielse/200] and has been established as a viable method
of converting higher-order functions into first-order ones. Fortupaie most situations where parallel
switching is used, the possibilities of signal functions are known staticallytsmsformation like this one
is not difficult.

With these changes made, we can utilize#oicefunction. The idea behingdChoiceis that as long
as we know the possible signal functions that we may use, we can rumeaehdynamic number of times.
So, rather than keep a dynamic list of signal functions, we keep a stati€diginal functions and a dynamic
list of signal functionstates We then use a combination of structural and arrowized recursion:tutalic
recursion to provide access to each possible signal function andiaecbwecursion to allow a dynamic
number of runs per possibility.

The type ofpChoiceis:

pChoice:: Eq key=- [(key Eventa ~~ )] —
([(key (UID, Eventa))] ~~ [B])

and as it is somewhat complicated, we leave its implementation and a more detadleptibesof its inner-
functioning to Appendip.2.

28



We can us@Choiceto reimplement our music program without switch:

maestra: [NoteEvt ~~ Sound
maestro= arr (map f) >>> pChoice Ists>> sumSound
wherelst=map(A i — (i,tolnstrument}) allinstrs
f (NoteOn uiimp= (i, (u, Eventimp)
f (NoteOff u ) = (i, (u,NoEven})

whereallinstrs is a complete list of all of thénstrs that might be played. In fact, one notable difference
between this version ahaestroand the switch-based alternative from earlier is #iinstrslist: the reason
that we can write this program at all is becaa#itnstrs can be defined statically.

3.4 Implementing Settability

As we mentioned in Sectigh 2.2 we can achieve settability of any arrow with a code transformation. Here,
we will provide a detailed description of the transformation process befi@genting Haskell code that
implements it.

3.4.1 Design

In essence, the idea of settability is the idea of having access to the intetteabkan arrow. Thus, as we
discussed previously, it is encapsulated by a function like:

settable: (a ~ B) — ((a,Event Statg~ (3, Statg)

that will automatically take a signal function and allow us to both pass in an opthevastate as well
as save its current state. However, in order to achieve this, we will neesavide the underlying arrow
to support this behavior. Therefore, we will describe a recursivestoamation that will provide settable
capabilities to ordinary arrows.

Intuitively, this settability transformation is a simple process of routing statetagdéormation in
through the various arrow combinators so that it can be easily accegsauylinternal delay operators
and then routing current state data back out through the combinators tovéheflehe settablecall. For
each combinator, there is a transformation that achieves exactly this gaaipwecircuit diagrams for these
transformations in Figurd.7 and describe them in detail below. Note that we use the notsitimndenote
the signal functiorsf after having been transformed, and we assume thdvkat Statéenput stream and
Stateoutput stream are always the lower input and output.

e We will begin at the lowest level by examining tbelayoperator itself. In SectioB.2.2 we showed a
design for a settable version of delay, but we need to modify it just slightlyderdor it to be general
enough for ousettabletransformation: in addition to taking in d&wvent Statestream, it also needs to
emit its currentStateas a stream. This is rather trivial as its current state is identical to its own input
stream, but this is important to the transformation as a whole. Thus, our diiegitam shows the
input stream both being sent to the embeddeldyoperator as well as being duplicated to Btate
output, and the output is determined by a case analysis ditkat Statenput with data from the
delays output.

e The simplest transformation is that of ther operator, which has no state and should essentially
remain unaffected. In this case, we ignore the irpugnt Stateand return a constant stream of the
null, or reset state.
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delay i

arr f

sf; >>sf,

first sf

loop sf

left sf
(with Rightinput)

left sf
(with Leftinput)

Figure 3.7: The circuit diagrams showing the settability transformations foratieus arrow combinators.
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The composition of two functions is a little more interesting. Each of the two condpsgeal func-
tions may have state, so we need to split the incor&iwent Staténto two pieces and pass the first to
the first signal function and the second to the second. We gather theéngstates together and join
them into a single output state.

Applying a partial applicationfifst) is a simple matter of rerouting the state data and the unused input
stream properly.

Looping is handled similarly to partial application with a simple rerouting of streams.

The most complicated transformation is for our non-interfering chole&’'sperator. This is because
there are two difficult questions that we must address in designing thigdraragion. First, in the
case of an inpuRightvalue, the embedded signal function is not executed, so where cant\ae ge
Statevalue for the outpuStatestream? And second, again in the case of an iRghtvalue, if we

are given arEvent Statehat requires updating the embedded signal function, how can we get that
event where it needs to go? The way to address both of these questioralisvtthe transformed
choice operator to contain some internal state, which we achievdasipranddelay.

Furthermore, in an effort to clarify the behavior of the transformed @&aie provide two diagrams
to describe its behavior: one that shows how it behaves when giiRighdivalue and the other for
when it is given d_eftvalue. Thedelays are shared between both diagrams: the ugpkyshould
be assumed to be initialized withNobEventvalue and the lower with a null, seset state value. The
mergefunction is a standard overwriting event merge that favors the left (newtyming) event in
the case of two events.

When given &Rightinput, the input stream is identical to the output stream. Ebent Staténput is
merged with the storevent Statend stored once again, thus updating the store with any new setting
events. The outputateis the stored one.

When given d_eftinput, we will execute the embedded signal function. We still merg&tlsat State
input with the stored one, but the result goes directly into the embedded fsigodon, and the store is
instead updated withldoEventindicating that there are no pdstent State waiting to be delivered.
The output of the transformed, embedded signal function, both the strgasefirvalue as well as the
outputState become the output of the overall transformed signal function, but tpeitBtateis also
stored for potential future use. The stoi®iéhtevalue is discarded outright as it is now obsolete.

Setting Switch
Although the stated purpose of this chapter is to develop language cdastradlow us to remove switchers
from FRP, the constructs themselves do not necessarily preclude switbiiieed, we can extend the ideas
of settability to include switching without much work at all.

We will begin by instead looking at thegop operator from thé\rrowApplyclassHugheq200Q:

app:: (a~b,a)~b

This operator is very similar to a switch, but it is notably different in that ittsehe new signal function
input as a continuous stream instead of as discretely separate eveistss iffportant because once the
higher-order signal function is used, it is discarded, ready to beaeglat the next moment. This means
that, in essence, there is no sense of state here, which in turn means tlrag ihakttable should have
no impact on its behavior. Another way to reach this conclusion is to conwiait it would mean to set
the state ohpp. Whatever may happen, that state will be immediately overwritten by the streaigirad s
function component. Ultimately, for the purposes of settabi#ippis a pure signal function.
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rSwitch def

Figure 3.8: The circuit diagram showing the settability transformation forepeating switcher.

Althoughappis stateless, switchers are not. However, the above explanation will cora@dy las we
consider the case for the moment that switching occurs.

Let us no consider applying the settability transformation to the repeedingch In general, the state
of the switcher is the pair consisting of the currently running signal funaimhits state. Therefore, the
output state will be a joined state of these two. Because we only see thattyuremning signal function
when it is supplied as an event, the transform®aitch must keep its own internal state, which we can
implement with a loop and delay. Finally, the input state event must be allowedetovie the current
behavior except for when a switching event occurs, in which casesthitthing event takes priority. We
show this all diagrammatically in Figu@8.

3.4.2 Haskell Implementation

Rather than relying on Haskell's rewrite rules or Template Haskell, we adorpethe entire transformation
with only type classes. Our method involves creating a wrapper for aigeareow that itself instantiates
the arrow classes. Then, any code that is an arbitrary arrow couldgwsell be this wrapper.

Thus, our goal will be to concretely define our types and then instantiateithve classes using them.
We lay out the process in this section and also note that the code is availibeama Haskell packade.

Data Types

The first type we must choose a concrete representation for iSttedata type. For a singldelay, the
definition of Stateseems obvious: it is a maybe type of the stored value (just as we sawsetthbleDelay
example from Sectio.2.2. One way to extend this to arbitrary signal functions would be to extend &ae id
of arrows to include an extra parameter that indicates what that arrtatésis. Then, when we compose
two arrows, we combine the two component states into one joined state. Despijechmbersome, this
becomes especially challenging in the presence of arrowized recuvdiene we would need some sort
of coinductively defined state type to allow for type unification. Indeed,sgh@uld be technically possible
using Haskell’s type families and other features, but the complexity wouldadtom our point. Therefore,
to keep the types simple, we make use of Hask&l{mamicdata type to store arbitrary state information
from individual delayfunctions? Also, rather than use an auxiliary option type to represent a default state
or an absence of state (as we did in ga¢tableDelayunction in Sectior3.2.2, we will build this directly
into the type.

We show the definition of th8tatedata type along with the few helper functions we need in Figude
Note that becausdoStateepresents an absence of state information, trying to split it returns a sinciar la
of information.

Ihackage.haskell.org/package/SettableArrow
2Technically, usinddynamicin this way enforces @ypeablerestriction to the types of the individual state components, but this
is of little consequence.
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data State= NoState
| DState Dynamic
| PairState State State

reset= NoState

split:: Event State~ (Event StatgEvent Statg

split NoEvent = (NoEventNoEvent

split (Event NoState = (Event NoStaté&vent NoState
split (Event(PairState | 1)) = (Event |Event

join :: State— State— State
join | r = PairState | r

merge:: Event— Event— Event
merge NoEvent e-e
merge e _=e

Figure 3.9: TheStatedata type and its two accessor functions.

With the Statetype defined, we next build our wrapper for a general arrow:
data SA(~) o B = SA((a,Event Statg~ (B, Statg)

Already, we can see that th8Adata type is merely hiding the extra piping that will be required to store and
load the state.

I nstantiating Arrow

Next, we show howSA (~) can instantiate the arrow operators themselves. If it can, then any progra
written using the arrow operators could just as well be written for the geaeow (~~) as for SA (~).
Thus, this instantiation will essentially provide a method to perform a codefdramgtion to allow any
arrow to behave as if it could be made settable. In fact, it will not even mattieisifnstantiation actually
obeys the arrow laws; because the arrow it is built atop does, we capsasirip off the wrapper and be left
with an arrow that does satisfy the laws. The implementations are shown ireBigr

The implementations follow directly from the circuit diagrams from FigBré and thus we will omit
any further description of how they function.

Settable

It feels like we could make aBA(~~) settable merely by removing ti&Awrapper — after all, the underlying
arrow will be of the appropriate type. However, this approach limits modulbsitforcing the input and
output arrows of theettablefunction to be different. Therefore, we instead writeedtablefunction for SA
directly:

settable(SA f) = SA$ proc ((b, es),€) — do
(c,s) + f —<(b,merge g€)
returnA— ((c,s),s)

This settablefunction is straightforward with one exception. If there is already a statiate event that
is propagating a new state (shown here@sand the settable signal function is also given a state-update
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arr f =SA$arr (A (b,_) — (f b,NoState)

first (SA f) = SA$ proc ((b,d),es) — do
(c,s) « f—<(b,es)
returnA— ((c,d),s)

(SA f) == (SA g = SA$ proc (b, es) — do
let (g,e) = split e
(c,5)« f—=(b, &)
(ds)<g—=(c &)
returnA— (d, joing s;)

loop (SA f) = SA$ proc (b,es) — do
rec ((c,d),s) « f < ((b,d),es)
returnA— (c, s)

delay i= SA$ proc (Shew €s) — do
Sold <— delay i< Snew
returnA— (f soiq €5, DState(toDyn Sew))
where f s NoEvent s
f _ (Event NoState= i
f _ (Event(DState d) = fromDyn d

left ~(SA f) = SA$ proc (bd,es) — do
rec (Sold, €ld) < delay(NoState NoEven} — (Show; €next)
let enow = Merge € g
(Snows €next €d) «— casebd of
Leftb— do
(c,s) < f = (b,enow)
returnA— (s,NoEventLeft )
Right d— returnA— (Soid, €now, Right d)
returnA— (cd, Show)

Figure 3.10:SAimplementations of the Arrow class functions.
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event €;), which one takes precedence? In fact, the new one must take preeedemder to guarantee the
laws we set out in Figurd.4.

I mplementation in Practice

The implementation described in this section has been fully achieved in Haskeltaan be found at
https://github.com/dwincort/SettableArrow. Thatsaid, the library’s source code is actually slightly
different than the code shown in the previous subsection becausedevedave provided has a significant
performance overhead.

The biggest problem with settability comes from the fact that making a signatitun settable causes
it to expand considerably, and that each composition especially has a@esthead. For instance, if one
uses the arrow functiosecondand then attempts to make it settable, teeoond fis first expanded to:

arr swap>s>first f > arr swap

(for a pure definition obwap. Thus, one use afecondcauses two uses of composition, which each in turn
need to be made settable.
Thus, the major difference between what we have shown here anddbacthe SettableArrow library

is that the library code has been hand-optimized to our best ability. Firstemeved the arrow syntax,
replacing it entirely with the arrow combinators themselves. Second, we addijiaefine the derivable
arrow operators such agcondandright (with the obvious, expected definitions). Third, we introduce a
lifting operator:

uncheckedSA Arrow (~) = (b~ ¢) — SA(~) bc

uncheckedSA & SA$ first a>>> (secondb constA NoState

This function is useful in the special cases where the user knows thiicidn has no internal state (or
potentially when internal state will never need to be set). Instead of neelyrapplying the settable trans-
formation, this function simply ignores any incoming state and retNoStateas output. Thus, when the
performance cost of usirggttableis otherwise too high, one can usecheckedSudiciously to reduce the
amount of slower transformed code.

With these optimizations (excluding usingcheckedSwe find that the performance cost is typically
about 2-3x.

3.5 Optimizations

Providing such an expressive, first-order alternative to the higtiarewitch function is a boon for opti-
mizations as it allows the arrow structure to be fully determinable at compile timeingt@nce, Causal
Commutative Arrows (CCAs) are a particular subclass of arrows thatteen shown to be highly optimiz-
able [Liu et al, 2011, but they are restricted to be only first-order. As a demonstration oftimization
capabilities of our work, we extend the Haskell CCA transformation to incladeinterfering choice and
show the promising results. We begin with a brief overview of CCAs.

3.5.1 Causal Commutative Arrows

Causal Commutative Arrows are arrows that have two additional lawsnanciativity law that essentially
states that signal function effects can be reordered at will, and agiriaduthat governs the behavior of the
causal operator (thieit or delayoperator). With these two laws at their disposal, et al.[201]] describe a
transformation that allows an arrow to be reduced to a normal form, whigltttighe Causal Commutative
Normal Form (CCNF), and then even stream fused into a standard fandtiee authors demonstrate that
GHC can then aggressively optimize this, yielding performance incredsedars of magnitude.
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https://github.com/dwincort/SettableArrow

The CCA transformation is of particular interest to us as it is what we will berghing to add support
for non-interfering choice, but first, we must describe the CCNF. TG&IE of an arrow is either of the
form:

arr f

or
loop (arr f > seconddelay i)

wheref is a pure function andis a state. We can express these more simply by calling thenfi and
LoopD i f. The transformation, then, is the process of reducing an arrow built vatartiow operators into
one of these two forms. It is a recursive transformation that appliesd ssduction rules until the normal
form is produced.

For instance, if the transformation comes across an arrow of the fistrsf, then it will recursively
reducesfand then choose one of the following two rules based on the result:

first (Arr f) — Arr (f xid)
first (LoopDi f) — LoopDi(juggle. (f xid) . juggle)

wherejuggleis a pure helper function to reorder the inputs and outputs as necessary.

3.5.2 Extending CCA

CCAs already have a mechanism for dealing with choice, and at firsteglérappears to work with non-
interfering choice too. However, it is the arrowized recursion thatintarfering choice allows, and not the
choice operator directly, that actually poses a problem for the CCA tvanstion.

As is, the CCA transformation does not support arrowized recursiboo@se, as we mentioned when
we introduced it in SectioB.1.5 the standard arrow laws are not guaranteed to support it, so its absens
is perfectly sensible. However, the absense of recursion suppuot gue to inability — indeed, with the
non-interfering choice law guarding the recursion, we can add thatitunality in a straightforward manner.

Intuitively, the presence of arrowized recursion will present us witlahewing two scenarios:

Arr f =Arr (g f)

LoopD i f=LoopD(ji) (g f)

In the first case, we find that a signal function of the fokm f is defined based on that same functiign
and the second is the same except for bbtnd its state. However, becausé andg (and j) are pure
functions, this is a trivial relation to solve: indeed the solution to the first fisras simple as applying a fix
point operator:

f=fixg

The second form is slightly more complicated as a precise definition woul@tedfe use of a coinduc-
tive data type for. That is, we would want a data type such as:

data StateCCA k= S (k (StateCCA k)

However, for our purposes, it is acceptable to relax this requiremehinstead assume a more powerful
Statedata type that can encode arbitrary values (this would be a similar type &tdtethat we used when
describing Settability in Sectio®.2.2
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3.5.3 Haskell Implementation

We model the Haskell implementation off of the original CCA transformation desiye use Template
Haskell along with a clever use of the Arrow type classes to perform@agressing step on only the arrow-
ized components. Thus, rather than try to interfere with Haskell’s natatgs®n support, we introduce a
new type class to capture it only where we need it:

classArrowFix (~) where
afix:: (b~~c—b~c)—b~rc

The ArrowFix type class introduces ttadix function that acts as a fix point function particularly for arrow-
ized recursion. In practice, we could merely defifie to be equivalent to the regular fix point operator, but
we will make better use of it for the transformation.

Specifically, when the recursive transformation encounters an afrtve dormafix f, the first thing it
will do is to produce a fresh, unique “hole”. The hole (which we repneséth o) is a special internal data
structure that acts likarr or LoopD except that instead of holding the functiébrand state, it keeps track
of the modifying functiong andj. That s, if the hole is airr form, then we know that we will eventually
come to a scenario such as

Arr f =Arr (g f)

and sincef is unknown and will be deduced via the fix point operation, the hole insteagsktrack of).
Applying this hole as the argument foand then recursively running the transformation will reduce the
result to one of the two forms we identified in the previous subsection, whedmawe already shown can be
solved easily.

To facilitate this, we create a second set of transformation rules that arg rdentical to the original
except that they expect an additional argument. For instance, if thdararadion comes across a partial
application of a hole, then it will follow one of the following two rules:

first (earr @) — ®ar (A f — (g f xid))
first (’LOOpD j g) — ’LO(_)ij ()\ f— - -
(juggle. (g f xid) . juggle))

Note the similarities between this and the description for the non-hole verstbe ehd of Sectio.5.1
They are almost identical except for the fact that the hole’s argumenfsiactions of functions.

State

At the end of the previous subsection, we mentioned that we would uUS&tetype to encode the arbitrary
state componerntof a CCNF arrow of the fornhoopD i f. Just as we used for the Haskell implementation
of Settability, we utilize Haskell’®ynamicdata type as an all-purpose state wrapper here.

3.5.4 Performance Results

We followed the same procedure for performance testind iladt al.[201] use. Thatis, for each program,
we:

1. Compiled with GHC, which has a built-in translator for arrow syntax.

2. Translated the arrow syntax to arrow combinators using Pateraontep pre-processorHaterson
2001 and then compiled with GHC.

3. Normalized into CCNF combinators and compiled with GHC.
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Name | GHC | arrowp | CCNF | Stream
Dynamic Counters| 1.0 1.66 | 1091 | 12.73
Chained Adder 1.0 1.91 4.06 4.29
Chained Integral | 1.0 2.17 | 13.27 | 15.40

Figure 3.11: Non-Interfering Arrow-Choice CCA Performance Ratigtr is better)

4. Normalized into CCNF combinators, rewrote in terms of streams, and compiled3MC using
stream fusion.

The three benchmark programs we used are based on the examplesiérpaptr but are simplified. The
first uses theunDynamicfunction to run multiple stateful counters at the same time. The second and third
use a function similar tounDynamicthat runs a signal function multiple times but chains the output from
one run to the input of the next, essentially linking them together. For thedee@ link together a basic,
stateless adder, and for the third, we link an integral function.

The programs were compiled and run on an Intel Core i7 machine with GHbwer.6.3, using the
-02 optimization. The results are shown in Figird 1, where the numbers represent normalized speedup
ratios.

In general, the results show a similarly dramatic performance improvementacechgrith standard
CCA. Notably, the performance of the chained adder, although improve@F, does not show nearly the
speedup that the others show. We believe this is because the chaineti@side internal state whatsoever,
making the pre-processed performance better.

3.6 Other effects of switching from switch

As stated earlier, arrows with switch are fundamentally more powerful thasettvithout. Thus, it was
never our goal to demonstrate that non-interfering choice and stateilggtizduld provide the tools to
replace switch outright, but rather that switch’s power is often underudiliaed in those cases, switch can
be replaced.

3.6.1 Firstorder

The primary and most important difference between switch and non-iritegfehoice is that switch is truly
higher order while choice is not. This means that while programs with switcla@aept streams of signal
functions and then run those signal functions, programs with only chaiveat.

3.6.2 Memory Use

One of the main reasons to use switch in a program is to improve performaatieerRhan run a signal
function when its results are not being used, we can switch it off, reduoimeeded computation. Signal
functions that have been switched out will never be restarted and $segarbage collected to free memory.
With non-interfering choice, we can similarly stop a signal function, buabse it might be restarted, it
cannot be garbage collected. Rather, once started, it will remain in meorenef. This is a fundamental
reason for demonstrating state settability of signal functions: a signaidartbat is waiting in memory can
have its state re-set so that it can behave as a fresh instance of itsedf vilith proper management of state,
we should never be creating new signal functions while others are leftefad but stranded in memory.
Therefore, though our system will always use at least as much memaryexsion with switch and often
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times more, it should be capped by the maximum amount of memory that a comsaviblebased version
would use at any one time.
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Chapter 4

General Effects iIn FRP

4.1 Resource Types

As mentioned in the introduction, we wish to treat I/O devices as signal fuisctidonsider, for example, a
MIDI sound synthesizer with type:

midiSynth: Event Note- ()

midiSynthtakes a stream dfloteevents as input and synthesizes the appropriate sound of each nate. No
consider this code fragment:

_<— midiSynth— notesg

_ < midiSynth—< notes

midiSynthis intended to represent a single output device, but there are two encas of it above; so what
happens? Are the event streamses and notes somehow interleaved or non-deterministically joined
together? Clearly, there is a problem.
Likewise, we can imagine a similar problem with input. Suppasgoards intended to produce events
for every key press:
keyboard: () ~~ Event KeyPress

Now consider this code fragment:
inp; < keyboard— ()
inp, < keyboard— ()

What is the relationship betweérp; andinp,? Do they return the same result, or are they different? If they
are the same, then individual key presses are generating multiple eugritshby are different, then which
one should get the event? Again, there is a problem.

The solution to these problems is to somehow prevent duplication of certaal figictions like those
above. To do this, we introduce the notion ofesource type Resource types are essentially a phantom
type parameter to each signal function that represents what resthatsgnal function accesses. We then
assert that if two signal functions share even one resource, thenahagpt be composed together. Because
this is done at the type level, this check is static and can be caught befbiraeu

As the resource type is part of the type signature of a signal functioshew it in the type signature

as follows: the typex & B is a signal function that “consumes” the resources inRseathile converting
a signal of typea into a signal of type. For the two examples above, adding resource types yields the
following signatures:
- idiS
midiSynth:: Event Note{w|I Syt

keyboard :: () tieyhoarg

0

Event KeyPress
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Figure 4.1: The typing rules for arrow operators with resource types.

With these types, the above code snippets will not type check.

An additional benefit of resource types is that they provide a new léuehiasparency to the meaning
of a function. Where before, the type of a signal function provided tiytypes of the inputs and outputs,
now we also have easy, static access to the entire set of resourcepithgitaan may use.

4.1.1 Typing Rules

Because they exist only at the type level, we can conceive of restregas having no runtime component;
therefore, discussing their behavior should reduce to simply examiningeffesits on typing rules.

In2.1.1and Figure2.1, we mentioned the standard arrow operators. We now must update tliezatoop
to include resource types, and we show the typing rules for these upmjadeators in Figuré.1 Note that
because we are viewing resource types as a purely type-level entityeltla@iors of these operators will
not change. Rather, our new rules will simply apply extra restrictions to magrams that improperly use
resources produce type errors.

We will examine each of these typing rules in depth:

e The Ty-ARRrule states that the set of resource types for a pure function lifted to al $igiction is
empty. Obviously, there can be no resource use in a pure function.

e The Ty-FIRST rule states that transforming a signal function udingt does not alter the resource
type.
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e The Ty-CoMmp rule states that when two signal functions are composed, their resopeerust be
disjoint, and the resulting resource type set is the union of the two. This ctlyxlae behavior we
outlined in the previous section, and it is in this rule that resource types thlgawpower.

e The Ty-CHc rule is for the choice operator. The resulting resource type set is tha ofithose
of its inputs, which are not required to be disjoint. Unlike with composition, whbke argument
signal functions will both be used, at any given moment, only one argutoetioice can be active.
Therefore, there will be no resource conflicts between the two argumeamdswe need not worry
about whether the resources are disjoint. Of course, because wet éanow which branch will be
active, the result’s resource type set still must be the union of the ardgs'men

e The Ty-LooP rule states that looping a signal function does not alter the resource bymmaing
allows data to be fedback through a signal function, but it has no inheysource usage.

e The Ty-DELAY rule states that the set of resource types for a stateful delay functiompisy.e Al-
though we may think of a delay operation as using memory and memory usagesasiece-worthy
effect, each use afelaywill create a new piece of memory, and there will never be contention between
them.

e There are many different varieties of switch, as we described eatlitghdy are all related. Therefore,
it suffices to show the typing rule for the simplest one. TheSwITCH rule, similar to the rule for
choice, states that the union of the resources of the two arguments make n@sdhrce type of the
result. The reasoning is much the same as for choice: the two signal fusotitie arguments can
never be active at the same time, so their resource types can overlaptwithéention.

4.1.2 Where Do Resources Come From?

When we introduced resource types above, we used an example withlafitbesizer. We stated that the
synthesizer could be represented as a signal function, and then to reafex jitve “tag” it with aMidiSynth
resource type. Here we explore what that actually means and the tionnestween the resource type and
the resource it indicates.

Concretely, we think of resources as devices that perfffacts or that collect some sort of input and
provides some output to the world. In Haskell, one would typically achievestirisof effect by utilizing
the IO monad. Thus, the synthesizer might support a function suchidi$SynthM:: Note— 10 (); this
monadic action would send individual notes to the synthesizer and retunit i@sponse. To lift this to the
realm of signal functions, we would make use of the Kleisli arrow (or\ejent).

From there, we must manually tag low level signal functions that accessroes with the appropriate
resource types. At first this may seem unsafe, but because this wewddne by the language or library
designer rather than the end programmer, our end programming safeantpes are unaffected. Thus, the
designer can create a basis of signal functions that are typed to oirerkzgources where appropriate such
that the programmer can use to build resource-safe applications.

Although this approach is possible, it has two irritating problems. First, itatesthe design of resource
types with the domain in which they are being used. That is, a language satgaifiwill be forced to have
many built-in signal functions to cover the range of resources that theldgegrequires. Second, there is
still a small disconnect between the resource types and the resourcesaktiben a program has a particular
resource in its resource type, there is no clear definition of what affattesource will have. This means
that it is possible for a designer to mis-mark a signal function with the wrosmuree type, and there is no
easy way to detect the error. That is, confining resource types to slodelype level restricts their ability to
connect to the program.
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4.1.3 Activating Resources

In order to provide a clear connection between virtual resources andighal functions that use them,
we provide a direct operator thattivatesresources. We do this by introducing a new fundamental arrow
operatorirsf (to be read as “resource signal function”).

Thersfoperator takes a resource as an argument and uses the natureedgabate to construct a signal
function. This means that we can no longer think of resources strictlyaggm types, but rather, they will
have real substance that will have an effect on the execution of agmnog

This pattern brings to mind ideas of defunctionalizafiteynoldg1972, and indeed, the process here is
similar. All resources are declared statically as types, and usiigtantamount to choosing which fixed re-
source to activate. The key usefulness of this is that it provides a @paration between a core component
of the language (thesf operator) and information about the environment (the resources thersselv

We can illustrate the behavior off with an example, and thus we once again turn our attention to the
scenario of a MIDI synthesizer. The pointrsf is that because thdidiSynthresource type is available in
the environment, the user will be able to use the signal function:

rsf MidiSynth:: Event Note """ ()
What exactly is the type a&fitself? That will depend on the resource. In this example, the resouroeis o
that consumeBloteevents and produce€$, but other resources may be different.

4.1.4 Virtual Resources

The resources we have examined so far are all associated with comeedtevorld devices. Thus, all the

resource types are pre-defined and not dependent on any parpouggam. However, there is no reason
why we cannot introduce “virtual” resources during execution, ancdn, this is precisely what we must

do to support wormholes.

As mentioned in Sectiofh.2.4 a wormhole is a way to transfer information non-locally, and it behaves
as a mutable reference in memory where the writing end (the whitehole) arehifiag end (the blackhole)
can be separated. In order to ensure their safe usage, these twostdse accessed no more than once,
and we use resource types to enforce this restriction. Thus, uponuningda wormhole, we must also
introduce two fresh resources.

Unlike global resources that represent real-world devices, thesmhiesources have a limited scope
in which they function, and outside of that scope, they should disaplretis sense, their introduction is
a lot like alet construct, and it is this similarity that leads us to name the wormhole introductioatope
letW. Within the scope of théetW statement, there are two additional resources that can be ussf by
and at its conclusion, those resources are removed from the resmwioenment.

One important contribution we make in the design of wormholes is recognizinghinarder of exe-
cution of a wormhole affects program behavior. One could allow the raddaite from a wormhole to
happen in either order, but this allows two nearly identical programs to fitgimave very different behav-
iors. We show that restricting wormholes such that the read always happéore the write allows sounder
reasoning as well as introduces a new possibility for control flow. Inglitivegardless of the structure of
a program, we want the read to be immediate while the write takes place “bettimersteps. In this way,
we can be sure that any data read from a wormhole was generated irtimiprtime step, allowing us to
use wormholes to create causal connections.

4.1.5 Resource Commutativity

We introduced resource types in order to address the question of wppems if the same resource is
accessed more than once at the same time. However, we can broadeershimio ask what the observable
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effect of accessing two different resources at the same time shoulthbdundamental abstraction of FRP
indicates that that functionality should be perceived as instantaneossatiuresource effects should also
be instantaneous. This implies that the order of multiple resource interactionkisnot matter, or that
resource access must temmutative

This is a natural conclusion, and we can use it to describe resourceityaslightly different way: the
purpose of resource types is to allow only effects whose orderingeaoimuted. That is, if two effects
require an ordering (for instance, if the same effect is performed twiseidggession), then it cannot be
permitted. This concept extends to wormhole resources as well: the gydéthre blackhole and whitehole
must not matter, and thus they are specifically designed so that the whitethpleles onpastinputs to
the blackhole.

This means that if an arrow itself is commutative, that adding resource ititergoverned by resource
types to it will not affect its commutativity. Indeed, much like how the causatroatative arrow (CCA)
transformationLiu et al, 2011 reorders an arrow to group all stateful (eimjt) effects separate from pure
computation, one could use the same techniques to group all resourds.effefact, because wormholes
can be used to store state (as we shall discuss in more detail in Séediom resource version of the CCA
transformation would be strictly stronger than the traditional one.

4.2 A Resource Typed Language

Because we are storing key program information in the resource typessamg them as both types and
values, it no longer suffices to simply provide some new typing rules fonewroperatorsréf andletWw).
In this section we will explore the foundations of a language that fully integnaesources.

4.2.1 Language Definition

We start with.Z{— x+}, the basic lambda calculus extended with product and sum types andlgener
recursion that we introduced in Chapte@. From there, we add the type for resource-typed, arrow-based
signal functions, and we add expressions for the three standardtorsefor them 4rr, first, and>>>) as

well as choice |(|), loop, and delay. In the process, we also add resources as a nepoent to the
language, complete with types for resources and a resource envirorirrally, we connect the resources
by adding our new introductiorgtW) and applicationréf) operators.

We show our extension t&{— x+}’s abstract syntax in Figur¢.2 and the typing rules for the newly
added expressions in Figu4e3. In addition to the previous syntax, we k&t range over resourcds, over
resource types, and's over resource environments. A type judgmetit r ;. t indicates that resource envi-
ronment% contains an entry mapping resource resource typé. Typically, we will combine judgments
to the forml", % + ... indicating that both environments may be used.

Lastly, we make the following definition of programs that our language stppbthe top level:

Definition 1 (Program) An expression p is program if it has type() A () for some set of resources R.

This restriction is actually rather minor. As our language is defined for ERPyeasonable to require
that the expression being run is a signal function. Furthermore, as atlamg output for a program should
be handled through resources, the input and output streams of aproged not contain any information.

4.2.2 Resources

Resources can be thought of as infinite streams of data that correggthneeal world objects, and the
default resource environmen#,, is essentially the real world (i.e. user and outside data interaction) split
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letW ry rp g in e wormhole introduction
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Typ 1 =
T ot o, resource typed SF
Exp e 1= ..
| arre SF construction
| firste SF partial application
| eg>>e SF composition
| ellle SF choice
| loope SF looping
| delaye SF delay
| rsfr SF resource application
|

REn %

Figure 4.2: The resource type abstract syntax additiodg{e+x+}.

up into discrete, quantized pieces, but new “virtual” resources canldedato resource environments via
wormholes.

Resources are used at both the type level and the expression levele Bpthlevel, resources are
associated with the signal functions that use them. Specifically, they ardéalin the set of resources that
is part of the type of signal functions.

At the expression level, resources can be accessed for input #mat @ia thersf expression, which
essentially lifts a resource into a signal function tagged with a type levabweos$ that resource such that
the input type of the signal function is the input type of the resource andutmit type is similarly the
output type of the resource. All resource interaction, and thus all I/@ne viarsf.

The purpose of resources is to track 1/O; therefore, despite the &d¢htty are “usable” at the expression
level, we do not want them to escape through an abstraction and so vet think of them as typical first-
class values.

4.2.3 Signal Function Expressions

It's worth noting that these typing rules are almost identical to the ones figard4.1 The only change
is that because we have a more well-specified language, we have typingnements” and# to use, and
indeed, our rule forsf makes use of the resource type environmgnSpecifically:

e The Ty-RSF rule says that the input and output types of the signal function teahats with a given
resource must match the input and output types given by the form ofsbenee. Furthermore, the
signal function created will have the singleton resource type set corgahérused resource.

e The Ty-WH says that the body of the wormhole is a signal function provided thatéaources are
added toZz: one of the form((), 7) (the whitehole) and one of the forfm, ()) (the blackhole) where
T is the type of the initializing expression. The result of the whole expressithreisame as that of
the body except that the resourecgsandr, are removed from the resource set. This omission is valid
because the virtual resources cannot escape the wormhole expressio

IThis is similar to a trick used in Haskell to hide monadic effects by using theetsdl type quantifieforall to constrain the
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Figure 4.3: The typing rules for the new expressions.
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4.2.4 No More Switching

An astute reader will note the removal of the switch operator. Indeed, vatadtition of wormholes to the
language, switching is no longer safe.

To illustrate this point, we can consider a simple example. Switch allows one toahles\at the signal
level and convert them into values at the signal function level. For ingfaore could imagine a signal
function such as the following:

switchSF: a 2 Event(S 3 Y)

This signal function takes values of typeand produces events of signal functions of tﬁpga y, all without
using any resources itself. However, what if one of those produgedlsunction output events used one
or both ends of a wormhole? TkwitchSFsignal function could escape theW scope, but then if we were
to switch into its argument, we would be given access to the wormhole reso@waéch’s ability to allow
wormhole resources to escape their scope makes it dangerous to us.

There are ways to address this. For instance, we could restrict swititfasthe switched in signal
function is not allowed to use any resource types. Alternatively, we aefilte the definition of a program
to only allow resources that ared#,, forcing all wormhole resources to be “cleaned up” before the progra
could run. However, to enhance clarity in our further discussion, awduse we proved in the previous
chapter how so much of switch’s behaviors can be achieved by cho&&siead choose to omit switch
from our resource-typed language.

4.3 Examples

We have extended a simple arrowized model of FRP by introducing restypes as a means to achieve
regulated side effects and wormholes to provide a form of non-local conaation. We demonstrate the
usefulness of these concepts with a few examples derived from twoathiffeERP domains; the first examples
will demonstrate resource types in general, and the last two will focus omkales.

The examples will generally use the arrow syntax rather than the more @lsstraw combinators to
make their behavior clearer. Additionally, we will assume a few basic data typeh as numbers and
Boolean values as well as typical operators over them.

4.3.1 Composition

For our first example, we will look at how resource types behave usideal function composition. As
the typing rules make clear, a signal function cannot compose with anagimait unction that it shares a
resource with, but it is allowed to compose with one in which it does not shegsource. For this example,
we will use music as our domain (common in e.g. Euterpéadpk 2014), and explore the practice of
connecting multiple MIDI devices.

Although MIDI devices typically have separate unrelated streams for mpditoutput, many devices
can be set to act as stream transformers that instead add notes prbgiube device in real time to the
input stream. This is especially useful in cases where one has many MVizles but a limited quantity of
ports to connect them to the computer. In cases like these, one can “Haisy the devices, or connect
them together in sequence, to gather all of the MIDI events producednetame set. In this model, MIDI
resources would have the type:

(Event MidiDataEvent MidiData

scope. Here, the resources are only available inside the body of thehota.
2MIDI stands for “Musical Instrument Digital Interface” and it is a standl protocol for communication between electronic
instruments and computers.
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Although we are not limited by number of ports in a virtual setting, we canvitilially daisy chain multiple
devices in order to apply a single operation uniformly across all of the Mi@hts.

For example, here is a signal function that daisy chains three MIDI lagisadogether and then trans-
poses all of the notes they produce by a given number of steps:

MIDI 1,MIDI,MIDI3}
PONN

daisy:: Number— (Event MidiData{ Event MidiData)

daisy n= proc noteg, — do
notes « rsf MIDIl; —< notes,
notes < rsf MIDI, —< notes
noteg < rsf MIDI3 < notes
returnA— transpose n notgs

If we had accidentally used the same MIDI device more than once, thegonogould result in a type error.
Thus, the disjoint resource types ensure that the different devieégpt distinct, just like in the real world.

4.3.2 Recursion

Sticking with MIDI and the musical domain, we can define a signal functiondiesttes an “echo” effect
for notes played on a MIDI device. We achieve this by delaying and loadfiegiotes back through the
device itself, attenuating each note by some percentage on each loop:

! Event MidiData

echo:: (NumberNumbej "2
echo= proc (rate, freq) — do
rec notegyt+ rsf MIDI; —< notes
notes <« delayT — (1.0/freq, decay rate notes:)

returnA— notegt

Note the use of theec keyword, which will induce the loop operator and rule (from Sectich3.

Theechosignal function takes a decay rate and frequency as time varying ar¢gaar@huses them to
add an echo to the notes played on the MIDI device. It uses two helpetidos: decay rate nsttenuates
each note imsby rate, dropping notes when their volume falls below an audible thresholdpafayT—
(t,ns) delays each event imsby the amount of time.

4.3.3 Conditionals

As mentioned earlier, signal function composition requires that the resdypes of the arguments be
disjoint. However, for conditionals (i.e. case statements), the proper semantidslietthenatural union
of the resource types. Consider the following functions for sendingddata to speakers:
Speak
playLeft :: Sound *P& O

playRight :: Sound{Spsikeﬁ} ()

playSterea: Sound SPeakarSpeakag} 0
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We can use these to define a signal function for routing sound to thermpgaker (often called a demulti-
plexer):
data SpeakerChoice- Left || Right|| Stereo

routeSound: (SpeakerChoiceound (S LSPeA ) ()

routeSound-= proc (sc sound — do
casescof
Left — playLeft — sound
Right — playRight —< sound
Stereo— playSterec< sound

This is well typed, since the case statement in arrow syntax invokes thenocterule for the choice operator
(ID-

The routeSoundsignal function may only make use of one speaker at a time, but it feelsah#tat it
should acquire both th8peakgr and Speakeg resource types, because we cannot know at compile time
which speakers will be used. Furthermore, even though differeniches of the case statement use the
sameresources, those resources will never be used more tharsonakaneously

4.3.4 Clarifying Domains

An added feature of resource types is that they increase the transpafeode. For example, consider the
following non-resource-typed program designed to control a simpletrob

controlRobot: Bool~- (Double Double)
controlRobot= proc b — do
returnA—if b then (—5,0) else(10,10)

Without documentation, it is near impossible to discern what this programgpatis. In fact, this program
was designed to control a robotic car that has two motors (one to conttofreat wheel) and a bump sensor
on the front. The sensor provide8aolvalue to show its status, and the motors each tdkeubleargument
that control their speed. On the whotmntrolRobotmakes the robot go straight unless its bump sensor is
hit, at which point it does a brief turn in reverse before continuing sttaighin.

The problem withcontrolRobotis what we have referred to as th® bottleneck Running the program
that utilizescontrolRobotprobably looks something like:

repeatForevefs do
iNp < runlOjnput
runlOgutput (tick controlRobot inp

We have tworunlO, commands performing effects, and we are steppingtimtrolRobotsignal function
forward in a pure way. This creates a conceptual (and code-leyebetmeen where any data is produced
and where it is used. With resource types, the input and output dexdodsecconsolidatethto the signal
function itself making the function of the program much clearer. Consider the following:

Motor, :: (Double ())
Motorr ~ :: (Double ())
Senso{ﬁump p <()7 BOO|>

49



R= {Motor,_, Motorg, Sensogump}

controlRobog :: () 5 O
controlRobog = proc () — do
b < rsf Sensogump— ()
if bthen rsf Motor, < —5
else dorsf Motor, <10
rsf Motorgr < 10

We can see clearly whabntrolRobog does—the type shows us what resources are being used, and they
are being used alongside where they are produced, within the sigréibiuitself. Furthermore, we know
that, for example, if we want to add a command to the right motor when the buraprdeiirue, we can.
However, if we want to do that when the bump sensdradlse we will have a type error—if we must, we
know that we need to rewrite code rather than simply add it.
Let’s now consider a more complicated program. In a monadic framewar&tifuns controlling a robot

might look like the following:

moveArmUp 110 ()

moveArmDown: 10 ()

moveArmLeft :: 10 ()

moveArmRight:: 10 ()

clawGrab 210 ()

clawRelease ::10 ()

These functions activate various motors in the robot arm to move the anpested. We might also have a
compound functiontoss:: 10 (). The documentation fdpsssays that it moves the arm while releasing the
claw to toss whatever the claw was holding. Perhaps we have testgdnd now want to make the tossed
object go higher, so we would like to additionally rmmoveArmUpn parallel withtoss Is this a good idea?
We don't actually know howtossworks; if it calls moveArmDowrinternally, that could result in a motor
conflict. With resource types, these functions all become much clearesid&o the following:

moveArmUge o (MotONericar} 0
moveArmDowee :: a O e} 0
moveArmLeg= Okl ()
moveArmRighg 2 a Ol ()
clawGrahsr o Motorciau} 0
clawReleasg: o Motorciau} 0

.. {Motoryertica,Motorciaw}
tossr:: a ~ 0

Now, not only is it clear which motort®sssg uses, but trying to rutosssg at the same time asoveArmUge
will result in a type error.

4.3.5 Data transfer

One strength of wormholes is their ability to transfer data between two disgadseof a program. Typi-
cally, this would involve rewriting signal functions so that they consumeadpce more streams so that one
can create a stream link between the two components to be connected. ddavisvwork is unnecessary
with wormholes.
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We will consider the following two programs:

PhiRCR= (Integer&» Integen — (()

0)
0)

We will assume that as long & andR, are disjoint, theriR; andR; are disjoint also. These two programs
both do almost the same thing: they acquire a strealmtefers from a source, apply a given signal function
to them, and then send the result to an output device.

Our goal is to connect these two programs in order to cross their stredmas.isT we would like the
stream fromP; to go to the output device &% and vice versa. Without wormholes, we would be forced to
examine and change the implementation and type of at least one of these granpso However, instead,
we can define:

3 4P

R
P, :: R, C Ry = (Integer~3 Integen — (()

main= letW ry, ry, 0in
letW ry, rp, 0in
Py (rsf rp, >>>rsfry,) >>
P (rsf ry, >>>rsfry,)

We pair two wormholes together almost like twlelay expressions, except that we swap the inputs and
outputs. This provides us with two functions that are able to communicate dven mo streams seem
readily available.

4.4 Delay and Loop

We have provided looping as a built-in feature via thep arrow operator, and in our introduction (Sec-

tion 2.1.2), we described that its use in FRP will always be paired with an associsg¢eafdelayto enforce

causality. With wormholes, these two functions are no longer fundameritaidtead can be constructed.
We start by showing that a strictly causal implementatiodelfycan be produced as syntactic sugar

with a wormhole:

r#%t-eq:a

F,,%’l—delayqa:a&or

Ty-DELAY

delay i%" letw Fw rp i in rsfry>s>rsfry
By attaching the blackhole and whitehole of a wormhole back to back, wéecaesignal function that
accepts present input and returns output delayed by one step tiebgeme see that theelayoperator is
the connection of two ends of a wormhole.
Interestingly, we can attach the wormhole ends the other way too. Obvithislgan lead to a trivial

signal function of typd) 2 () that does nothing, but if we provide a signal function to be run in between
the connection, we can build the following:

r#Zt-e:y F,%I—e:(yxa)«i(yxﬁ)

Ty-DLoOP =
%+t doopege:a~f3

dLoopi X letw rwrpiin proc a— do
X< rsfry—= ()
(y,b) <~ e—=(x,a)
rsfr, <y
returnA—b
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We are able to achieve a delayed form of looping by a clever use of a vebemW/e first produce a new
wormhole and provide the loop’s initialization value as its initial value. We extrectoop data from the
wormhole by accessing the whitehole, feed that along with the input eatadhe signal functiore, we
loop the resulting loop datg by sending it to the blackhole, and finally we return the generated Vmlue
Due to the causal behavior of wormholbsjalues that are output frombecome neva input values tee on
the next iteration. Thus, the input on th&iteration is given by the output on time- 1%t iteration.

With the results of this example, we no longer need to provide looping or deffaydamental operators
in our language.

4.4.1 Wormhole Loop Syntax

There is one problem with using wormholes for looping, which is that doingptéactice often feels some-
what imperative. The nature of explicitly writing to blackholes and readiognfwhiteholes can obscure the
underlying feedback that is occurring.

Actually, a similar problem happens with arrow loop itself, sinceltiog operator is not always easy
to use. The solution in this case is that arrow syntax is extended wét keyword, which allows the pro-
grammer to write recursively defined streaming values. Tdgsyntax is then translated into an invocation
of theloop operator Paterson200]]. Of course, it is possible to rewrite non-causal loops with this syntax,
and doing so can create an infinite loop, so one often needs todedaysoperator of some sort to prevent
this.

We can create a similar system with wormholes. That is, we can create a cexgbax that eases
program development and that desugars into standard wormhole creati@pplication. It will be nearly
identical to the arrow loopec syntax in appearance, but it will rely on a different underlying tramstdion.

We will still have arec block, and within that block, values are allowed to be recursively defiHedever,
rather than simply hoping that the user usletay operators in the appropriate places, we provide a new
operatorjntroduce which we will use in the desugaring.

Theintroduceoperator behaves to the user identicallylesay That isintroduce:: a — (a 2 a),and
it must be used whenever a new recursive value is defined. For iasténee have a signal functios,
and we would like its output fed back to itself as input, with an initial value of On thre could write the
following in our proc syntax:

rec X < introduce0—y
y + sf—<x

Basically, the rule of thumb is that streaming values on the right side afteoducedo not need to have
been defined yet. However, because this syntax is designed forcesgped FRP, which is commutative
by design, the real rule is that the value to the right ofitti@ducemust simply be defined within (or before)
therec block.

The desugaring is as expected. We create a new wormhole and we pdpuititénitial values gathered
from eachintroducefrom therec block. Then, at the start of thec block, we read the whitehole, and at
the end of it, we write to the blackhole. All of thetroducestatements are removed post-desugaring.

For the example above, the block will desugar to:

letW ry rp 0in
X4 rsfry— ()
y + sf—<x
() «—rsfrp—y

If there are more than orietroducestatement in the block, then they can be grouped together: the value
stored in the wormhole would be a tuple of all of ikroduced values, and they could be read all at once
from the whitehole and written all at once to the blackhole.
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45 Semantics

We provide a discrete, synchronous operational semantics for thercestyped arrowized FRP language
we have built. As these semantics are somewhat complex, and in an effernistify them, we separate
the functionality into three distinct transitions. At the highest level, we applyrpoéeal transition. This
transition details how resources behave over time and explains how thefaigeteon itself is “run”. (Recall

from Definition 1 that only expressions with typg A () are allowed as “runnable” programs.) Because
our language is lazy and evaluation is performed when necessargssiprs may be able to simplify
themselves over time. Therefore, this transition will return an updated (edtgmore evaluated) version
of the input program.

The temporal transition makes use of a functional transition to interpret tiveofl@ata through the
component signal functions of the program at a given point in time. Tthegudgments in the functional
transition handle how the instantaneous values of the signals are prbbgssignal functions.

Because the expressions to be run can contain arbitrary lambda catbelfisnctional transition judg-
ments make use of an evaluation transition when necessary to evaluatesexgsavhen strictness points
are reached. This is a fairly simple transition that performs as a typical, éaagtrgtics of a lambda calculus.

A top-down view of the three transitions is the most intuitive way to describe finettionality. How-
ever, to define them, it is easier to start with the evaluation transition and ywdrkm there. Therefore, we
present the following transitions:

e— ¢ Evaluation transition
(V,x,e)= (¥",y,€,#) Functional transition
(%, % ,P) AN (Z',»',P) Temporal transition

where .
eand€  are expressions

¥ and?’ are sets of triples
xandy  arevalues

w and¥’ are sets of wormhole data

Z and#' are resource environments, and
PandP’  are programs

In the following subsections, we discuss these transitions in more detail.

45.1 Evaluation transition

The evaluation transition is used to evaluate the non-streaming componergdafgbage. We start by as-
suming a classic, lazy semantics for lambda expressions and applicatidacptgpe pairs and projection,
and sum-type case analysis and injection as provide@ly»x+}. We show our additional rules for the
additional expressions of our language in Figdré Note that we leave outelayandloop due to them
being implementable via wormholes.

We use the notatioaval to denote that expressi@is a value and needs no further evaluation.

Obviously, these rules are very straightforward: no evaluation is domsggoal functions in this transi-
tion. This transition is important for the operations®¥ — x+}, but it is strictly a formality here.

The languageZ{— x+} has a standard Canonical Forms Lemma associated with it that explains that
for each type, there are only certain expressions that evaluate to sovaha type. By simple examination
of these new rules to the transition, we can extend the lemma as follows:

Lemma 1 (Canonical Forms)If eval and e: o £ B, then e is either an SF constructor, an SF partial appli-
cation, an SF composition, an SF choice statement, an SF resource titaran a wormhole introduction.
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ET-ARR ————
arr(e) val

ET-FIRST -————
first(e) val

ET-CoMp ———————
(e >>>e) val

ET-CHC ———
(er]]| €2) val

ET-RSF

rsfr val

ET-WH .
(letW ry rp & in e) val

Figure 4.4: The evaluation transition judgments for our extensia#f {e- x +}.

4.5.2 Functional transition

The functional transition details how a signal function behaves whem gigngle step’s worth of input. It
is a core component of the temporal transition described in the next sestibesaentially drives the signal
function for an instant of time. It is a big step semantics. The functionalitramgudgments are shown in
Figure4.5.

Before we discuss the judgments themselves, it is important to examine the aamgpbeing used.
First, one will notice the set’. ¥ represents the state of the resources (both real and virtual) in the world a
the particular moment in time that this transition is taking place. Each eleménioctually a triple of a
resource, the value that resource is providing at this moment, and theéwéleieeturned to that resource. At
the start, we assume that all of the elements have the forsn), which indicates that resourceprovides
the valuex and has no value to receive. It should be no surprise that the only judgri®t read from
or modify this set are FRSF and F-WH, the judgments for resource interaction and virtual resource
creation.

The second argument to each of the judgments (typigatyFigure4.5) represents the streaming value
being piped into the signal function. However, since the functional tranggionly defined for an instant
of time, rather than this value being an actual stream, it is the instantaneoaswalue stream at this time
step. Its partner is the second result, or the instantaneous value of tmaisyeoutput of the input signal
function.

The third argument is the expression being processed. The purpdise fainctional transition is to
describe how signal functions behave when given values from thearstng input, and as such, it is only

defined for signal functions (that is, expressions that have theaygeﬁ for some seR). Notably, there
are only judgments corresponding to the forms given in the updated cahforims lemma (Lemma). On
the output end, this term represents the potentially further evaluated fdaha imput expression. We prove
later in Theoren? that this output expression is functionally equivalent to the input one.

The first three terms of the output correspond to the three terms of thelpthere is also an additional
term’”, which contains data about any wormholes processed during this transitimedition to adding the
two virtual resources created by a wormhole expression to the reseviztenment, we need to separately
keep track of the fact that they are a pair. Therefefecontains elements of the forfny, ry, €] wherery is
the name of the blackhole end of the wormhalgjs the name of the whitehole end, aads the value in
the wormhole. We will use this information later to properly update wormholestowe in the temporal
transition.
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FT-ARR

(7, x,arr(e)) = (¥,e xarr(e),0)
e="e€ (V. x€)= (V. y W)
(7, (x,2),first(e)) = (¥, (v, 2),first(e”), #')
€1 '_>* ell (77)(7 e(1) 3 (7/,7% ]{7%) € '_>* dz (7//>y7 dz) 3 (%//727%7%)
(V. x,e1>3>e) = (V' z2,€] >, 11U W?)
x—=*leftxX) e—*¢ (¥ X, &)=y €., ¥?)
(V. xellle)= (Vy.€lle?)

x—=*right(X) e—*€& (¥.X,&)= (V"y.&,%)
(7. xellle)= (7 y.ell&?)

FT-FIRST

FT-CompP

FT-CHCq

FT-CHC2

FT-RSF

(v U{(ry,-)},xrsfr)= (Y U{(r,-,X)},y,rsfr,0)

e="€ (YU{(rw,8,),(,0),)}, % €)= (Vy, €. ¥#)
(V. xletWryrpein e = (V' y, €. 7 U{[rp,rw,&]})

FT-WH

Figure 4.5: The functional transition judgments.

Note also that we use the teen-* € to denote continued application of the evaluation transitioon
e until it is evaluated to a value. That valueds
As this is a critical piece of the overall semantics, we examine each of the judgmdividually:

e The Fr-ARR judgment does not touch the resources, so the ipus returned untouched in the
output. The expressioa x does not need to be evaluated due to the lazy semantics, but it is the
streaming output nonetheless. The final two outputs reveal that norfextaieation of the expression
has been done and no wormhole data was created.

e The Fr-FIRSTjudgment is only applicable when the input streaming value is a pair (whichuseaks
by the type checker by using therdFIRsTrule). The first element of the pair is recursively processed
with the argument tdirst, and the output is formed by the updatéd and by re-pairing the output
y. As the body of thdirst expressiong, was evaluated, its updated form is returned along with any
wormhole data the recursion generated.

e The Fr-Comp judgment first sends the streaming argumetitroughe; recursively. Then, with the
updated?”, it sends the result throughe,. The resulting?” andz are returned. Once again, the
updated expression is returned in the output. Lastly, the wormhole datebfstinrecursive calls of
the transition are unioned together and returned.

e The Fr-CHc; judgment is applicable for a signal function choice operation when thensimngaargu-
ment evaluates toleft value. This argument is defined in typing rule-THc to be a sum type. The
“left” expressiong; is evaluated and a recursive call is made. The output is formed by theedpda
the new streaming output, the choice operator applied to the updated! the original, unevaluated
e, and any wormhole data from the recursive call.

e The Fr-CHc; judgment proceeds similarly to therfCHC; judgment, but whex is aright value
instead of deft value.
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e The Fr-RSF judgment require¥” to contain an element of the forfny, -), wherer is the resource
being accesseg,is the value the resource currently has, and no output has been sestrestiurce
yet. The streaming valueis put into the resource, and the result is the streaming walft@m what
was in the resource. The sgtis updated, replacing the triple used here with a new one of the form
(r,-,X') showing that this resource has essentially been “used up”.

e The Fr-WH judgment first evaluates its bo@yto the valueg'. For its recursive call, it updates the set
¥ with two new triples corresponding to the two new resources created in thehete operation:
(rw,&,-) and(rp,(),-). These are two fresh, unused triples trsdtoperators can make use of in the
body €. As triples are never removed;” will include these two triples as well. The result is this
¥ with the new triples, the streaming value y, the updated l&#dgand the wormhole data from the
recursion updated with the eleméng, ry, & ] corresponding to this wormhole. Note that the returned
expression is no longer a wormhole but has been replaced with the bdldg eformhole. This is
because now that this wormhole has been evaluated, its values live isidd it has been cataloged
in ' —itis no longer needed in the expression.

The following theorems provide some extra information about the overattifumality of this transition.

Theorem 1(7 Preservation)If (¥,x,e) = (¥",y,€,#'), thenv(r,a,b) € ¥/, 3(r,a,b’) € ¥" and V[rp,rw,i] €
W, 3(rp, @, bp) € ¥ and3(ry, aw,by) € 7.

This theorem states that the elements in the inpuatre preserved in the output. In fact, there is a direct
correspondence between them such that if the input set has an eleitiergsource, then the output will
too. Furthermore, when new values are added (asriviH), they correspond to values 1. The proof
is straightforward and proceeds by induction on the functional transitaigmjients. It has been omitted for
brevity.

Theorem 2. [e Preservation] If e a A Band(¥,x.e)= (V' y €, #) thené:a R B and € has the same
structure of sub-expressions as e with the exception that wormholessikpns may have been replaced by
their bodies. For each so replaced, there is a corresponding elemé#itarf the form[ry, rw,i] such that p
and ry, are the virtual resources of said wormhole. Furthermorg, R andvr € (R'\R), either[r,_,_] € #
or[_,r,_le¥.

This theorem states exactly how the output expressi@an be different from the input expressien
Notably, it will still be a signal function with the same input and output typesiamdll still behave in
essentially the same way, but its set of resource types may grow. Sgabgificae resource type set does
grow, it is because a wormhole expression was reduced to its body awmittied resources it introduced
are now visible at a higher level. A notable corollary of this theorem is thét i 0, thene= €.

Proof. The proof follows by induction on the judgments and the typing ruteWWH for wormholes. A
cursory examination of the judgments reveals that the only one to changerthef the expression from
input to output is F-WH, which replaces the input expression with the body of the wormhole.tyifiing

rule tells us that ie: a & B andeis a wormhole, then the body ehas typex L3 B whereR=R\ {ry,rp}.

Although the resource type set may have grown, it could only have ghbgwine addition ofy, ry, or both.
Furthermore, the elemefty,ry, & is added to the output'. O

Lastly, it may appear that multiplesf commands on the same resource could be problematic; after all,
the Fr-RSF judgment initially requires the resource® have a triple of the forn(r,y, -), but it results in the
third element of the triple being filled in. That is, there ismsbcommand judgment where the triple has a
value in the third element. However, as we prove later in Thed@gfrthe program has type 3 B, then it
must have at most onsf command for any given resource
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Yin={(r,read r,-) |1 € Z} U{(rw,i,") | [Fo;Tw,i] € #)}U{(rp,(),") | [rb,rw,i] € #)}
(%m ()7P) = (%ub ()7P/77/new)
X' = {updater o’ |r e Z,(r,_,0) € Yout,0—" 0'}
W' = {[rp,Tw,if 0=-theni elseo] | (rp,_,0) € Yout, [Tb,Tw,i] € (¥ U #hew)}
(%, W ,P) s (%, W', P)

Figure 4.6: The temporal transition.

4.5.3 Temporal transition

Because signal functions act over time, we need a transition to show therarbphavior. At each time
step, we process the program, taking in the state of the world (i.e. all theércesp and returning it updated.
There is only one temporal transition, but it is quite complicated. It is showigur&4.6.

This transition says that the resource environm#nthe set of wormhole dat#’, and a progran
transition into an updated resource environment, an updated set of wlerndta, and a potentially more
evaluated program.

Before we can begin to analyze how the transition behaves on a fine graeijve first need a method
of actuallyinteractingwith resources. This happens via the use of two functions:

read X (Tin, Tout) — Tout
update :: (Tin, Tout) — Tin — (Tin, Tout)

Theread function simply returns the current output value of the given resouneeely “peeking” at what
is there. Thaipdate function takes a resource and the value to give to it and returns an dpaatson of
the resource.

The first precondition extracts data from the resources and wormhudiescanpiles it into a form that
the functional transition can use. For the resources, we create triplle @drm (r, read r,-) meaning that
the resource provides the valuesad r and is waiting for a return value. For wormholes, we actually create
two triples, one for the blackhole and one for the whitehole. The whitehas tee whitehole resource
namer,, and the current value in the wormhole, and the blackhole igs@sd produces only).

This data is provided to the functional transition along with the progPalecause® has type() A O
by definition, the streaming argument is set toThe result of the functional transition is the updated value
set¥out, the streaming output d® (which the type guarantees to bg, the updated program, and a set of
any new wormhole data encountered during execution.

The last two preconditions are analogous to the first one: they extrastgbarce and wormhole data
from ¥4yt For every element iffg that corresponds to a resourcedi) we take the output valug evaluate
it, and push it to the resource. The resulting updated resources make npvitsetZ’. It may be thapb
was never filled and is still empty—thgdate operation is executed regardless in order to push the resource
one time step into the future. Note that because of the use of the evaluatisitidrarthis step acts as a
strictness point for the streaming values of the signal functions.

The wormhole data is extracted in much the same way. For every elemg&nj ihat corresponds to a
blackhole in either the original wormhole data g&tor in the new addition%;en, We examine the output
valueo. If owas filled in, then the updated wormhole entry contains the new value; otleetiveswormhole
keeps its old value.

Each application of the temporal transition is designed to represent one onigne, or one unit
time step. We could easily parametrize this transition with an adiyabr change in time, but this is not
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necessary. In fact, one can think of real time itself as a resource whbsecan be probed at any moment,
and in doing so, the semantic behavior of the transition is allowed to be indeperideal time.

In total, we see that the temporal transition uses the prod?am update the resource® and the
wormhole data#’. Because of Lemma, we can see tha#’ contains all the resources that did, and
similarly, #” contains all of the elements from bot and #pew. Therefore, if(Z, % ,P) AN (%' W' P),
then this transition can repeat indefinitely. That is, the next step woulgzhe/”’,P') AN 2", »",P") and
so on. Since each pass through the transition represents one moment in isnnegakbs sense as a valid
way to represent program execution over time.

We can use the temporal transition to establish an overall semantics forramrBdn our language.
Recall that%, is the default resource environment containing all the resources ofdhevorld.

Definition 2 (Program Evaluation)If P is a program (that is, an expression of the fo(r)ni () for some set
R), then P will have the infinite trace starting at st&t&,, 0, P) that uses only the temporal transitieh.

4.6 Safety

Here we show the safety that resource typing provides. We intend to thladuf a program is well typed,
then no two components will compete for the same resource. To expressehigyst first define what it
means to interact with a resource.

Definition 3 (Resource interaction)A program P interact®once with a resource r at a given time step
if it reads the value produced by r at that time step, returns a value to ratttime step, or does both
simultaneously.

With this definition, we can state our resource safety theorem:

Theorem 3 (Resource safety)lf a program P: a & B, then P will interact only with resources in R, and
for each resource it interacts with, it will do so at most once per time step.

This theorem tells us that any program that type checks will only use thaness in its type and never
have the problem where two components are vying for the same resoltieeprogram will be entirely
deterministic in its resource management, and from the type alone, one willdbmaee which resources
it has the potential to interact with while it runs.

Proof. The proof of resource safety begins by examining the temporal transBecause each element in
Z is a unique resource, we know that interacting once each with diffelemeats in%Z will never cause a
problem. Furthermore, as all we do to createis exactly onaupdate operation on each resourc#, will
likewise have unique resources. The concern, then, comes fromribgofual transition. We must prove
that updates ir¥oy; are not being overwritten by future updates during the functional transitio
Therefore, the bulk of the proof proceeds by induction on the fundtioasition where we must show
that any elements itt” are only being updated at most once. Based on the updated Canomioal [E@mma

(Lemmal), we know that sinc® : o A B, it must be one of the five SF operators. We examine each in turn:
e SF constructor: If Pis of the formarr(e), then by typing rule ¥-ARR, R= 0 and it will use judgment
FT-ARR. There are no other transitions nor resource interaction being pedanrthis judgment,
and sinceR = 0, we trivially satisfy our conditions.
e SF partial application: If P is of the formfirst(e), then by typing rule ¥-FIRST, we know that if

e has typea L B, thenR=R. Furthermore, we know tha& will proceed via judgment FFIRST.
By our inductive hypothesis, we know thatvill interact with each resource iR at most once, and
since no resource interaction happens in this judgment, we satisfy outionad
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e SF composition: WhenP is of the forme; >>> e, it will proceed by the F-ComP judgment. By
typing rule Ty-Comp, we know thate; has resource type sBi ande, has resource type sBb such
thatR; UR, = RbutR; N R, = 0. By our inductive hypothesig; evaluates interacting with at most
the resources iR, ande, evaluates interacting with at most the resourcdinrHowever,R; andR,
share no common resources, and together, they make djperefore P does not interact with any
more resources than thoseRnand any inR that it interacts with, it does so at most once.

e SF choice: WhenP is of the forme, ||| e, it will proceed by the F-CHcy or FT-CHC, judgment.
Typing rule Tv-CHc tells us thate; has resource type sB4 ande, has resource type sB such
thatR; UR, = R. By our inductive hypothesis, we know that eittegrevaluates interacting with at
most the resources iR; or e, evaluates interacting with at most the resourceRznbut only one
transition is used. We know th&is the set of all common resourcesRa andRy, so regardless of
which transitionP proceeds through (running or &), only resources iR will see interaction, and
they will only be interacted with at most once. Therefore, we satsify onditions.

e SF resource interaction: If P is of the formrsf r, then it will proceed by the FRSF judgment.

Typing rule Ty-RSF tells us that its type must hzeﬂi B. The transition completes in one step
with no preconditions making use of no further calls, but in fatis being modified, so resource
interaction is taking place. We see that the element iior resource is the only one being accessed
and it happens precisely once. The access is allowed because trivia{ly} .

e wormhole introduction: Rvill proceed by the F-WH judgment when itis of the fordetW ry, rp, g in e

Typing rule Ty-WH tells us thake has typex A B the same aB. First, we recognize that no resource
interaction can be performed leybecause it is never evaluated as a expression by the functional tran-
sition. Even though we add values*6 we do not modify and existing values, so we are not doing
any true resource interaction in this transition. Therefore, our indubtipethesis tells us that only
acceptable resource interaction is done in the transition of the precondition. O

This proof takes the progress and preservation of our semanticsafutlegr The proofs for these can be
located in Appendid.3.

4.7 Haskell Implementation

In addition to the typing rules and operational semantics, we built an implementdtorowized FRP with
resource types and wormholes within the Haskell language. This implemendéftems slightly from the
language design we have specified, but this is due to a few particular limitatidtaskell. At the end
of this section, we will discuss possible extensions to the Haskell langpa&géisation (or, more likely,
language extensions for GHC) that could allow us to overcome these limitations.

4.7.1 The Resource Type

We will begin by building a system to allow for resource types. Essentiallysaurce is a type-level entity
that can be accessed to perform a read or effectful update (reeadathh and update functions from the
previous section). We choose to represent the idea of resourcagmsaass, and then new resources can
be created by allowing types to instantiate this class. We make use of GHCt&oheal dependencies and
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multiple parameter type classes to write this:

classResourceralyr — a,r — b where

read :r—10Db

update::r —a— 10 ()

rsf nr— (a{vr»} )
Where in our theoretical model, thead and update functions were pure, here we allow their Haskell
counterpartsead and updateto perform effectfullO actions. Thus, we additionally require resources to
obey the following Resource Law:

read r>>read r=read r

To instantiate this class with a resource type, one would provide as the tipe@dyameters the re-
source, its input type, and its output type. Then, for the given respore can define thread andupdate
functions which will perform the resource’s 1/0O effects.

Rather than force the user to instantiate tbfefunction, there should be a default implementation pro-
vided by the library author, or the one who defines the arrow type. F@amos, one could build this resource
type system on top of a simple Kleisli Automaton over k®emonad:

dataa~»b=KA (a— IO (b,a~- b))
In this case, a simple implementationrsf could be:

rsfr=KA$A a—do
update r a
b+ readr
return (b, rsfr)

With this infrastructure in place, a user can define resources very .eBsilynstance, if a user wanted
to declare a resource for printing lines of text to the terminal console, ild do so:

data Console= Console
instanceResource Console Strir(g where
read_ = return ()
update_ = putStr

Thus, resources are extensible both over the nature of the undertyaovg tgpe as well as by the user
who wishes to add new resources to his environment.

4.7.2 Resource Type Sets

Resource types alone are not enough; next, we need a way to rapsete of resource types. Our im-
plementation is inspired by Haskell's HList librariigelyov et al, 2004 for heterogeneous lists, and as
such, resource type sets will actually be implemented using lists of types (ivnehan inherent order and
may have duplicates). Our goal in this subsection will be to create type slassefamilies to allow us
to perform our main set operations: union, disjoint union, and set rdmbwvaddition to some of GHC's
more well-known language extensions (multiple parameter type classeswetanake use of the newer
type families and data kinds extensions as well.

To begin, we use an updated version of the type equality class from Hergtwith equality constraints
and Boolean data kinds:

classTypeEq(x:: k) (y:: k)(b::Bool) [ xy—b
instance(True~ b) = TypeEqgx x b
instance(False~ b) = TypeEg xy b
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classUnion (xs:: []) (ys:: [%]) (zs:: [%]) | XS ys— zS

instanceUnion '[] '[] /(]

instanceUnion '[] ys ys

instanceUnion xs’[] xs

instance (ElemOf x ys bres~ IfThenElse b y$x: ys), Union xs res zs
= Union (x": xs) ys zs

Figure 4.7: The Union type class.

An instance ofTypeEghas its third type a3rue only when the first two types are equal. Although it is
possible to write a similar construction using Haskell's closed type families, thevéwgions are not the
same. This version ofypeEqwill unify more eagerly in the case of type inequality, which will prove
essential for how we intend to use it.

We will also need a way to make a type level decision based on whether tgpegual, so we introduce
the following closed type family:

type family IfThenElsgb :: Bool) (x:: K) (y:: k) :: k where
IfThenElse True X y= X
IfThenElse False x =y

If the first type argument is True, the result is the second (the “thense)aand if it is False, the result is
the third (the “else” clause).

Together, type equality and the conditional type family allow us to write a typs tias computes type
level list inclusion:

classElemOf(x:: x) (ys:: [*]) (b:: Bool) | xys— b

instanceElemOf X|[] False

instance(TypeEq x y bElemOf x ys z ~ IfThenElse b True)z
= ElemOfx(y"ys)r

The first instance states that a type is never an element of an empty type éisteddnd states that a type is
an element of a type level list either if it is equal to the head of that list or if ihislament of the tail.

With these classes and family established as the basics, we can begin st eatim¢he set operations
we need. We present a type class that performs the union of two sets e EiguThe first three instances
dictate that the union of a set with the empty set (in either order) is the set belfast states that we can
find the union of two sets by examining the head of the first set. If it is an eleofi¢he second set, then
the result is the union of the tail of the first set and the second set. Otleetiwesresult is the union of the
tail of the first set and the head of the first set added to the second set.

Another way of viewing our set union operation is that is is appending theihaerlying lists together
but skipping any elements that the two lists have in common.

Next, we can use this union operation together with a disjointness test to orgatesjoint union type
class, which we show in Figure8.

Lastly, we create a type class that represents set removal, which weirsttogure 4.9. Unlike the
other type classes, this class will have an associated function thatrpserfiee removal. The first instance
states that removing an element from an empty set is just the empty set. Thd states that removing an
element from a set whose head element is that element is the tail of the sahirfhsates that removing
an element from a set whose head element is not that element is the samewagahe element from the
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classDisjoint (xs:: []) (ys:: [])

instanceDisjoint '[] '[]

instanceDisjoint '[] ys

instanceDisjoint xs '[]

instance (ElemOf x ys Falsdisjoint xs y3
= Disjoint (x: xs) ys

classUPlus (xs:: []) (ys:: [#]) (zs:: [#]) | XS ys— zs
instance(Disjoint xs ysUnion xs ys zs= UPlus xs ys zs

Figure 4.8: The Disjoint type class for establishing disjointness and the Wpleslass for performing the
disjoint union.

classSRemoveéx :: [x]) (ys:: [*]) (zs:: [#]) | X ys— zswhere
sremove: X — (b5 ¢) — (b S ¢)
instanceSRemove ¥| '[] where
sremove = unsafeCoerce
instance (ys~ z9 = SRemove " ys) zswhere
sremove = unsafeCoerce
instance(SRemove x ys'y¢y " ys) ~ zs) = SRemove g " ys) zswhere
sremove = unsafeCoerce

Figure 4.9: The SRemove type class removes resource types frommaesgpe sets. It has a value-level
function as well.
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classCategory(~~) where

id::bﬂlb

(35) 1 (UPlus 1y rar3) = (b5 ¢) — (-3 d) — (b2 d)

classCategory(~+) = Arrow (~~) where

arr ::(b—>c)—>(bﬁl> )

first ;2 (b~ ¢) — ((b,d) ~~ (c,d))

classArrow (~) = ArrowChoice(~-) where
(1) 2 (Union 1y 2 r3) = (b5 d) — (c <3 d) — (Either b c3d)

classArrow (~~) = ArrowLoop(~~) where
loop:: ((b,d) ~~ (c,d)) — (b~~c)

Figure 4.10: The Haskell Arrow classes redefined to permit resoupes t\Note that we are only including
the primitive operations and leaving out any that can be defined in termsrof(thg.secondl.

tail while including the head in the result. One may note that we use a trick similarabwsédid in the
TypeEcclass to test for type equality.

We need the value-level functisremove but it has no value-level computation, so we fix it for all
instances aansafeCoerce a — b. Although seemingly overpowered, we are using this coercion in a safe
way: not only is the function itself constrained by the class, but becaoae tnly be used when the type set
and the element to remove satisfy the class, we can be sure that we willamgecthe type into something
inappropriate.

4.7.3 Re-Typing the Arrow Operators

We now have both type level resources as well as a method to repraedesperate over sets of types. What
remains is to use these types in the typing of the arrow operators, as we diie 4 L

In Haskell, arrows are represented by #hreow type class, which itself is a subclass of Bategory
type class. In order to retain our ability to use arrow syntax in our codéolosv the same patterh Thus,
instead of recreating our arrows from scratch, we simply modify the existagges to suit our needs.

We show the code for these type classes as well as relevant portions AfrtiwChoicetype class
(which provides the choice operations) and reowlLooptype class (for loops) in Figuré.10* Note that
we require the|(|) function for choice rather than the more traditional and simf@ér Because choice
allows for a union of types, we can on longer defifj§ &s a composition déft andright; however, we can
defineleft andright in terms of (||).

3As we will discuss in Sectior.7.6 GHC does not currently support rebindable syntax for Arrows, wheans no method
of re-typing the Arrow classes will make using the arrow syntax with resotypes possible. However, we show this process to
future-proof the concept, or to prepare for when this feature is stggho

“Note that the code we present is not actually valid Haskell code becauaeewsing the~ symbol for our arrow. In Haskell,
a symbol like this can only be used as a binary type operator, but we asaiit operator over three types (input to the left, output
to the right, and resources above). In Haskell, we are technicallyddocase a prefix type operator instead, but for the sake of
clarity and consistency with our examples, we take the liberty of using thbayoperator.
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4.7.4 Wormholes

In our theoretical model, wormhole resources were subtly different fopbysical resources. Specifically,
wormhole resources were handled with a separate virtual resouricerenent’””. In practice, it is simpler
to instead make wormhole resources just the same as physical onesimplasjenting wormholes comes
down to instantiating thResourceype class.

Ideally, we would be able to use local class instances such that we cawtdage new types for our
resources and then locally declare them as instances dkeékeurceype class for the wormhole body.
Although local type class instances have been discussed, no versigeth@ade it into GHC, so we are
forced to take another approach.

We will make two new types to represent whiteholes and blackholes andipreach with a hole for a
phantom type so that we can keep their types distinct in the presence of muitiptenoles:

newtype Whitehole r t= Whiteholg |ORef t)
newtype Blackhole r t= Blackhole(IORef t)

Within every whitehole and blackhole is a referencel@Re) to the piece of memory that they both non-
locally share. Writing th&esourcenstances is straightforward:

instanceResourcéWhitehole rj () t where
read (Whitehole ref = readlORef ref
update_ _=return()

instanceResourceBlackhole r § t () where
read_ = return ()
update(Blackhole ref t = writelORef ref t

Now that we have wormhole resources, we can consider writindetiié operator to introduce them.
We will make one change from the version we discussed earlier in the chBptause Haskell has no way
to simply extend the type environment for a body, we turn the body argunterd finnction that takes two
resource values (one for the whitehole and one for the blackholek, Tieitype of this function will look
like:

letW::Vrirr'rtbc.
(SRemovéWhitehole rt) r r’, SRemovéBlackhole ¢ t) r' r”) =

t — (Whitehole t — Blackhole ft — (b~ c)) — b5 ¢

To remove the wormhole resource types from the output resource tiypeesese two instances 8Remove

The implementation ofetW would be straightforward to write were it not for the fact that creating a
whitehole and blackhole requires BDRef Therefore, we must introduce one more function that our arrow
must be able to support to allow wormholes:

classArrow (~) = ArrowlO (~~) where
initial AIO :: 10 d — (d — (b~>¢)) — (b~ C)
This class and its function allow an arrow to be built from the results of an initiglizO action. A function
like this is required to build wormholes, but it also clearly breaks the guaramteresource safety if used
incorrectly. Thus, we allow it for the implementation letW but expect that it is not exported to library
users.
We now give the implementation &gt\W:

letW t inner= sremovegundefined: Blackhole t) $
sremovegundefined: Whitehole rt) $
initialAIO (newlORef }
(A ref — inner (Whitehole ref (Blackhole ref)
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Notice that this is where we make use of the value-lsvemovdunction from theSRemovelass. Without
it, we would not be able to make the output resource set match the one cebyrttesinner function.

4.7.5 An Arrow Instance

We have done our best up until this point to avoid choosing any particludtarioe of the arrow class—
resource types should be relatively universal and applicable to mamg fof arrows—but at this point in
our discussion of implementation, we will provide a sample signal function impletien.

As hinted at earlier, our implementation will be similar to the Kleisli Automaton, but Weawgment
it slightly to properly deal with resources. Specifically, we will define auow data type as follows:

dataSFrbc=SF(b—10 (c,1O (),SFrbo)

TheSFdata type has two separate ways of dealing Witxlactions rather than the single way that the Kleisli
Automaton has: the actions can be perforrdedng the arrow’s execution, or they can be gathered up in
the outputlO () to be performed lateibetweertime steps).

Instantiating the arrow classes is trivial with this data type, and our instdomeglentical to those for
the Kleisli Automaton but witieturn () filled in for the extrdO () outputs and a simple bind$) whenever
two of those actions need to be combined. Indeed, that extra output becelmeant only for resources,
such as when we are defining our default implementatiasfof

rsfr=SF$A b— do
C+readr
return (c,update r brsfr)

As can be seen here, the extfa () output allows us to delay executing thpdate actions until between
time steps, which is critical for making wormholes behave properly.

Recall from Definitionl that for a signal function to be a program, it must have typeFi (), and we
can write a function that will allow us to run a program:

runSF:: () % () = 10 ()
runSF(SF s = do
((),actionsf) « sf()
action
runSF sf

4.7.6 Limitations

There are two limitations with the implementation we have presented in this section.

Abstract Types With Wormholes

The implementation we have provided works with any concrete resourcs, fypiit cannot always handle
arbitrary resource type sets. This means that any full program caefimed, but functions that transform
arbitrary other signal functions may be rejected by the type checker.

An example will help illustrate this point. Let's assume we have a signal functiahdbes some
arbitrary resource interaction with resouréeand that has an output type that is the same as its input type:

mySF:: afa
mySF= ...
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Perhaps we want to wrap this with a wormhole to create a feedback loopaméetine the following:

R
mysEoop ra—= (0~ 0)
MySkyep, @ = letW a(A w b — rsf w>> mySFEs>rsf b)

As long asmySFHis defined and concrete, this will work fine.
However, as functional programmers, we may naturally want to abstradtethavior of “wrapping” a
function with a wormhole, and so we desire to write:

wrap:: (a~»a) —a— (() ~ ()
wrap sf a= letW a(A w b— rsf w>s> sf>>>rsf b)

With this, we could simplifymySk,,, = wrap mySEwhich seems great. Unfortunately, this is impossible.
The type checker does not know whawill be, and so it cannot verify critical steps such as whether
the whitehole or blackhole resources we create might already be partldiis is frustrating because we
as programmers know that the resources of a wormhole we constructenfileh and absent from any
arbitraryr, but Haskell's type checker is currently not up to the task of deducing this

This limitation only appears when combining signal function transformersh(ascthe abovevrap
function) with uses of wormholes. Thus, we see it as an acceptable limitationif@rototype of resource
types. We believe the issue could be overcome in more dependently typeddgsg so for a fully working
implementation, we must either extend or abandon Haskell.

Rebindable Syntax

Currently, arrow syntax in GHC is activated by the “arrows” languaggmra and is fairly restrictive: GHC
expects all arrows to follow a particular form, and that form cannot ghahrough a segment of arrow
syntax. With resource-typed arrows, the arrow’s type may change veittom syntax—indeed it will if any
rsf operations are within the syntax. GHC sees this as an ®rror.

Unlike the type removal from the previous limitation, this one is entirely surmotetaifact, there is
even a template from which to begin working: monadic rebindable syntaxteliiedable syntax extension
to GHC allows one to declare his own Monad class, and then GHC will followeit#y even if it calls for
the type of the monad to change within the syntax. Although no effort hasrbhade to write this extension,
it should not only be possible, but we expect it to be straightforward, if Goresuming.

Additionally, this limitation even has a currently available workaround. Altha@gtC does not support
rebindable syntax for arrows, Paterson’s origisetowp arrow preprocessbroes. Therefore, a user who
desires resource types along with arrow syntax can instead removertbe/88 language pragma from their
source file and run it throughrrowp before handing it off to GHC. The error messages tend to be more
challenging to comprehend, and it is more of a hassle to use, but it is a takiy)miorking alternative.

SOne may note that the code shown in this entire Haskell Implementation saetienexplicitly uses Haskell’s arrow syntax,
and this rebindable syntax restriction is the reason why.
6Available on Hackage atttps://hackage .haskell.org/package/arrowp.
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Chapter 5

Asynchronous Functional Reactive
Processes

5.1 Considering Asynchrony

Arrowized functional reactive programming is naturally synchronoosamonents are connected via com-
position, and those connections describe a synchronous flow of infiorman other words, if a signal
function has an output type of then it can be composed with another that has an input type afid every
output from the first is synchronously fed to the second. In fact, éwvendatais being conveyed along one
of these connections, as would be the case\fere (), there is still a sense dimethat is communicated.
Thus, to create asynchronous signal functions, we need to congig@etieely new connection method: we
must consider how we can construct a connection that somehow dissdizdrom data.

5.1.1 Wormholes Revisited

Of course, we have already discussed the answer previously; thdreuse default composition for our
asynchronous connections, we use specially designed wormholeppihabdime dilationover their con-
tents, warping those contents to match the timing of their output. Where symetsigrthere would be
a unit delay between the blackhole’s inputs and the whitehole’s outputscta®nously, there must be a
different sort of effect on time. Instead of the whitehole emitting exactlytwieblackhole accepted, it will
emit a stretched out or compressed image of it depending on the nature of tiimeuput. For example,
if a sine wave were passed through a wormhole from one process tceamotiming at half the speed (in
a discrete realm, this would correspond to it experiencing half as many time ptesecond), then the
receiving process would perceive the frequency of that sine watwiee as fast.

Of course, the fundamental nature of the wormhole will not change—witérthis new model, if the
two ends of the wormhole share the same notion of time (i.e. are in the sames)ytives this will simplify
to the same unit delay that we started with.

Operationally, we can achieve this in a discrete model by allowing the undgrtiata structure of
the wormhole to sometimes return nothing (indicating a stretching of time, or tha¢walata has been
generated from the blackhole since the last whitehole access) and otherditmen multiple elements (a
compression of time, in which multiple elements have “queued up”). Thus, ikeeduwr wormholes atop a
queue structure, which we model using a list.

Interestingly, we generally do not need to worry about how large this distget or other common
issues of buffering. Because wormholes are designed to be readyolyebsource (the whitehole), we
do not need to keep any buffer history between whitehole accesses, fhie amount that the buffer can
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grow is governed by the number of times its blackhole is written to before its vaited read, which
is typically predictable and fairly well bounded. Of course, one can desigathological case where the
process writing to the blackhole stalls indefinitely, but as long as the systeavémfairly, this should not
be a realistic problem.

The letW operator changes slightly to reflect this. The blackhole resource relti@rsame, but the
whitehole resource will now be of typg),List t). Additionally, as the underlying data type is now a list,
the initial value given to the wormhole will also be a list.

Because of this underlying queue, wormholes somewhat resemble th&oneother languages. Al-
though they are conceptually similar in that they both ferry data from one gta@nother, their use is
somewhat different. Unlike the output of a channel, from which individa#a can be popped off and used,
the output from a wormhole consists of the time dilated data from anothergsroce

5.1.2 Forking

With this model, communication between asynchronous components can, actinmust, be done entirely
at the resource level (i.e. with wormholes). Therefore, any asynoloprocess will have the typ@)aj‘» ().
But still, we must be careful—we cannot simply compose two asynchrongiial sunctions together even
if their input and output types afg¢ because any connection using standard composition would still enforce
a synchronization point.
Therefore, we introduce a new operator:

fork::()B»()—mrvR»or

Thefork operator will spawn a new process for the given signal function and/ &l run freely with its
own sense of time. In its own process, it will behave as an identity.

As mentioned above, even when inputs and outputs seem to convey noaitifam, they are still com-
municating a sense of time; this is the case Vdttk as well. Although the embedded signal function is
specificallynot synchronized with the input) stream, that stream still provides a notion of time to the
asynchronous process.

This may seem confusing or irrelevant, but it has a serious impact whesidered in the presence of
arrow choice. If gork operation is in a branch of a choice that is not currently active, then itisurcently
receiving any information, about time or otherwise. Therefore, it shootdnd must not provide any sense
of time to the asynchronous process it has created. That igpikas in an un-taken choice branch, then
the forked process must not be active (or must be immediately terminatedjarin ways, this is similar
to the ideas of non-interfering choice discussed in Chapterhich dictate that if a branch is inactive, the
program as a whole should behave as if that branch does not exist.

At first glance, this seems dangerous—What if we stop a process nidtexg leaving it in some sort
of unsafe state?—however, we can easily sidestep this issue by relyiing dundamental abstraction of
FRP. Because we assume that instantaneous values are proces#etyifdst, then at any given point in
time, the instantaneous value is either processed entirely or not at all. Wegan never be “in the middle
of” anything.

Operationally, we handle this by treating each time step for a given prosessamsactionthat will
either succeed completely or fail completely. Thus, if the process stopsxaaiHion, the transaction fails
and no effect is observable.

In total, we have a system where multiple signal functions can run indeptiyndéeach others’ notions
of time and yet still communicate when needed. That is, we have a systeamwhunicating functional
reactive processesvhich we refer to as CFRP.
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5.2 Motivating Examples

Before proceeding with the formal syntax and semantics of CFRP, wéderavfew examples to help mo-
tivate the design we have chosen. In these examples, we demonstrateigohesdi, expressive operators
that can be built using the CFRP tools. In Sectiofy we will define these operators in more detail.

5.2.1 Fork

Forking a signal function to run with its own notion of time is the most primitive asyor@ous computation
that CFRP offers. That said, it is powerful and useful even on its own

In the world of computer music, it is not uncommon to want to present a GUI seawhile simulta-
neously producing music, and indeed, FRP can be used for both. tumdbely, the GUI will probably be
running at around 30-60 frames per second, but in order to get higlitygsound, the pitch produced must
be rendered at more like 44,100 samples per second.

This thousandfold disparity would pose a problem for a synchronous iBdel, but it is exactly the
problem that the fork primitive is designed to overcome. Furthermore, wene&ke use of fork’s interaction
with choice to provide the user with an option to dictate whether the music shopléyiag or not. If the
user opts to silence the music, the forked process will stop executing.

We will assume two domain specific signal functions: a widget that produsekection optionsglect:

String— (() ~~ Bool)) and a sound playeplaySound: () (Spegrers ()). With these, we define:

musicGUI:: () {Spiiker}s()
musicGUI= proc () — do
b + select‘Play music?"— ()
if b then fork playSound~ () elsereturnA— ()

While the selection igrue theplaySoundunction will proceed at its own time rate in its own process, but
when the user sets it fealse it will stop and the process will stop as well.

5.2.2 Asynchrony in network packet maps

Although the forking from the above example is useful, CFRP can alsolénéimel more interesting case
where the asynchronous processes need to communicate as well. Fplexa the realm of networking,
one may have two signal functions, one for determining an incoming padetination and another for
examining the packets to determine an optimal network map. Every network magrangeed to be correct,
S0 it is acceptable to use an old map when routing, but it is essential thatstieensyoutes packets as fast
as possible. Even though creating the network map may take a long time, a futlyrepous system will
force packets to wait whenever the map is being recalculated, but with,@FRFaN construct new maps in
an asynchronous process that experiences time more slowly, allowingataitofast routing performance.
We might describe this scenario with the data typaskef Dest and Map and the signal functions
route:: (PacketMap) ~~ DestandmakeMap: Packet~~ Map. Using arrow syntax, we can write the syn-

chronous version:
router:: Packet~ Dest

router= proc p — do
m <« makeMap— p
d <+ route— (p,m)
returnA—d

This router will executenakeMapfor every Packet slowing down packet routing severely. Even with a
modified makeMap:: (List Packej ~ Map that accepts batches of packets, we will get an intermittent
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slowdown; for example, ilnakeMap ran on batches of ten packets, then every tenth packet would be
delayed while the map was being created.

Instead, we can create asyncoperator that will automatically forlnakeMapto its own asynchronous
process and provide wormholes for communication between the procédgasmakeMap running with
its own, slower notion of time on the other end of a wormhole from the main pspties stream dPackes
it receives will be compressed and tN&ps that it produces expanded. Operationally, this means that
new Packes will queue up in the input wormhole, and as soomkeMap finishes oneMap, it will
collect the queuedPackes and begin working on the next one. Meanwhileyte will run quickly on
eachPacketand automatically see neMtaps whenever they are created. Tdwyncoperator has the type
async: (Lista ~ B) — (a ~ List ) and we will define it from CFRP primitives in Secti@.1once we
present the language more fully. That said, we can use it now to cods/acheionous version of the router:

router :: Packet— Dest

router = letW ry rp (Myefault: €) in proc p — do
Mhew <— async makeMdp< p
Mprev < Isf ry —< ()
let m= if null myewthen head myey elsehead Mew
() <= rsfrp—m
d < route— (p,m)
returnA—<d

Note that we use a supplementary wormhole initially supplied with a default map stmggep track of
state during a time step. That is, the wormhole feeds the old map back to theibgghthe process in
case no new map is ready by the next time step.

5.2.3 Speculative Parallelism

One of the benefits of non-deterministic asynchrony is the ability to perforhipiewoperations at once and
observe which is fastest. In particular, we can start two tasks, and evieeaf them finishes, we can accept
the value it returns and ignore or even cancel the other task. This is epkedlative parallelism

Let us assume we have two signal functions that represent our two tasigchronous FRP, these two
signal functions will both compute their results in one time step, and even if wisbds first, the program
will wait for the other. One option to try to address this is to allow the signaltfans to take multiple time
steps to complete. That is, we can let the input be an event stream thatrisealss only ever provide a
one-time “impulse” event and allow the output to likewise be an event strearnwilhanly return a value
when it has taken enough steps to have produced that value.

Even with events and the ability to delay returning a value, synchronousnid@tels will not work
properly because the two signal functions will still proceed in lock-steenEhough one may finish before
the other, their synchronization on each step will prevent one with manhgtigss from ever beating one
with a few computationally intensive steps.

The asynchronous nature of forking can overcome this hurdle. Beacae can allow each signal func-
tion to run with its own time, we can actually observe which is faster, even if it itieethat takes more
time steps. Thus, we can provide a function for speculative parallelism:

spar:: (Eventa ~ Eventf)
— (Eventa ~~ Eventy)
— (Eventa ~ Event(B+))

Whenspar g e is given an impulse, it will fork botle; ande,. Eventually, some time later, it will produce
an event that is eitherlzeft 3 if e finished first or eRighty if e, did. At that point, it will stop both signal
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functions and produce no more events. Sparfunction can be defined from CFRP primitives, and we will
show this definition in Sectiof.4.3

As a practical case, we can once again consider the network routingfroapsur previous example.
Let us assume that there are two different implementatiomsadeMafpi one that spends a brief time step
on each packet in its batch, incorporating the packets into the map one pstr@hthe other that creates a
map out of the batch of packets and then merges that in its entirety to the oldeatlinrapne long time
step. Which approach is faster may be indeterminable at the outset, so Welil@to run both and use the
result from whichever finishes first. Wittpar, this is trivial.

5.2.4 Parallel Composition

Although asynchrony typically implies nondeterminism (as in the previous eegipve can also use it to
define a certain class of deterministic, concurrent scenarios suclagallelpno-feedback function pipeline.
As long as there is no feedback, the parallel composition of two signaiifunsds possible because the first
one can begin work on the “next” value while the second one is still workimthe “current” value. In fact,
whole chains of signal functions can be parallelized in this way. Of cothisementality assumes discrete
events, and so we must restrict this procedure to only apply to eveninstrea

For this example, let us assume we have a signal function producing datecésg, two signal functions
for computation, and a signal function for delivering output:

source: () 2 Eventa

sf, :: Eventa ~» Eventf
sf, :: Eventf ~ Eventy
. {snk
sink:: Eventy "~ ()
Note the use of resourcegc andsnk
Rather than simply compose these all in series, we can asynchronizeregadiubinstead of relying on
a master thread to manage the others, we use the parallel composition operator

(>>) 1 (a ~ EventB) — (Event ~~ () — (a ~~ ())

which we will define in Sectiofb.4.2 Note that the type of-[> is similar to that of simple composition.
With it, we can connect the output of one signal function directly to the nestamd still reap the benefits

of parallelism:
{src, snk}
ol

pipeline:: () ()
pipeline= source >[> sf; >> sf, >[> sink
For a practical case, consider an FRP implementation of a program in&grpRrogram interpreta-

tion proceeds through a number of steps: perhaps parsing, optimizitiggvatuating. While optimizing
one piece of code, we could theoretically start parsing the next, butasthegnchronous composition of
these steps would force us to wait until each code event is optimized andeeakiated before we can
begin parsing the next one. However, because parsing dependstioer optimization nor evaluation and
optimization does not depend upon evaluation, we can connect these-itinstead of>>> and see a
performance improvement.
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Typ 1 = ...

| 1 g, resource typed SF
Var v
Exp e = ...
| arre SF construction
| firste SF patrtial application
| e >>e SF composition
| el e SF choice
| fork e SF fork
| rsfr SF resource interaction
| letW ry rp & in e wormhole introduction
Env I := v1:Tq,...,Vn i Ty type environment
Res r
RTp t = (Tin, Tou) resource type
RENW ::=ry::ty,...,rh ity resource environment

Figure 5.1: The CFRP extensionf6{— x+}.

5.3 The Language
5.3.1 Syntax

Once again, we will start witt¥’{— x+}, the basic lambda calculus extended with product and sum types
and general recursion that we introduced in Chaptérand extend it further with arrow operations, re-
sources, and wormholesThis extension is shown in Figufel

We let T range over types; over variable nameg over expressions, arfdover environments. A type
judgmentl” - e:: T indicates that it follows from the mappings in the environmietihat expressioe has
type 1. Sums, products, and functions satiffyandn-laws. Further, we let range over resourcespver
resource types, aril over resource environments.

Lastly, we define processes that CFRP supports, and note that CRR&hcany process as a top level
program:

Definition 4 (Process) An expression e is process if it has type() 3 () for some set of resources R.

5.3.2 Typing Rules

The part of the language not associated with resources and sigonabhsi(that is,Z{— x+}) is necessary
but tangential to our discussion, and as such, we omit the typing rulessarahtics. It suffices to say that
they are as expected for a non-strict, functional language.

The seven signal function expressions allow the construction of comiglleal sunctions in CFRP. The
rules are presented in Figuse2, and we will examine the new or altered ones in more detail here:

e The Ty-FoORK rule states that a forked signal function must have (yp% (). The whole expression
acts as the identity signal function to its streaming input.

1Wwe will additionally use the notatioa for the empty list, : for construction, ang- for appending two lists.

72
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TY-ARR 0
MmYrare:a~pf

F;LPI—e::afiB
MW firste: (a x y) ~ (B x y)

TY-FIRST

I';LIJFel::asiB F;HJFeZ::BE%V
Ty-CompP RIWR, =R
F;Wl—e1>>>e2::avR»y

I';LIJI—el::a&y F;‘Pl—ez::BB%y

Ty-CHC RRUR =R
R
HWhellle:(a+B)~y
R

MHWYrle: ()~ ()
MNWYrforke: a R a
(r = (Tin, Tow)) €W

MWErsfri g {wr»} Tout

Ty-FORK

TY-RSF

MWrw s ((),Listt),rp (1,() Fena % B
Ty-LETW MWEeg::Listt R=R\{rw,rp}

MWYHIletWry rp g in e::avR»B

Figure 5.2: The typing rules for the CFRP signal functions.
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e The Ty-LETW rule is for wormhole introduction. It says that the body of the wormhole iigjiaa$
function provided that two resources are added’tcone of the form((), List ) (the whitehole) and
one of the formt, ()) (the blackhole) wherkist 7 is the type ofy. The result of the whole expression
is the same as that of the body except that the two new resources arestefram the resource set.
This omission is valid because the virtual resources cannot escapertinéole expression.

5.3.3 Operational Semantics

The operational semantics for CFRP are broken up into two main transitiongvéheation transition
for evaluating basic lambda calculus and thectional transitionfor interpreting the flow of data through
the component signal functions of the program through time. Beyond tiweseve have theexecutive
transition, a one judgment transition that defines the course of program execUtias, we present the
following three transitions:

e— € Evaluation transition
(ST,Z,7) = (S,T,%',#") Functional transition
(T, 2,%) || (T, %', %" Executive transition

wheree are expression§are program state, are process map are resource maps, am are worm-
hole maps.

These semantics follow a similar three-tier system to the semantics for syncrBRP with resource
types from Chapte4.5. However, where the synchronous semantics use a big-step transititve foiddle
tier, we use a small step, which allows us to merge the synchronous “temraraition right into the func-
tional transition. Furthermore, the small step semantics are critical for beiagamexpress the interleaving
of processes that is necessary in describing the asynchrony infrerRP.

Evaluation Transition

The evaluation transition is used to evaluate the non-streaming componeiRBf ©an effort to conserve
space, we take as given a classic, non-strict, functional semanticsrfbdéaexpressions and application,
product-type pairs and projection, sum-type case analysis and injeatidfisetype construction and case
analysis. Furthermore, we simply let all seven signal function expressib@FRP go “unevaluated” so
that they can be handled fully in the functional transition.

CFRP has a standard Canonical Forms Lemma associated with it that expdaifts #ach type, there
are only certain expressions that evaluate to a value of that type. Thanmepmortion of this lemma for our
purposes is as follows:

Lemma 2 (Canonical Forms)If e isavalue and e a A B, then e is either an SF constructor, an SF partial
application, an SF composition, an SF choice statement, a fork, a resturraction, or a wormhole
introduction.

Functional Transition

The functional transition is a small-step, stack-based transition that detailsifpoal function expressions
behave. Not only does it describe how a signal function handles amiastous value of input, but it also
governs the conceptual passage of time and applies a code transformpdtating the program itself when
certain code segments are executed.

With four inputs and outputs, the functional transition looks rather compl&dinbactuality, no single
judgment uses all of the inputs. Therefore, we will occasionally omit matdnipgts and outputs for a
given judgment with the implication that the judgment holds them constant.
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FR-FIRST

(+,2) frame
Fr-CoMPf ——+—— FR-COMPp —————
! (->>e) frame 2 (e1>>-) frame
FR-CHC; ———————— FR-CHCp ———————
L (1|e2) frame % (er]||-) frame

Figure 5.3: The stack frames for the functional transition.

The first argument to the transition is the program state, which is used byjedgment in the transi-
tion. The program state consists of a control stdclan expressior, a streaming valug, and update data
U and can come in one of two forms:

1. Anevaluation statef the formK > (e,v,U) corresponds to the evaluation of signal functewith
instantaneous streaming valand update datd relative to a control stacK.

2. A return stateof the formK < (e,v,U) corresponds to the evaluation of a stdCkwith possibly
transformed signal functiog resulting instantaneous streaming valuand update datd.

The control staclkK represents the context of evaluation and is represented as affistmas The possible
frames are shown in Figute3, and we use the operator ; to add frames to the stack.

The setJ contains pairs of resources along with input data for those resodroisss necessary because
writing to resources happens conceptusltweertime steps, and sd acts as a buffer that accumulates
resource writes until they are ready to be written.

The judgments for the most basic arrow expressions (SF constructidial ggoplication, and com-
position) utilize only the program state. We show them in Figurewithout the clutter of the other of
the transition’s arguments where it is assumed that the other parametersgtboough the transition un-
changed. Furthermore, as these judgments are relatively straightfiomaiomit a detailed description of
them.

The second argument to the functional transitibnjs a mapping from process identifiers to program
states and is used to represent the currently running processesedessary for forking new processes, as
seen in the following two judgments to handle fbek operator:

pfresh, T'=T[p— e>(g(),0)]
(K> (forkex,U), T) = (K< (forke px,U),T’)

T =if pc Dom(T) thenT elseT[p+— £ (e (),0)]

(K> (forke px,U), T)= (K< (forke px,U), T')

Note that we allow théork operator to take an optional additional process identifier argument. e
judgment F-Fork, we fork a new process with a fresh process ID, and in thé-6RrRK, judgment, the
identifier is available. Although in this second judgment we know that we taked before, we still must
check to see if the forked process islinn case it was terminated due to a choice statement. Also, note that
this judgment assumes thatand#” are held constant through the transition.

The parallel judgments to theTHFORK ones are those for governing the behavior of chadige Recall
that CFRP utilizes the ideas of non-interfering choice to allow the branclgcigidn to affect the program
behavior. Specifically, any forked processes from an un-takerchraf a choice expression are terminated.
In order to express this behavior, we make use of the following meta-lgnetibn overT :

FT-FORK

FT-FORK,

getChildrenOf :: T — (@ % B) — T
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e—¢

FT-EVAL (K> (ex,U)) = (K> (€,x,U))

FT-ARR

(K> (arre,x,U)) = (K< (arre,exV))

X=X

FTRRSTL (K s (frstex,U)) = (K& (firste x,U))

FT-FIRST, (K (firste (x,2),U)) = (K;(,2) > (&,x),U)

FT-FIRST3

(K (-2 <(ey),U) = (Ka(frste (1,2),0))

FT-C
T-OMPy (K (er>>e,x,U)) = (K; (- >=>e) > (e1,x,U))

FT-CoMmP, (Ki(->>e) <(en,y,U)) = (K (e1>>) > (e2,y,U))

FT-ComPs

(K;(e1>>)<(e2,zU)) = (K< (ep>>ep,zU))

Figure 5.4: The functional transition judgments for the standard arrow ic@taos. The process data)(
resource map%), and wormhole map#4’) are all assumed to be held constant.

ThegetChildrenOf function takes a process data map and a signal function and returnsdfipreeess data
that the given signal function has caused to be forked. It is used in dgenjents describing the behavior
choice as seen in Figuke5. The Fr-CHc, judgments show the functioning of the choice operator. For the
most part, this behavior is typical of non-interfering choice, but we taleeaslditional step. When choosing
the left or right branch (in +=CHc,1 or FT-CHC,1), we remove all processes fromthat were produced by
the other branch.

The last two arguments to the functional transition are associated with cesolthe mapping maps
resources to resource data. Each resource may have a differerftygsource data, but regardless, the
resource and its data must implement the following two functions:

read <Tin, Tout> — Da.ta% Tout
update :: (Tin, Tout) — Data— Tin — (Tin, Tout)

whereDatarepresents the associated data type for the given resourceeathfeinction returns the current
output value of the given resource, merely “peeking” at what is thétteowt affecting it in any way. The
update function takes an input value for the resource and returns an updatsidv of that resource. In
practice, as can be seen in the transition judgments, calls to these functiogengtally be of the form
read r Z(r) and similar forupdate. As might be expected, reading can happen at any time, but updating
only happens at a time step.

Because wormholes need to share an internal sense of state, we siamplgtadd two resources 4.
Instead, we use a layer of indirection in the fornit We create a dummy resourcedhthat contains the
wormhole state and then ug€ to map both the blackhole and whitehole virtual resources to that dummy.
We additionally include an identifier (either “W” or “B”) to keep track of whethis resource is from a
whitehole or blackhole.
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X+ X
(K> (e]|[e2,%,U),T) = (K> (e[| €,X,U),T)
=T\ (getChildrenOf T &)
(K (er]]| 2, LeftxU),T) = (K; (- ||| &) > (€1,%,U), T')
FT-CHC)2

FT-CHCe

FT-CHCy1

(Ki(-llez) < (e, zU), T) = (K< (er ]| €,2U),T)
=T\ (getChildrenOf T &)
(K> (e[| €2, RightyU), T) = (K; (e [[[ ) > (€2,y,U), T')

FT-CHC T < (e20). 1) = (K< @ |6,z 0).T)

FT-CHCr1

Figure 5.5: The functional transition judgments for choice. The resauege (@) and wormhole map#")
are assumed to be held constant.

re#z U =(rx):U y=readr Z(r)

u
FT-RSF
TR (K (st U). 2, #) = (K< (st Ly, U, Z, /)

rew U =(x):U y=readr Z(fst#(r))

(K> (rsfrx,U)Z, 7 ) = (K< (rsfr,y,UNZ, %)

rfresh %' =2Z[r—(g,8)] #' =W[rp— (,B),rw— (r;,W)]
(K> (letWryrp g inexU),Z,#)= (K> (exU), 2, #")

Fr=% [r—updater Z(r) x| (rx) €eU,re 2|

Ry = G [I’ — update %1([‘) | (I’b, ) eU V/(rb) ( B)]
K3 = K> [I’ — update ry 3?2(!’) | ( ) euU W/(rw) (I’ W)]

(SQ( ’()’ ) )3( ( ()7®)’%37W)

FT-RSFy

FT-LETW

X
X
X

FT-TIME

Figure 5.6: The functional transition judgments that include resource amchlvole management. The
process datal() is assumed to be held constant.

The wormhole resource state consists of a pair of qudues, whereb is the accumulation of blackhole
data andw is the next readable value for the whitehole. We definerthd and update for wormhole

resources as follows:
read ry (b,w) =w

update ry (b,w) () = (¢, b)
read rp (b,w) = ()
update r, (b,w) x = (b;x, w)

The functional transitions that make use#fand # are the most critical transitions of CFRP, and
they can be seen in FiguBe6. These judgments behave as expected given our intuitive descriptitims of
operations from the beginning of the chapter and the immediately precedingptimns of the parameters,
with two notes:

e Once virtual resources are added#6 and # by the Fr-LETW judgment, they will not need to
be added again, so the expression is modified to excludeetiieoperator on return. Despite this,
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Exie=e

K;(-,2) me=Kfirste
Ki(>e)xe=Kxe>>e
K;(e1>>) me=Kme >>e
Ki(]lle) e=Krpae|||e
Ki(e]l]-) e=Kpaerl|e

Figure 5.7: The definition of the frame application operatoused by the unwinding operates.

wormholes cannot be created entirely with a pre-processor due to thibdta process that is forked,
terminated, and then forked again must recreate its wormholes. As this isuaityoperation, it must
be handled here.

e Rather than deal with a particular form of an expression, thél ME judgment handles the case
where the program is in @turn state with an empty control stack. This state signifies that the signal
function has run its course for this time step. All update datdl iirs processed, updatingg as
necessary, and the program begins again with the program state ap&mgirreturn to evaluation
and a new empty set of update data.

Structural Preservation of the Functional Transition

The purpose of having an expression in te&urn program state in the functional transition is to allow
the transition to apply a code transformation. This transformation is useflibte wormholes that have
been executed to not be executed again in the future. We assert thaatisfotmation will not negatively
impact the behavior or functionality of the code, but to state this more precigelfirst define a notion of
unwindinga program state.

Definition 5 (Unwinding) If S is a program state of either the formtK(e,v,U) or K < (e,v,U), then St €
(read Sunwindsto €) where é= K < e. (Thex operation is shown in Figuré.7.)

Basically, this gives us a way to examine the entire program so that we ograce it before and after
any transformations. We use this to show that our transformation affecgsageam in only very specific
ways.

Theorem 4(Structural Preservation)f S is a program state, & e:: a A Band(ST,Z, %)= (S,T. %', '),
then 39 ¢ a & 3 such that éwill be identical to e except that:

e There may be code ir that has been further evaluated by the evaluation transition than in e (as per
FT-EvaL),

e Wormhole expressions in e may be replaced by their bodi€saimcethere are corresponding updates
in 7’ and%’ (as perFT-LETW).

The proof of this theorem follows directly from an analysis of the functidr@asition judgments.

Program Execution

With the functional transition well defined, we can discuss the overallutixecof a program in CFRP.
Because of the asynchrony inherent in the language, we intuitively tavainink of the program as running
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multiple signal functions at once. However, we describe it technically lsome process running at a time,
with a non-deterministic choice between which one runs.
The following judgment describes the executive transition, which defiregam execution:

(p,SeT
Exec (ST\{(p,9},2Z, 7 )= (S,T . %', %)
(T.2, 7)) (T'U{(p,S)}, 2", 7')

Note that the choice dfp, S) from T is made non-deterministically and fairly. Thus, this transition arbitrarily
chooses a process and runs one step of its execution. The retuotedsdata is the sét, itself a result
of the functional transition, extended with the process that justpa®).

We can define the execution of a whole program as a sequence thraaigx e transition as follows:

Definition 6 (Program Execution)Program execution is the application of the reflexive transitive closure
over theEXEC transition |} starting with initial parameters = {(p,e> (e, (),€))}, Z = %o, and# =0
where p is a fresh process ID, e is a process, aigs an initial mapping of resources representing those
of the real world.

5.4 Concurrency Operators

In Section5.2, we showed some examples of the higher level constructs that can be IEHRR. Now that
we have defined the syntax of CFRP, we will define these constructagpidydtheir underlying principles.

5.4.1 Asynchrony

Asynchrony is trivially available in CFRP via therk primitive. That said, it allows no direct communication
between processes. However, by udioid in conjunction with wormholes, we can easily createaggnc
operator:
async: (Lista & B) — (a A List B)
async sf=letW ry; rpi € inletW ryo rpo € in (fork g==> f)
where f=rsf rp; >35> rsf ryo
g = rsf ryi > s> rsfryg

Quite simply,asynccreates two wormholes, one for input values and one for output vauesthen uses
them like channels between the main process and the forked process.

5.4.2 Parallel Composition

In Section5.2.4 we examined a signal processing pipeline that made use of parallelizingstiop to link
together different signal functions such that they could each precefsst as possible. Thig> function
essentially creates two forked processes: one to do the parallel jomand accept the result of that job.

(>‘>) i (RlLJRz =RRINRy = 0) =
(a L EventB) — (Eventp o 0) = (a 5 0)

sfy >> sh=IletW ry rp €in (fork g== f)
where f=sf; >>rsfry,
g = buffer(rsfry) > sf,

To simplify the definition of this function, we have made use of the funchofier, which is shown in
Figure5.8. Thebufferfunction takes a signal function that return&iat of Evens and converts it into a
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buffer:: (a £ List (EventB)) — (a £ Eventp)
buffer sf=letW ry rp (¢ : €) in proc X — do
(b:) +rsfry—=()
elementgy < sf— x
case(b-+-compress elements,) of

£ —do _«+rsfrp—<¢€
returnA—r

(y:ys) —do _<«rsfrp—ys
returnA—y

COMpPresE = &
compresgNoEvent rst) = compress rst
compresgEvent x rst) = Event x compress rst

Figure 5.8: Theufferfunction.

signal function that returnEvens one at a time. Essentially, the list is compressed to just its events—if
there are more than one, then they are buffered and returned one at aniinié there are none and the
buffer is empty, theNoEvents returned.

As long as there are no wormholes or resources permitting the flow of infiamizom e, back to
e1, then>[> can provide something resembling deterministic parallelism even though it is nadyo
non-deterministic, asynchronous components.

5.4.3 Speculative Parallelism

In Section5.2.3 we discussed the idea of speculative parallelism and that it can be edhieCFRP. In
Figure5.9, we show the definition of theparfunction.

The spar function starts by creating a new wormhole that it uses to keep track of whigtbhould
continue or not. If it should continue, then it sends the impulse event stieasynchronized versions of
its two input signal functions and observes their buffered outputs. Becae only expect a single event in
the output, we can buffer them simply to reduce the type ftash (Eventa) to Eventa. If either signal
function produces an event, then we return it ancceatinueto Falseby sendingralseinto the blackhole.
the wormhole. Otherwise, we sgidntinueto Trueand outputNoEvent

If the wormhole indicates that the speculative parallelism is complete (thattinueis False), then
we choose the second branch, which simply reasserts that we shoutdmnimiue and outputsloEvent
Note that by choosing the second branch, we are also effectively h#igngrogress of the asynchronized
processes, preventing any unneeded computation if one of the predgstill trying to produce an output.

5.5 Language Properties

CFRP satisfies two important properties that we highlight in this section: mes@afety and resource
commutativity. We will provide an intuitive sense for these two propertiesalfotrmal treatment can be
found in AppendixA.4.

We begin with a concept of moment in timeOne moment is the computation between time steps that
a given CFRP process executes. The idea of a moment in time comes froomttaerfental abstraction of
FRP, in that one moment represents the simultaneous execution of all dataenstmtle time stamp.
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spar:: (RiWR, = R) = (Eventa L EventB) —
(Eventa % Eventy) — (Eventa < Event(B +y))
spar sf sf, = letW ry, rp (False: €) in proc a— do
(continue: _) <—rsfry— ()
if continue|| isEvent athen do
g <« buffer (async(arr collapse>>>sf;)) <a
& < buffer(async(arr collapse=s>sf,)) <a
case(ey, &) of
(Eventb_) — do_« rsfr, < False
returnA— Event(Left b)
(-,Event 9 — do_ «rsfr, < False
returnA— Event(Right ¢
_ —do_ < rsfrp,—<True
returnA— NoEvent
else do
_<+rsfry < False
returnA— NoEvent

collapses = NoEvent
collapse(NoEvent rst) = collapse rst
collapse(Event x rst) = Event x

Figure 5.9: Thesparfunction.
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The notion of resource safety starts with the guarantee that a signaiofuind type o 2 B will not
interact with any resource¢ R. That is, resources that are not represented in the type of a sigrioiu
will not be read or updated by that signal function.

This idea extends in two directions. First, we can consider the ramificationssahtan asynchronous
setting. Resource safety gives us the guarantee that no two procassegeract with the same resources,
which in turn means that multiple processes cannot encounter any of thaltgmblems of resource con-
tention.

In another direction, we can look at resource safety from a temporsp@etive and state that within
any given moment in time, a process cannot interact with any resourcethamr@nce. This satisfies the
fundamental abstraction nicely: if the same resource were accesseatilieesame time, then there must
be an ordering to its access, but any ordering would imply that the momentisgliot processed entirely
simultaneously.

An extension to the idea of resource safety is that of resotmoemutativity Once again, this comes
from the fundamental abstraction. If the order of access of two resswrithin the same moment makes a
difference, then this implies an ordering within the moment, which in turn implies aofesiknultaneity.

CFRP has both resource safety and commutativity.

5.6 Blocking

One might think that it would be useful to allow blocking in CFRP, and indeedlality to block would
be critical to a high performance implementation of CFRP. Furthermore, bipekiuld allow two asyn-
chronous processes to resynchronize, essentially providing the abitioydgnchronized parallelism.

5.6.1 Blockingrsf

One method to achieve blocking would be to include a new version akftuperator: elockingresource
signal function, which we could catirsfand would have the following typing rule:

r:: (T, List T, ey
Tv-BRSF L (Tm: LISt Tow)

M WEbrsfr:: o, {wr»} Tout

Notice thatbrsfrequires its resource to have an output type that is a list but that it rehemmaitput of only
a single element. The idea here is thegfwill block while the resource provides an empty list and will then
provide values one at a time as they appear.

If used on a standard resourcebrsf r will only progress through time and return a value when
produces a value. It cannot be used on a blackhole (the outputs typblatkhole resource is not a list),
but on a whitehole, it will provide one datum that was provided by the bialekh

With the brsf operator, it becomes possible to resynchronize two asynchronocssses. Instead of
having the two processes communicate via two wormholes accessedsfyilike we did when defining
the asyncfunction (in Sectiorb.4.1), we let the whitehole resources of both wormholes be accessed with
blocking. This forces both processes to wait for each other to progagidg them a synchronous behavior.

The main drawback of thbrsf operator and its design is that we lose our strongest guarantees in its
presence: it breaks the fundamental abstraction of FRP. That is, theiparlance of the previous section,

a use oforsfwill interrupt amoment in timeThus, despite its apparent usefulness, we omit it and any other
blocking operators from the language.
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brsf:: (r:: (x,Listy)) — (y 3 z) — (X R Event 2

brsf r sf& letw rw 'p € in proc x — do
y <« rsfr—x
prev< rsfry, — ()
case(concat prew+ ) of

£ — returnA— NoEvent
(Y :ys) —do () < rsfr,—<ys
z + sf<y

returnA— Event z

Figure 5.10: A potential definition dirsf. Note that theconcatfunction will concatenate the elements of a
list of lists into a single list.

5.6.2 Simulated Blocking

Because of the power of non-interfering choice, we can design aVecsion of blocking that does not
disrupt our sense of time and thus preserves the fundamental abstraction

Consider the definition dbrsf given in Figure5.10. In our semantics, resources cannot be treated as
they are here (as first class values that could be arguments to functorib)s is not a function we could
ordinarily define, but it presents an interesting idea. Once per moment indinme ¢ther words, on each
iteration of this signal function), the given resources accessed. If it returns an empty list, this indicates
that it has no ready data, and the first branch of the case statemengffa@ik&sin this branch, the argument
signal function is not run. However, if there is data, then the signaltiemés run. Furthermore, the data
gets buffered by the wormhole, meaning that if accessiegurns too much, the data is fedgtslowly, one
element at a time.

This version obrsfdoes not break the fundamental abstraction, but it is also somewhatmbak true
blocking. This is because true blocking has a non-local effect on itsepsy preventing the entire process
from doing anything while the blocking occurs. Howeumsfwill only prevent the argument signal function
from acting, and it will have no effect on any other signal function in thiscpss (e.g. the compositional
context).

One consequence tirsfs weak form of blocking is that it may often have a negative performance
impact on the programs that make use of it. That is, wherséis blocking, its behavior mimics “busy-
waiting,” where it continues to loop even though it is accomplishing nothings iBhentirely necessary
when the compositional context should run regardless of the blockirigf beems unfortunate in most
cases. Thus, implementations of CFRP are encouraged to provide a spetmnation of forking and
blocking that can assure there is no compositional context to the blocking forked process and then use
true blocking instead dirsfs weak blocking to achieve better performance.

Thus, we have the ability to simulate blocking on a local scale, but we cach@va true process
blocking in general without breaking the fundamental abstraction.

5.7 Haskell Implementation

Just as we have extended the theory of arrowized, resource typed figctions to include asynchrony,
so too have we extended our Haskell implementation. Thus, the implementatiassiisthere will build
directly off of where we ended at the end of Sectibd. Once again, we make certain modifications
to the theory we have presented in order to satisfy Haskell's particulatragmis. Note also that this
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instanceResourcéWhitehole r§ () [t] where
read (Whitehole(_,w)) = readlORef w
update(Whitehole(b,w)) - =do
Dyata < atomicModifylORef BA | — ([],1))
atomicModifylORef WA _ — (reverse Bata, ()))

instanceResourceBlackhole r § t () where
read_ = return ()
update(Blackhole(b, _)) t = atomicModifylORef BA | — (t:1,()))

Figure 5.11: The updated definitions of wormhole resources for CFRP.

implementation suffers from the same pitfalls and limitations as does the one in Wausrehapter.

5.7.1 Updating Wormholes

Our first goal will be to update wormholes to satisfy our new specificatiorthfem. In the synchronous
FRP that we described earlier, whiteholes read the value in the wormholstdatture but never write to
that value. In CFRP, they cannot be this simple. Rather, when data ighmeaghitehole needs to remove it
from the underlying data structure so that it is not read a second time, fhieushitehole’sipdatefunction
will perform an effect.

Furthermore, it is imperative that whiteholes be processgdretheir corresponding blackholes if they
are both in the same process. If the whitehole is proceaied then blackhole data may not be visible
when the whitehole next reads. This was implicit in the design of th@ IME transition judgment, but we
must make it explicit here.

We begin by updating th@/hiteholeand Blackholetypes to more closely match the CFRP wormhole

semantics:
newtype Whitehole r t= Whiteholg IORef(t], IORef[t])

newtype Blackhole r t= Blackhole(IORef[t], IORef[t])

A wormhole consists of twéORef, which correspond to tHeandw elements of the wormhole state from
the semantics respectively. Both the whitehole and the blackhole resaacksave access to both of
them (i.e. the firstORefof the whitehole and the blackhole both point to the same data and likewise for the
second).

TheResourcenstances will look familiar, but they are updated to deal with lists of data (pesgul to
individual elements) as well as to include the whiteholgislatebehavior. They are shown in Figubell
Note that we perform a typical functional queue optimization here of cectatig the list of data in reverse
and then reversing it when it is requested.

Now, both whiteholes and blackholes have an effect upon updatingbl@hkhole adds a new element
to the underlying data structure, and the whitehole removes what it has read

Next, we must address the ordering and assure that whiteholes aesggddefore blackholes. Recall
from Sectiord.7.5that our running definition of the data tyg-is:

dataSFrbc=SF(b— 10 (c,l0 (),SFrbo)

where thdO () in the output tuple is used to carry the update actions. We can achieve gregrée want
by expanding thé&SFtype so that instead of having a single action tyfi2 ()) to denote the updates, we

84



have a pair(IO (),10 ()):
dataSFrbc=SF(b—10 (c,(10(),I0()),SFrbog)

We then update the default implementationsifto:

rsfr=SF$A b—do
C«readr
return (c, (return (), update r b, rsfr)

and in theResourcénstance foWhitehole we overwrite that definition with the following:

rsfr=SF$A b—do
c«readr
return (c, (update r breturn ()),rsfr)

When we run the signal function, we choose the proper ordering otgvend then we are guaranteed that
whitehole updates will always be before blackhole ones.

Lastly, theletW operation looks almost exactly the same as before except that the initializatios v
for the wormhole is of typet] rather than simply and there are twéORe# instead of one. This has the
interesting effect of allowing one to create wormholes that have no initiatvialthem, a trick which we
used earlier in some of the parallelism examples.

5.7.2 Forking New Processes

In the semantics we defined in this chapter,for& operation makes use of the helper functioagelForked
andgetChildrenOf to determine if it needs to fork a new process or not. In Haskell, these twatidins are
non-trivial, and we approach the problem from a different persypecti

Rather than actually terminate processes that should be inactive, we ifrelezethem. That is, we
keep them alive, but we prevent them from having any noticeableteff€hen, if they ever need to become
active again, we can simply unfreeze them. This strategy allows us to sidlestgpestion ofiavelForked,
as anyfork operation will only ever spawn one new process.

Rather than going into excruciating detail, it should suffice to say that we sigihel ourSF type to
additionally include process status information: At any time, we can sb®/anwhich contains the current
process’s status as well as a reference to a list of the @fass of all child processes. The status will be
one of the following:

data PStatus= Proceed
| ShouldFreeze
| ShouldSkip
| Frozen(MVar ())
| Die
and theSFtype will become:
type PState= (MVar PStatusPChildren)

data SF r b c= SF((b,PStatg — 10 (c, (10 (),10 ()),SFrbo)

wherePChildrenrepresents the child processes.
By default, processes are in tReoceedstate, which indicates that they should proceed as normal. If,
in the course of execution, a choice branch is taken that would deactieetgn processes, then those
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runSF:: PState— () & ()—10()
runSF(ps@(mvar, _)) (SF sf = run sfwhere
run sf=do
((), (actiony, actiory), sf) < sf((), ps)
command— takeMVar mvar
casecommancbf
Proceed— actiory >> actiorp, >> putMVar mvar Proceetk> run sf’
ShouldFreeze» do
wait < newEmptyMVar
putMVar mvar(Frozen waij
takeMVar wait
run sf
ShouldSkip— putMVar mvar Proceetk> run sf
Die — putMVar mvar Die
Frozen_ — error “Impossible: Frozen in run3F

Figure 5.12: The definition aunSFthat can handle asynchrony.

processes’ states are seBioouldFreezea process that “should freeze” will freeze itself when it is next able
by switching itself to thé-rozenstate, where it will additionally generate a n&#var that it will block on.
If a choice branch is taken such that it activates processes, themighpiocesses that are currently in the
ShouldFreezstate are set tBhouldSkipand any that arBrozenare awakened (theMVars are unblocked)
and set taProceed Thus, if a process is frozen and unfrozen so quickly that it did nehdwave time to
properly freeze itself, then it will be alerted to skip its current run antaresLastly, there is a state to
terminate the process altogether that can be used for cleaning up asymehprocesses when the program
ends.

These states allow us to update tii@SFfunction, which we show in Figurg.12. We can see that
during thecasestatement in the body, we check to see what state the process is in beforeicg. Only
if it is in a Proceedstate do we perform the effectactior; >> actiory). In any other case, we consider
the situation as a failed transaction and either block and BaibldFreezg restart ShouldSkip or abort
altogether Die).

Fork I tself

Forking is essentially a special internal use of running a signal funcmit follows thatfork will make use
of runSE More precisely, théork command will create a neRStatefor the child process by copying the
current process’s state, add the child to the list of children in its own stadehan use GHC'’s underlying
thread forking to create a new thread for the process.

Internally, fork could use any one of GHC’s mechanisms for creating a new process.hddse the
standardforklO operator, but variants to support OS threads (GHG&OS function) or specific cores
(GHC'’s forkOn) are fine too. As long as GHC is run with thehreaded flag, we have found that these
perform comparably for the simple tasks we have tested.

5.7.3 Controlling Forked Processes

As discussed previously in the chapter, we control forked processesith a thread identifier or another
such imperative representation, but by using the choice operator aefoegesume threads. We discussed
the machinery for this in the previous subsection, but here we will furtkgloee the mechanism within
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choice itself. To simplify this discussion, we will only explore the implementation ®fetft operator.
In the previous subsection, we mentioned a data §@aildren which we use to store information
about the states of any child processes. The actual definition is given by

data PChild = PForkChild PState PChoiceChild PChildren
type PChildren= IORef[PChild]

The idea here is that every time we fork, we create a new process with itstatenand every time we enter
a choice statement, we create a new set of children that we can easily dreesume.

When we enter &eft statement, we usaitialAIO to create a neWw?Childrenreference, which we will
then pass to the body of theft (or just store for later if the incoming streaming valueRigh{). Then, if
any component of the body forks a process, it will be added toRG&ildrenreference and we will be able
to access it directly. However, before we do, we check to make surevihahe parent process, are in a
Proceedstate. If we are not, then we should not make any active changes, keitifeythen we can tell the
children to either freeze or proceed as necessary.

Other than this extra bookkeeping, choice proceeds in the typical fashitre Kleisli Automaton
fashion.

87



Chapter 6

UISF — A Case Study

One common application of functional reactive programming is in the desigraphical user interfaces
(GUI). As a case study in the ideas of arrowized FRP and the concamsohterfering choice and resource
types, we built the UISF library. UISF, which stands for “User Integf&gnal Function” is built in Haskell
on top of the GLFW graphics package and is currently being used as theatiolkit for the computer
music langauge Euterped(idak 2014. The full UISF package is available on Hack&ge.

This chapter will discuss the design principles behind UISF as well as dgraghow it works with
a few examples. Note that, as mentioned in the Haskell Implementation sectiarsdarce types (Sec-
tions5.7 and4.7), Haskell's type system does not fully support resource types. , itugh UISF has
most of the operational capabilities discussed previously in this reportniitota/et guarantee the same
safety properties. However, in the absense of resource types, weseathe arrow syntax without any
issues.

We will start with a technical description of the UISF interface in the nexieecOnce armed with the
basics, we will build a few example GUIs, discussing the benefits of thismasigve do.

6.1 Arrowized User Interface

The UISF library focuses on thdISF data type, which is an instance Afrow (as well asArrowChoice
etc.). In many ways, this data type is similar to the automaton models we have usedioup implemen-
tation sections of this report, but it is extended with further features spéaiUIs.

Using UISF, we can create “graphical widgets” using arrow syntax. Each sigmeltifon component
of a UISF has the capacity to itself be a widget, such that upon composition, one e cmmpound
widgets—in fact, it is in this fashion that the entire GUI is created.

Unlike in the rest of this report where we use the symboto refer to an Arrow type, we will follow
the library itself. Thus, instead of using types suckaas b, we will useUISF a h

6.1.1 Graphical Input and Output Widgets

Some of UISF’s basic widgets are shown in Figare Note that each of them is, ultimately, a value of type
UISF a h for some input type and output typd, and therefore may be used with the arrow syntax to help
coordinate their functionality. The names and type signatures of thesoflumsuggest their functionality,
which we elaborate in more detail below:

e label A simple (static) text string widget.

IThe source can be foundickage . haskell.org/package/UISF.

88



label .. String— UISF a a

displayStr :: UISF String()

display :: Show a= UISF a()

textboxE :: String— UISF (Event String String
radio ;2 [String — Int — UISF () Int

button :: String— UISF () Bool

checkbox :: String— Bool — UISF () Bool

hSlider, vSlider :: RealFrac a= (a,a) - a— UISF () a
hiSlider, viSlider: Integral a= a— (a,a) - a— UISF () a

Figure 6.1: UISF graphical input/output widgets

e displayStr A simple dynamic text string widget allowing a time-varying string to be displayex.
convenience, we also providisplay, which “shows” the streaming argument:

display= arr show>s> displayStr

e textboxE A bidirectional text input widget. The input stream can be used to setuttert text value,
and the output stream provides that value. TexboxEkeeps its state internally.

There is a more primitive version:
textbox: UISF String String

which does not keep track of its current state but rather requires theainase of a delay and a loop.

e radio, button checkbox These are three kinds of “push-buttons,” suitable for retrieving ifou
the user in the form of choices between static options.

e *slider: There are four different kinds of “sliders”—graphical widgets tbaks like a slider control as
might be found on a hardware device. The first two yield floating-pointlers in a given range, and
are oriented horizontally and vertically, respectively, whereas the latterdturn integral numbers.
For the integral sliders, the first argument is the size of the step takenthwastider is clicked at any
point on either side of the slider “handle.” In each of the four casesttier two arguments are the
range and initial setting of the slider, respectively.

6.1.2 Widget Positioning

In addition to just creating widgets, we must determine where they will appetteoscreen. UISF uses
two mechanics to do thigayoutandflow. A widget’s layout determines its size, and its flow determines its
relative position to its sister widgets.

All pre-built widgets (i.e. the ones presented in the previous subsecte)dn already defined layout,
but this can be altered with:

setLayout: Layout— UISF ab— UISFab
and new layouts can be built using the following function:

makeLayout: LayoutType— LayoutType— Layout
data LayoutType= Stretchy{ minSize :: Int}
| Fixed {fixedSize: Int}
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unique:: Eq a=- UISF a(Event g
edge :: UISF Bool(Event())

hold :a— UISF(Eventga
accum::a— UISF (Event(a— a)) a

Figure 6.2: UISF Mediators between continuous and discrete

The makeLayoufunction takes information for first the horizontal dimension and then thgcaér A
dimension can be either stretchy (with a minimum size in pixels but that will expafilll ttee space it is
given) or fixed (measured in pixels).

The default flow for widgets is in a top-down format, where each widgetheilplaced from the top of
the window sequentially. However, this can be changed by the followingtiturs:

topDown, bottomUp, leftRight, rightLeftUISF a b— UISF a b

whose names make clear their behavior.

One should note that this flow component means that the UISF arrowsoacemmutative. Indeed,
reordering composition of widgets will likely cause their visual appearanadange. However, due to
the rec keyword within arrow syntax (which uses arrow loop), this is rarely anasshe widgets can be
coded in whatever order makes them appear properly on screen esstdgims between them will connect
properly.

Lastly, widget transformers can be nested, meaning that one part ofl @ddlbe in one flow while
another portion is in another.

6.1.3 Non-Widget Signal Functions

Unlike the signal functions from Subsectiénl.], the signal functions presented in this subsection have
no graphical effects. They are not pure—for pure signal functisrescould simply lift a pure function
with arr—but their effects are all achieved with state rather than being visual. isaretiison, many of the
signal functions we will present here are not specifityt8F and can actually be used in other arrowized
domains; however, for simplicity, we will express their types as specilil & This also means that they
can all be written manually using arrowized recursion, state via loop any, deld other concepts discussed
previously.

Mediators

Mediators are functions thatediatebetween discrete and continuous signals. A selection of UISF’s medi-
ators that we will use in our examples are shown in Figufeand described below:

e unique Converts a continuous stream to a discrete one by providing an evaairiog the value of
the stream whenever it changes.

e edge Generates an event whenever the input changesFeiseto True?

e hold: This signal function converts a discrete stream to a continuous onedtyiriiy” the last value
it was given.

e accum Starting with the statically given value, applies the functions attached to ttesrstrg input
events to that value returning the result as a continuous stream.

2In signal processing this is called an “edge detector,” giving rise to theerznosen here.
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Folds

In regular functional programming, a folding, or reducing, operatiomisthat joins together a set of data.
The typical case would be an operation that operates over a list of dataas a function that sums all
elements of a list of numbers.

The two primary folds in UISF are based on the ideas of structural owered recursion as described
in Section3.1.5 For structural recursion, we have:

concatA:: [UISF b ¢ — UISF [b] [c]
and for arrowized recursion, we have:
runDynamic:: UISF b c— UISF [b] [c]

which is the very same function from Sectidri.5

The concatAfold takes a list of signal functions and converts them to a single signatiumwhose
streaming values are themselves lists. For example, perhaps we want ty didgplach of buttons to a
user in a single window. Rather than coding them in one at a time, we cacbasatAto fold them into
one operation that will return their results altogether in a list. In essencarewncatnating the signal
functions together.

As described earlier, theinDynamicsignal function is similar except that it takes a single signal func-
tion as an argument rather than a list. Then, instead of folding over the statal function list, it folds
over the[b] list that it accepts as its input streaming argument.

Timers
UISF has an implicit notion of elapsed time, but it can be made explicit by the fioigpgignal source:

getTime: UISF () Time

whereTimeis a type synonym foDouble
Although the explicit time may be desired, some UISF widgets depend on the time impliEily
example, the following signal function createsraer:

timer:: UISF DeltaT(Event())

In practice timertakes a stream that represents the timer interval (in seconds), andtgsrar event stream,
where each pair of consecutive events is separated by the timer inteotaltidt the timer interval is itself
a stream, so the timer output can have varying frequency.

Because UISF is a pull-based AFRP system, this concept of time and timerspenfectly precise
or accurate. For instance, if the clock rate (e.g. the length of the unit timevailités one hundredth of a
second, then a timer may be triggered up to a hundredth of a second late.

Delays
Another way in which time can be used implicitly in UISF is irdalay. UISF comes with five different
delaying widgets, which each serve a specific role depending on whibthestreams are continuous or
event-based and if the delay is a fixed length or can be variable. Theh@ana in Figures.3and described
below:

To start, we will examine the most straightforward one. @iakyfunction creates what is called a “unit
delay”, which can be thought of as a delay by the shortest amount of tisshbe@. This delay should be
treated in the same way that one may treat & calculus; that is, although one can assume that a delay
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delay :a— UISFaa

fcdelay:: a — DeltaT— UISF a a

fdelay ::DeltaT— UISF (Event g (Event g
vdelay :: UISF (DeltaT, Event g (Event g
vcdelay: DeltaT— b — UISF (DeltaT,b) a

Figure 6.3: UISF Delays

takes place, the amount of time delayed approaches zero. Thus, in @ralctscshould be used only in
continuous cases and should only be used as a means to initialize arrbadked

The rest of the delay operators delay by some amount of actual time, andllwaok at each in turn.
fcdelay b twill emit the constant valué for the firstt seconds of the output stream and will from then on
emit its input stream delayed byseconds. The name comes from “fixed continuous delay.”

One potential problem witfcdelayis that it makes no guarantees that every instantaneous value on the
input stream will be seen in the output stream. This should not be a problecofitinuous signals, but
for an event stream, it could mean that entire events are accidentally dkiwpe Therefore, there is a
specialized delay for event streanfdelay tguarantees that every input event will be emitted, but in order
to achieve this, it is not as strict about timing—that is, some events may endngpdser delayed. Due to
the nature of events, we no longer need an initial value for output: forrgté §iecond, there will simply be
no events emitted.

We can make both of the above delay widgets a little more complicated by introdiheridea of a
variable delay. For instance, we can expand the capabilitiédetdyinto vdelay Now, the delay time is
part of the signal, and it can change dynamically. Regardless, this basatt version will still guarantee
that every input event will be emittedvdelay can be read “variable delay.”

For the variable continuous version, we must add one extra input parametevent a possible space
leak. Thus, the first argument t@delayis the maximum amount that the widget can delay. Due to the
variable nature o¥cdelay some portions of the input signal may be omitted entirely from the output signal
while others may even be outputted more than once. Thus, once again, iblig &ityised to usedelay
rather tharvcdelaywhen dealing with event-based signals.

6.1.4 Asynchrony

Without resource types, wormholes are particularly dangerous, 18F dbes allow certain forms of asyn-
chronous, concurrent processing. Operationally, this is importartbdiystem constraints on computational
power. That is, there are two primary ways in which the illusion of continuitg:fa

e Computations can be sensitive to the sampling rate itself such that a low erataghilf cause poor
behavior.

e Computations can be sensitive to the variability of the sampling rate such tisticdtdferences in
the rate can cause poor behavior.

These are two subtly different problems, and we address both with suffésedt asynchronous operators:

asyncUISE :: NFData b=- Automaton—) a b— UISF (Event g (Event b
asyncUISE :: NFData b=- Double— Automaton(—) a b— UISF a[(b, Time)]

In fact, UISF has a few more asynchronizing operators, but we omit therder to keep our discussion
concise.
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e asyncUISE: This takes an Automaton built over regular functions and makes it asymeoibs, gen-
erally for the case where the given signal function is a slow runningatiper This slow computation
may have deleterious effects on the GUI, causing it to become unregp@msl slow, so we allow
it to run asynchronously. The computation is lifted into the discrete, evafrhreand for each input
event given to it, a corresponding output event will be created eviént@d course, the output event
will likely not be generated immediately, but it will be generated eventuallytlamdrdering of output
events will match the ordering of input events.

e asyncUISE: This function can convert a signal function with a fixed, virtual clotkr® a realtime
UISF. The first input parameter is a buffer size in seconds that indibategar ahead of real time
the signal function is allowed to get, but the goal is to allow it to run at a fixeckckde as close to
realtime as possible. Thus, the output stream is a list of pairs providing thataalues along with
the timestamp for when they were generated. This should contain the rightenahbamples to
approach real time, but on slow computers or when the virtual clockrakeépgonally high, it will
lag behind. This can be checked and monitored by checking the length adtiet list and the time
associated with the final element of the list on each time step.

In both cases, we require that the output types be instanci&Data, which is the Haskell way of
declaring that they can be strictly evaluated. We do this to assure that theizdiops are actually per-
formed asynchronously and not lazily returned to the main process amguted there.

UISF'’s asynchronous functions, although inspired by wormholes with fito not actually follow the
design pattern from Chaptérvery closely. Rather than use non-interfering choice to govern whéedo
processes are active or not, we use blocking, but because weuwvdagd patterns for forking and com-
munication between the forked processes (that is, one can only do thérigyane of the async functions),
this blocking cannot cause any sort of deadlock. Thus, we can uskifdowithout causing a perceivable
violation to the Fundamental Abstraction of FRP.

This means that in their implementation, the async functions can use HadRedlis, and indeed, they
do. For instance, in the definition asyncUISE, we fork a new thread and then communicate with it via
MVars in the data-sending direction and EDRefto retrieve computed values. If there is no data being
sent to the forked thread in thé@Var, then it will block, effectively stopping computation until it is asked to
resume.

It is worth noting that the when using asynchrony in UISF, one is advisembmtapile the program
with GHC'’s -threaded flag to allow for multi-core processor utilization. This is not strictly necesaary
multi-threaded operations can be interleaved into a single-threaded compulatidct will often improve
performance. Internally, we are using floeklO operation to create new threads, which creates a lightweight
Haskell thread for each asynchronous component. Because theadgtstay alive for the length of the
program, GHC can often schedule them effectively. However, in ced@ses, a user may want better
control over which cores are performing which operations, and thualseeprovide “On” versions of the
async operators. These “On” versions instead use GfdEk©Onoperation, which allows the user to specify
exactly on which core each forked thread should be run.

6.1.5 Settability

The UISF library has the concepts of non-interfering choice and settatilityright into the design. Thus,
UISF signal functions can also support gettablefunction established in Sectich2

settable: UISF a b— UISF (a, Event Statg (b, Statg

Any UISF signal function that is declared settable can have its state saved, loadeskto
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Because settability comes with a performance overhead, one has to mati#vardasign decision to
turn it on when it is required. In the future, we plan to improve the settabilitysfcamation by making it
automatically apply when desired but incur no overhead when unused.

6.1.6 Putting It All Together

A Haskell program must eventually be a value of tyPe() in order to run, and thus we need a function to
turn aUISF value into anlO value—i.e. theUISF needs to be “run.” We can do this using the following
functior’:

runUl :: UISF () () — 10 ()

Just like in the model langauges we described in previous sections, adgtam is forced to do all of its
effects internally, so its input and output streams must both be of(type

ExecutingrunUI ui will create a single Ul window whose behavior is governed by the argumoient
UISF () ().

6.2 Example: Time

For our first example, we will examine how easy it is to use time within the UIShdvreork. We will build
a simple timer GUI that ticks forward for a user-specified amount of time (viaarsvidget), displaying
the elapsed time both graphically and textually. If the target time is greater thatafsed time, the timer
will continue, and if it is less than or equal to the elapsed time, then the timer will Atogset button at the
bottom will reset the elapsed time to zero. The inspiration for this example caomagtie 7GUIs project
[Kiss, 2014, which in turn took the idea frongnatoff et al.[2004.

Although we discussedtamer widget in the previous section, it is not useful for our current puegps
so the first thing we do is to create an alternative widget to help us keepatioke:

getDeltaTime: UISF () DeltaT
getDeltaTime= proc () — do
t < getTime— ()
tprev <— delay0 —<t
returnA—t —tprev

This function uses thgetTimewidget along with a unit delay to return the change in time on each tick of
the underlying clock.

Next, although UISF has built-in widgets for displaying text, clickable buttang, interactive sliders,
there is no widget for displaying a “gauge” to graphically indicate the pgdsime. Although we did not
discuss UISF’s suite for manual widget construction, one still existsywandill use it to create this gauge:

gauge:: Layout— UISF (DeltaT, DeltaT) ()
gauge= unique>s> canvas| draw where
draw (x,t) (w,h) = block((0, padding,
(minw round x« (fromintegral W) /t,h— 2« padding)
wherew = w— 2 x padding

This widget takes a pair of (elapsed time, total duration) and draws a black bn the screen of the
appropriate size. Considering we have not discussed functionsdikeas$ or block the point of showing
this code is to demonstrate that creating a new widget like this can be done simdpprcisely.

3 Technically, this function is callecunUl” in the UISF library as the actualinUl function takes an additional parameters
argument that can be adjusted for special case fine-tuning. We willseathis argument in this report, so we drop it.
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timerGUI:: UISF () ()
timerGUI= proc () — do
rec leftRight(label “Elapsed Time:>>> gaugg — (e,d)
display—e
leftRight(label “Duration:” > display) < d
d «+ hSlider(0,30) 4 —<()
reset+ button“Reset"— ()
ot «— getDeltaTime—< ()
e« delay0 —< case(resete >=d) of
(True ) — 0
(False True) — e
- —e+ot
returnA— ()

Figure 6.4: The Timer GUI.

|2.3248421207472347

Duration: Id.[ﬂ

Figure 6.5: A screenshot of the Timer GUI.

With these widgets written, constructing the timer GUI itself is straightforwardce Ghbll is shown in
Figure6.4and a screenshot of it running can be seen in Figuse

6.3 Example: Bidirectional Data Flow

For our next example, we will consider the concepbufirectional data flow. In many GUI systems, it is
easy to link one widget's output to another’s input, but it is not alwaysaayg @ link the second widget's
outputbackto the first’s input. However, this is a straightforward feature of arroitis lwop, and the UISF
library handles it easily.

Thus, for this example, we will build a lightweight utility to convert between terapges in Celsius
and temperatures in Fahrenheit. Once again, the idea for this example comehld 7GUIs project{iss,
2014. The complete code for this example can be seen in Fi§utrand a screenshot of it running can be
seen in Figure.7.

The most complicated part of this GUI is actually the text parsing and cdowenperations, which is
all in pure Haskell. The part that actually presents the GUI is all found ifirgtefour lines of arrow syntax.
After that, we use th&et construct to use pure Haskell for the parsing and conversionsuBecthe results
of the conversions are used in the widgets themselves, the whole blocktlepugh a loop with theec
keyword and the looping values are held back from infinitely looping dhélays.
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tempConverter. UISF () ()
tempConvertet= leftRight$ proc () — do
rec c < unigue<x textboxkExx< delay Nothing— cypdate
label “degrees Celsius = *< ()
f < unique<< textboxExx delay Nothing= fypdate
label “degrees Fahrenheit< ()
let chum = join $ fmap (readMaybe: String— Maybe Doubl¢ c
foum= join $ fmap(readMaybe: String— Maybe Doublé¢ f
Cupdate= fmap(A f — shows$ round$ (f —32) (5/9)) foum
fupdate= fmap (A c — show$ round$ ¢ (9/5) + 32) Chum
returnA— ()

Figure 6.6: The Temperature Converter GUI. Note that is the same asss>> but with its arguments
flipped.
7

> o

25| degrees Celsius = |77 degrees Fahrenheit

Figure 6.7: A screenshot of the Temperature Converter GUI.

6.4 Example: Dynamically Active Widgets

In the previous two examples, we demonstrated primarily UISF featuregéhaterited from the arrowized
design. For this example, we will make use of UISF's adherence to norfieinitgy choice to use arrowized
recursion to create a GUI that has widgets that can activate dynamicallyillWaiild a text-basednind
map a structure to organize data.

Mind maps are typically used to help a person organize thoughts. Theynétiaré single element
(usually) that has connections to other elements, which in turn can haneans to others. We will
represent our mind map data with a map from strings to lists of strings:

type MindMap= Map String[String

Thus, elements are keys and the elements they connect to are their values.

Our GUI will allow a user to lookup keys or add elements to the mind map, and asapping grows,
so too will the number of label widgets we display. In order to provide eadyetatry, we will create a
compound widget out of a textbox and a button:

textEntryField:: String— UISF () (Event String
textEntryField txt= rightLeft$ proc () — do
b + edge<x button txt—< ()
t « textboxE” << delay Nothing=< fmap(const*’ ) b
returnA— fmap(const{ b

The textEntryFieldis given a label for the button it displays. When that button is pressed,dhipaund
widget will produce an event of the current text in the textbox and thear thee textbox to prepare for the
next entry.

We use two of thesextEntryField in the full program: one for looking up keys and the other for adding
values. We store the map in an accumulator that updates every time we haagdirevent. Finally, we
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mindmap: UISF () ()
mindmap mag;;, = proc () — do
e «+ textEntryField‘Lookup” — ()
a« textEntryField’Add” — ()
key<+ hold*” —<e
m <— accum mapyiy — fmap(Av — insertWith(++) key[v]) a
leftRight(label “Key =" >>> displaySt) — key
runDynamic displaySt findWithDefaulf] key m
returnA— ()

Figure 6.8: The Mind Map GUI. Note that it requires the Haskell Map pgeka function, as that package
provides thensertWithandfindWithDefaulfunctions that operate on Maps.

mackerel|

Key = !sushi

wasabi

salmon

tuna

Figure 6.9: A screenshot of the Mind Map GUI.

display a dynamic number afisplayStrwidgets depending on how long the list is in the currently viewed
key of the map.
The complete code can be seen in Figiu@and a screenshot of it running can be seen in Figue

6.5 Example: Asynchronous Computation

As we introduced in Sectiof.1.4 UISF supports asynchronous operations, and here, we will build an
example that makes use of the feature. Specifically, we will present a @kfforming a complex and
lengthy calculation, but when the calculation is requested, it will be perfdmsgnchronously. Thus, the
GUI will still continue to respond and behave normally.

The lengthy computation will be the calculation of potential meld in the card game®é@oln this
game, players first get a hand of cards and then bid to receive arfdrttaed “kitty”. With the kitty added
to the winner’s hand, he plays his meld, which are specific combinationsdd.daor instance, having one
of each of the aces is worth 10 points, and having a King-Queen of thesanieworth 2 points. Pinochle
is played with a special deck of playing cards that has two of each carmnbuincludes the cards from
Nine to Ace in each suit.

The GUI will present a set of buttons for the user to enter his hand andheiil calculate the average
expected meld the user can expect if he wins the kitty. The calculation isrpedoasynchronously, and
when it produces a result, the GUI displays it both plots it and displays italytu
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handSelector: [Suif — [Numbef — UISF () Hand

handSelectof| - = constA EmptyHand

handSelecto(s: ss) ns= proc () — do
bs+ leftRight$ slabel(show g >>> concatA(map cardSelector ns< repeat()
hand«— handSelector ss ns ()
returnA— addToHand handmap(s,) (concat$ zipWith replicate bs n3
where slabel str= setLayou{ Fixed 75) (Fixed30) $ label str

Figure 6.10: The compound widget for building a Pinochle hand.

pinochle:: UISF () ()
pinochle= proc () — do
hand< handSelector allSuits allNums ()
eventpdate<— Unique— hand
meld«— hold"” —< fmap calcMeld evepdate
leftRight$ label “Total meld = ">>> display— meld
b + edge=>> button“Calculate meld from kitty™< ()
eventiwy < (asyncUISE $ arr calcKitty) — fmap(const hangb
let (meldkiwy, d) = case(eventity, b) of
(Event(k,d), ) — (Eventk Eventd
(., Event.) — (Event‘Calculating ..., Event NoHistogram
- — (Nothing Nothing
runDynamic display<< hold [| < meld;y
histogram(makeLayou{Stretchyl0) (Fixed 15)) —<d
returnA— ()

Figure 6.11: The Pinochle GUI.

Before we can begin building this GUI, we must have some logic about Hinitsélf. Thus, we assume
Number Suit andHanddata types that behave as expected as well as two functions for calcualdtamgl's
meld and possible results from winning the Kitty:

data Meld = String
calcMeld:: Hand— Meld
calcKitty:: Hand— ([Meld], HistogramData

We will also make use of the following two custom UISF widgets:

cardSelector: Number— UISF () Int
histogram:: Layout— UISF (Event HistogramDatg()

ThecardSelectokvidget looks similar to duttonwidget but has some extra internal machinery to allow for
selecting two of the same card. ThistogramWithSaclaidget displays a graphical histogram on scréen.

The first step in building this GUI is to provide an interface to allow the usertr éas hand. We do this
by adding acardSelectofor each possible card. Because the Pinochle deck is totally static, weltiave
this with simple structural recursion. Thus, t@ndSelectocompound widget is shown in Figufe1Q

4Technically, thehistogramwidget is a built-in widget in UISF, but for brevity, we did not include a dethitiscussion of it
when we introduced the main UISF features earlier in this chapter, andawesiamg a simplified version of it here.
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| Total meld =|2: ["KQ of D"]
Calculate meld from kitty
!Hean = 7.8815977539561, Max = 31 with 20 options:

116 of [Queen of Spades,Ace of Hearts,Jack of Diamonds,Ace of Diamonds] with Spades as trump

i4 of [Queen of Spades,Queen of Spades,Ace of Hearts, Ace of Diamonds] with Spades as trump
|

7 8 9 10 11 12 13 14 15 16 17 18 19 2@ 21 22 23 24 25 26 27 28 29 30 31

Figure 6.12: A screenshot of the Pinochle GUI.

In the Pinochle UISF itself, shown in Figufell, we use the hand selector at the very beginning. We
then display the meld just from the hand so far, and provide a button to dalthiapotential meld from the
kitty. When this button is pressed, an event is sent to the asynchraratelitty function, and the results
are gathered, displayed, and plotted in the histogram. A screenshotmfip&am running can be seen in
Figure6.12

6.6 Differences From Theory

Although UISF is inspired by CFRP and the theory contained in this reportditfesent from that theory
in a number of ways.

Resource Types

First and foremost, there are no resource types. This may seem like alariticssion considering that
resource types are core to CFRP’s safety guarantees, but it is ssagcevil. As mentioned in previous
chapters, arrows with resource types are still not fully supported in GHEwormholes themselves cannot
be implemented.

Of course, the biggest cost of omitting resource types is that we can gerlgnarantee safe usage of
arbitrary effects. One way to address this would be to remove effectetitngbut we find this to be too
restrictive. Thus, we settle for allowing effects with a warning to the usekidare when using them.

The most common resources used in CFRP programs are actually thoserdiales. Mostly, this is
because CFRP uses wormholes as its built-in concept of looping and stedd from Sectiont.4.1that
we remove the need fdoop anddelayin the presence of wormholes), but they are also central for any
asynchronous operations.

To prevent UISF users from accidentally misusing wormholes (whichrheseasy to do now that we
have no resource types), we remove them entirely from the interface déniguage. We revert to using
the classidoop anddelayoperators for state, and we force all asynchronous communication to/fatlew
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specific patterns (i.e. it must be able to be expressed using one of thesvagync” functions).

Removing wormholes is unfortunate for a few reasons. First, revertingetaléissidoop anddelay
operators reintroduces the potential for unbounded looping, whichHydetectable at runtime. Second, it
restricts the forms that asynchrony can take (wormholes allow arbitranynemication channels between
multiple processes, but the async functions enforce a sense of tpaneli'child” processes). Lastly, where
once we had a singlietW command for creating a wormhole, now we must have many different async
functions. This bloating of the language is reminiscent of the many varietiswitdh necessary before
our concept of non-interfering choice. In some sense, though, @ $®Etter for not having wormholes.
Although restrictive, the various async functions are optimized to ruriesitiy at their given tasks, and the
specific options available may help users identify appropriate ways to wrigdlgeams they are trying to
write.

Limitations

Another significant difference between UISF and CFRP has to do withethavior of these async functions
themselves. UISF is built atop the GLFW OpenGL library, and the currenfécte that it uses has little

support for concurrent operations. Specifically, the GUI itself musriiely single-threaded. That is, we
can run multiple signal functions at multiple time rates, but all of the GUI behawigt be running in the

same thread at the same rate. To prevent UISF from causing its GLF\Aebddk throw errors, we restrict
the async functions to forkutomatos rather than othadISFs.

6.7 Conclusions and Discussion of Similar Libraries

UISF is a fully functioning, viable GUI library. The examples shown in thisptbaare a sampling of what
can be done with it, but perhaps an even better example is its integration witlp&auté\Vithin Euterpea,
UISF itself has been extended to handle various sorts of MIDI input aiyglig and additional graphical
widgets (a piano and guitar frets) are available for users.

Other GUI Libraries

GUI libraries come in many flavors and varieties. On one end of the speatiesigns employ a callback
structure, in which widgets register themselves as awaiting certain evedtshan those events occur, the
widgets are “called back.” This design is typical of object-oriented laggsiaand there are far too many
examples to cite.

In fact, many functional GUI libraries are simply built atop one of these inperdesigns. For instance,
FranTk Sage[200(, although built on top of the FRP system Fr&hiott and Hudak[1997], provides a
fundamentally imperative design (with iUl monad) for designing applicationggnatoff et al.[2004
explore this interface between imperative GUI toolkits and functional lagggidy combining an object-
oriented GUI toolkit into the FRP language FrTime in a principled way.

UISF shares many similarities with Fudge®aflsson and Hallgreri999g, which uses stream process-
ing as a central concept of design. Indeed, AFRP in general is clesyred by the Fudgets design.
However, while AFRP is synchronous by default, Fudgets are instgatla®nous. UISF, built atop the
AFRP framework, is obviously naturally synchronous, but it also hamgtasynchronous support in the
form of its async operators. Thus, we feel that it finds a good middlergtbetween these two approaches.

There are many other GUI libraries even in the category of FRP-baseslinrtHaskell Apfelmus
2012 Czaplicki 2012 Giorgidze and Nilssor2008. Grapefruit Peltsch2009 is a push-based FRP system
that provides direct access to signals. Frab{firtney and Elliott2001H introduced the first arrowized
switch function and in general has a principled design to arrowized FRRJtB& models in many ways.
Elm [Czaplicki and Chong2013 is an asynchronous FRP language for creating GUIs that uses both a
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“traditional” and arrowized FRP design allowing the user to handle signadsttlirin basic cases or use
signal functions for reactive or stateful computation.
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Appendix

A.1 Proof That Non-Interference Implies Commutativity (and Exchange)

Theorem 5(Commutativity)
right f > left g=left g>>>right f

Proof. This proof is straightforward. We will begin by assumiRgghtinputs only, and thus we can modify
our assertion to:
arr Right>>>right f > left g= arr Right>>> left g>>>right f

Starting with the left hand side,

arr Right>s>right f > leftg
= { Unit backwards;
f >> arr Right>>left g
= { Non-Interferencé
f > arr Right
= {Unit}
arr Right>>>right f
= { Non-Interference backwards
arr Right>s> left g>>>right f

ForLeftinput values, the proof works in exactly the same way except that we reeistan-interference’s
mirror:
arr Left>>>right f = arr Left

which follows directly from non-interference and the definitiorright. O

A.2 Choice-Based Implementations of First-Order Switch
Although using non-interfering choice and settability allows for a diffefgartadigm for designing FRP

programs, we can also use these tools to implement operators that are simickastic switchers. We
show two such implementations in this appendix.
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A.2.1 Standard Switch

The standardwitchfunction can be implemented with non-interfering choice in a straightforwarthara

SwitChnoice:: (0 ~~ (B, Eventy)) — ((Eventy,a) ~ B)
— (a~p)
SWitChtnoice Sf; Sh = proc a — do
onOne« delay True< not onTwo
(b,et) < if onOnethensf, < a
else returnA— (undefinedNoEveny
let onTwo= (isEvent e} || (not onOng
if onTwothen sf, < (et a)
else returnA—< b

Here, we keep track of two internal state variables calle@neandonTwothat indicate whether we should
be running the first or the second signal function. When the first mesian event, we sehOneto False

so that we stop running it, and we satTwoto True Then, we pass the impulse generated from the first
signal function to the second one, and for the future, the impulse streatairt® onlyNoEventvalues.

A.2.2 Parallel Switch

ThepChoicefunction is somewhat more complicated and is shown in Figuie pChoicetakes a mapping
of keys to signal functions (implemented here as a list for simplicity) as its stgticreant. For each element
of this static list, we keep a dynamic list of states (@tegesvariable in the figure). We check the input events
for any that are keyed to the signal function we are currently proagssid update the state list accordingly
(by either adding or removing elements), and then we run the signal furfoti@ach state and recur. Note
that the static signal functions are all impulse driven; thus, when new stedsst added to the state list
(which is done in theipdatehelper function), they are given an impulse event, but otherwise, tlegyian
NoEvent(i.e. in the definition oktategey). This restriction to strictly impulse driven signal functions is not
fundamental — indeed, we could write a versionp@hoicethat accepts signal functions that also take a
streaming input — but making it more generic would needlessly complicate theslgldense definition.

It is also worth noting that there is a subtle difference in performance ketp@hoiceand pSwitch
When the finite data type is large but rarely use8witchmay outperfornpChoicebecausgChoicestill
has to iterate through its entire static list on each step v8litchs dynamic list will be just the relevant
signal functions. That said, their performance should be comparal#e e finite data type is small
compared to the number of currently running signal functions.

A.3 Proofs of Preservation and Progress for Synchronous Semantics

In order to prove preservation and progress for our semantics, wieshnus these properties for each of the
transitions we have defined. Here we state and prove the relevantrtieeore

A.3.1 Evaluation Transition

The evaluation transition is mostly lifted from a standard lazy semanticszfpr> x+}. The additions
presented in Figuré.4 simply explain that the new expressions are all values. Thereforesrpati®n and
progress follow trivially.
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pChoice:: Eq key=- [(key Eventa ~ B)] —
([(key (UID, Eventa))] ~~ [B]
pChoice| | = constA[ |
pChoice((key, sf) : rst) = proc es— do
rec states— delay| | < stategew
let esnis = map snds filter ((== key) . fst) es
Stateg,, = update states g
output« runDynamic(first (settable sf) < stateg,
let stategew= map(A ((-,s),uid) —
((NoEventEvent g, uid)) output
rs < pChoice rst<es
returnA— (map(fst. fst) outpu -H-rs

where update:: [((Eventa, Event Statg UID)]

— [(UID, Eventa)]

— [(( Eventa Event Statg UID)]
update § | =
update s((wd NoEvent : rst) =

update(filter ((# uid) . snd s) rst
update S (uid,i) : rst) =
update(((i,Event),uid) : s) rst

Figure A.1: The implementation @iChoice

A.3.2 Functional Transition

Preservation for the functional transition proceeds in a straightformarther making sure that the stream-
ing input is appropriately transitioned into a streaming output.

Theorem 6 (Preservation during functional transitiorif e : a £ B, x:a,and(_,x.e) = (,Y,_,), then
y:B.

Proof. The proof of preservation proceeds by induction on the derivationeofrtmsition judgment along
with the knowledge of preservation for the evaluation transition. Each ojutiigments can be proved
trivially with a brief examination of the typing rules, so we omit the details. O

Progress for the functional transition is a somewhat more interestingmoBecause of the complexity
of the transition, we are forced to make a few assumptions about the input da

Theorem 7 (Progress during functional transitionf e: a 3 B, x: a, and? contains elements such that

Vr € R (r,a,-) € ¥ where r: (Tin, Towr) and a: T, then3dy: B,€ : a R B,7",# such that(?,x,e) =
(V. €., 7).

We require that in addition to the expressiobeing well-formed and the streaming argumeiieing
of the right type, the set” must also be “well-formed”. That is, for every resource teanight interact
with (all resources irR), there is a triple in” corresponding to that resource that contains values of the
appropriate types. Notably, they must all be resources that have etasy interaction. This is not an
unreasonable requirement as we proved in Thed@dnat at any point during the functional execution, no
resources see more than one interaction.
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Proof. The proof of progress proceeds by induction on the derivation ofuthetional transition judgment.
Based on the Canonical Forms Lemma (Lenithave know that the functional transition need only apply
to the five forms of a signal function, and we see by inspection that it ddlesexamine each judgment in

turn:

SF constructofFT-ARR): Wheneis of the formarr(€), typing rule Tr-ARRtells us tha€ : a — B.
As x: a, the streaming outpu xis of type8 as necessary. The other outputs exist regardless of the
form of €.

SF partial application(FT-FIRST): If eis of the formfirst(¢), then the typing rule Y-FIRST tells

us thate¢’ has resource type sBtjust ase does. Our inductive hypothesis tells us that outputs are
available for our recursive transition. The streaming oufgia) has the appropriate type, and the
expression output, formed by applyifigst to the expression output of the recursive transition has the
same type as.

SF compositior(FT-CoMP): e may be of the forme; > e. By typing rule Ty-ComP, we know

thate: a & y,er: o 2 B, ande;: 3 4 y. The evaluation transitions progress, and by our inductive
hypothesis, the functional transitions in the precondition progress asiWelloutput is formed from
the results of the precondition with the streaming vabeing of typey as required. The expression
output, made by composing the two expressighande€; has the same type as

SF choice(FT-CHc1 and FA-CHc2): Whene is of the forme, ||| e, typing rule Ty-CHc tells us

thate: a + o y,e o B y, andey : B B y. For either form ofx, there is a judgment, and in
either judgment the inductive hypothesis gives us output values wheras expected. The returned
expression is also of the appropriate form consideringeh&tom Fr-CHc1 andé€) from FT-CHc2
have the same types esande, respectively.

SF resource interactiofFT-RSF): If e is of the formrsf r, then the typing rule Y-RSF tells us

that its type must ber u B andr : (a,B). By the conditions of our theoren¥, must contain an
element(r,y,-) such thay : 3. Therefore, the streaming outpyis of the right type. Lastly, the output
expression is identical to the input expression.

Wormhole introductiofFT-WH): We use typing rule Y-WH wheneis of the formletW ry, r, & in o4y,

it tells us thateyoqy has typea R B whereR= R\ {ry,r,}. Before using our inductive hypothe-
sis, we must prove that the value set for the recursive call meets ouireegents. We know that
(RU{rw,rp}) 2 R, so¥ U{(rw,&,),(rp, (),-)} clearly satisfies the condition. Therefore, the stream-
ing outputy will be of type 8. Furthermore, the output express@hmust have the same type @gay
which satisfies our output requirement. O

A.3.3 Temporal Transition

By the definition of the overall operational semantics (Defini@pnwe know that the trace of any program
P is infinite. As long as we can prove progress, preservation is irreleVéminake use of the preservation
and progress theorems for the evaluation and functional transitionsisramier to prove the following:

Theorem 8 (Progress of overall semanticdj P is a program with typex A B and RC %, then the trace
of P will always be able to progress via the temporal transitiorwhen starting from{%,, 0, P).
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Proof. The judgment for the temporal transition allows the input to progress so ftinggreconditions are
met. The first condition defineg, to contain elements for each resourcezras well as for each whitehole
and blackhole pair ir#Z”. This is used in the second condition, which will progress only if we caneptivat
(7n, (), P) will progress through the functional transitidhmay access resourcesRas well as any virtual
resources introduced through wormholes. In the base case, the halt¢tansition has never been run, and
R does not contain any virtual resources. Then, becRUSe%,, ¥, contains elements for every resource
in R, so we meet the conditions of the functional progress theorem (Thedrelm the inductive case, we
are dealing with a potentially further evaluated progr@nwith resourcesk, which may contain virtual
resources. Then, all virtual resources will have been generaieddrevious passes through the functional
transition, and all of the virtual resources will be represente@hbyOnce againyj, will contain elements
for each resource iR/, and the functional transition can progress.

The last two preconditions are simply definitionsf and %"’ such thalR contains the same number
of elements keyed by the same resource namgéasd that#”’ contains the same whitehole and blackhole
resource names & as well as any new wormhole data entries frigi.

The output progran® is not the same aB. Notably, its type may have changed (tpi (). From
Theorem2, we know thatR’ is the setR with up to two new virtual resources for each element/gt.,
corresponding to the whiteholes and blackholes of the elemertgf This is fine for exactly the reason
that these new resources are “documented#faw and #pew is unioned with’?” for the output of the
transition. Therefore, wheit” is being generated in the next iteration, all of the resourceR’ ¥ill be
represented, both the original onesZhand any virtual ones created and documented’in

Finally, we must consider the overall base case. On the first iterationgihithe temporal transition,
there can be no virtual resources because no wormhole expresaimbéden executed by the functional
transition yet. Therefore, the initial wormhole $£tcan be the empty set. O

A.4 CFRP Properties

In order to express the ideas of resource safety and commutativity, sv@ded a way to discuss a given
process’s execution at a given moment in time.

In order to do this, we need a bit more access to the executive transitiowéaave. Specifically, we
define the following slightly modified executive transitiofy,. The behavior of}, is identical to that of|
except that when the transition internally invokes the functional transitioon a process with process ID
p, it must do so in a restricted form such that the HME judgment is not permitted. Furthermore, we use
I}, to refer to the reflexive transitive closure over this transition .

This modified executive transition allows us to rigorously define the term “mbmeime”.

Definition 7 (Moment in Time) We say(S %, %) —, (S,%',#") represents the sequence of unique pro-
gram states S £,S;...§ = S if and only if 3T, T’ such that(T,Z,7") ||}, (T',%',#"') where T(p) =

S, T'(p) = S, and for all intermediate T3l such that T p) = S. We call this sequence of states part of the
samemoment in time.

Essentially, the idea of a moment in time fits with the fundamental FRP abstractierne wie assume
that the program executes infinitely fast. Thus, one “moment” is the segudrsteps on one process that
occurs between any abstract passage of time.

Lemma 3. The program states representing one moment in time cannot causelateup a resource.

This lemma is trivially provable due to the fact that resources can only bategdn the F-TIME
judgment, which is definitionally restricted from being one of the states of a mamé&me. Furthermore,
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it provides us with the knowledge that any process that is terminated while it iexaiclition will not affect
any resources.

We will go on to show that no resource can be interacted with more than orcgiven moment and
that any data observed in a given moment will be the same regardless obtiesgs structure or what other
processes are running asynchronously.

A.4.1 Resource Safety

In order to state that CFRP interacts with resources in a safe and préglictabner, we first must define
what it means to interact with a resource.

Definition 8 (Resource interaction)Every program state S of the for(K > (rsf r,x,U)) for any control
stack K, value x, and update set U isesource interaction of resource r.

With this, we can state the following trivial lemma regarding resource interactiena sequence of
states:

Lemma 4. A sequence of program stateg. S S, will interact with a resource r exactly j times where j is
the number of states in the sequenge. S5, 1 that interact with resource r.

Together, we can use this definition and lemma to define resource safety:

Theorem 9(Resource Safety)For a program P:: o A B, we know:
e No program states will ever interact with a resourcg R.
e No two processes in P can interact with the same resource.
e No moment of time in P will ever interact with a resource more than once.

This theorem has three components. The first statement asserts thattgpedllprogram will not
interact with resources not noted in its type. The next statement assdrevdimawith the asynchrony of
multiple processes running simultaneously, resource access remaine aniqgs the entire program. The
last statement asserts that for any given process, within one moment in tmesaurce will be accessed
more than once.

Proof. The first two statements of this theorem follow from the typing rules. Firgt,isfwell formed and
has resource typdd then there can be nef construct inP for a resource ¢ R. the second follows naturally
from the typing rules for fork and composition.

To prove the third statement we show that for all state§#,%") <, (S,%’,#"), no two can
interact with the same resource. L®tbe a state in the sequence that interacts with resaurcCehen,
S = (K> (rsfr,_,Uy)), andSc;1 must be(K < (rsfr, ,Ux;1)). The only way to move from eeturn state
like this to anevaluationstate is through either therFTIME judgment or the ComP, judgment. No state
can move through theT=TIME judgment by definition of anoment in timegand the F-ComP, judgment
will not allow code that has already been executed to run again, whictawbe sure of due to Theorein
(Structural Preservation). Therefore, no sgtg can repeat the same stateRs

Furthermore, due to the typing rules and the fact that every Statewinds to a well typed expression
e and that a moment contains no-FIME judgments that would allow the expression to begin again, there
can be no more than omsf command for in this moment. Therefore, no resource can be interacted with
more than once in this sequence. O
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A.4.2 Resource Commutativity

The resource safety theorem tells us that a process will never peroeire than one resource interaction
with the same resource in a given moment in time. We use this to make the following claim:

Theorem 10(Commutativity) For any S and r, if S 2, #) —, (S,%',#") is the set of statesS.. S,
and there exists &« n such that 5= (K> (rsfr,_,U;)) and $;1 = (K < (rsf r,x,Ui;1)), then x will be the
same for all S regardless of i.

This theorem states that within a given moment in time for a given iniiand’#, regardless of where
aresource is read or what comes before or after it within that moment, itwduyze the same value. Thus,
if two sequences of code both use the same resources and can ex¢leatesme moment in time, they can
be substituted and the values produced by their resources will not ati@udeeof that change.

Thus, we state that the order of execution of the components of a sigraidio running at the same
moment in time does not change the result of the program. This fits the modsl albstraction exception-
ally well because it implies that we can really think of a moment in time as happeliaigosce—no one
component needs to happen before another to produce the result.

Proof. We will prove this theorem by proving that it holds for any resource type.

First, if r is a blackhole, the theorem holds trivially. The-RSF, judgment applies, and due to the
definition ofread for blackholes and regardless of anything else, the vaiu# be ().

If r is a whitehole resource, then the transition fr§no §.1 must once again beTRSF,, in which
case the value is determined uniquely by the elememtof the wormhole’s internal resource data, and it
suffices to show that regardless ®andi, w will be the same. Resource data can only be changed by a
resource updateupdate), and the only functional transition judgment that updates resources TSNFE.
Furthermore, the FTIME judgment will only update if an elemefit ) is in the update data passed into it.
However,(r, ) will only be inU for sets of update data in a process that has already processed RfeHy
judgment with the resource in question. By TheorgifiResource Safety), we know that no other process
can interact withr, so that element can only belihfor states ing. .. S,. Lastly, because no statgs...$,
use the F-TIME transition, we know thatv cannot be changed during the moment.

Lastly, if r is a physical resource, then the transition fr&mo S.; is FT-RSF, and the value is
determined uniquely by the state of the resourtcghis conclusion follows similarly to that for whiteholes.

O
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