
YALE UNIVERSITY

DEPARTMENT OFCOMPUTERSCIENCE

Effects, Asynchrony, and Choice in Arrowized
Functional Reactive Programming

PhD Dissertation

Author: Adviser:
Daniel WINOGRAD-CORT Paul HUDAK

dwc@cs.yale.edu paul.hudak@yale.edu

June 11, 2015

Copyright c© 2015 by Daniel Winograd-Cort
All rights reserved.

Abstract

Functional reactive programming facilitates programming with time-varying data that can be perceived
as streams flowing through time. Thus, one can think of FRP as an inversion of flow control from the struc-
ture of the program to the structure of the data itself. In a typical (say, imperative) program, the structure of
the program governs how the program will behave over time; as time moves forward, the program sequen-
tially executes its statements, and at any line of code, one can make a clear distinction between code that
has already been run (the past) and code that has yet to be run (the future). However, in FRP, the program
acts as a signal function, and, as such, we are allowed to assume that the program executescontinuously
on its time-varying inputs—essentially, it behaves as if it is running infinitely fast and infinitely often. We
consider this to be the core principle of the design and call it thefundamental abstraction of FRP.

Design and Performance

This work is specifically rooted inArrowizedFRP, where these signal functions remain static as they process
the dynamic signals they act upon. However, in practice, it is often valuableto be able to dynamically alter
the way that a signal function behaves over time. Typically, this is achieved with “switching” or other
monadic features, but this significantly reduces the usefulness of the arrows.

We develop an extension to arrows to allow “predictably dynamic” behavior along with a notion of
settability, which together recover the desired dynamic power. We further demonstrate that optimizations
designed specifically for arrowized FRP and which do not apply to monadicFRP, such as those for Causal
Commutative Arrows, are applicable to the system. Thus, it can be powerfullyoptimized.

Effectful FRP

In its purest form, functional reactive programming permits no side effects(e.g. mutation, state, interaction
with the physical world), and as such, all effects must be performed outside of the FRP scope. In practice,
this means that FRP programs must route input data streams to where they are internally used and likewise
route output streams back out to the edge of the FRP context. I call this the FRP I/O bottleneck. This design
inhibits modularity and also creates a security vulnerability whereby parent signal functions have complete
access to their children’s inputs and outputs. Allowing signal functions themselves to perform effects would
alleviate this problem, but it can interfere with the fundamental abstraction.

We present the notion ofresource typesto address this issue and allow the fundamental abstraction to
hold in the presence of effects. Resource types are phantom type parameters that are added to the type
signatures of signal functions that indicate what effects those signal functions are performing and leverage
the type-checker to prevent resource usage that would break the abstraction. We show type judgments and
operational semantics for a resource-typed model as well as an implementation of the system in Haskell.

Asynchronous FRP

FRP typically relies on a notion ofsynchrony, or the idea that all streams of data are synchronized across
time. In fact, this synchrony is a key component of maintaining the fundamentalabstraction as it ensures
that two disparate portions of the program will receive the same deterministically associated (synchronous)
input values and that their separate results will coordinate in the same outputvalues. However, in many
applications, this synchrony is too strong.

We discuss a notion of treating time not as a global constant that governs theentire program uniformly,
but rather asrelative to a given process. In one process, time will appear to progress at one rate, but in
another, time can proceed differently. Although we forfeit the global impact of the fundamental abstraction,
this allows us to retain its effects on a per-process scale. That is, we can assume each process processes its
inputs continuously despite the whole network having different notions of time.

To allow communication between these asynchronous processes, we introducewormholes, which act
as specialized connections that apply a sort oftime dilation to information passing through them. We
additionally show that they can be used to subsume other common FRP operations such as looping and
causality.

Application

We apply the concepts of all of these ideas into a functional reactive library for graphical user interfaces
called UISF. Thus, this work concludes with an overview and examples of practically using our version of
FRP.

ii

Acknowledgments

I am very grateful to my late adviser, Paul Hudak. Paul was an inspiring mentor whose enthusiasm for
functional programming and well-designed systems had a strong impact on my academic career. I thank
Paul for welcoming me into his research group and giving me the opportunity towork with him. Our
discussions were formative for me and were instrumental in the preparationof this dissertation.

I am also indebted to Zhong Shao, who has welcomed me as a member of his group for years and who
recently stepped in as my adviser for the end of my PhD.

I owe thanks to my committee members, Henrik Nilsson, Bryan Ford, and Ruzica Piskac, for their
guidance and feedback on my work.

I would like to thank Shriram Krishnamurthi for introducing me to the idea of studying programming
languages in the first place. I took his inspirational course as an undergraduate, and it changed my life. He
has additionally been a reliable and available mentor, guide, and friend.

I am grateful to my colleagues, collaborators, and friends with whom I have had many long conversa-
tions. Notably, I must thank Shu-Chun Weng, who at this point probably knows the technical details of my
research as well as I do and has helped me time and again rework them into a better state.

I am deeply grateful to my family for their love and support. They have encouraged, congratulated, and
consoled me throughout my PhD work, and I cannot thank them enough.

Finally, I owe great thanks to Jane for her love and patience during this long process.

iii

iv

Contents

Abstract i

Acknowledgements iii

Table of Contents v

List of Figures vii

1 Introduction 1
1.1 To Switch or Not To Switch . 2
1.2 Including Effects . 4
1.3 To Asynchrony and Beyond. 7
1.4 More Uses for Wormholes. 10

2 Background 11
2.1 Arrows . 11
2.2 Basic Language. 14

3 Choice and Settability 16
3.1 A Case for Non-Interfering Choice. 16
3.2 A Case for Settability. 22
3.3 An Alternative topSwitch . 26
3.4 Implementing Settability. 29
3.5 Optimizations. 35
3.6 Other effects of switching from switch. 38

4 General Effects in FRP 40
4.1 Resource Types. 40
4.2 A Resource Typed Language. 44
4.3 Examples . 47
4.4 Delay and Loop. 51
4.5 Semantics. 53
4.6 Safety . 58
4.7 Haskell Implementation. 59

5 Asynchronous Functional Reactive Processes 67
5.1 Considering Asynchrony. 67
5.2 Motivating Examples. 69

v

5.3 The Language. 72
5.4 Concurrency Operators. 79
5.5 Language Properties. 80
5.6 Blocking. 82
5.7 Haskell Implementation. 83

6 UISF – A Case Study 88
6.1 Arrowized User Interface. 88
6.2 Example: Time . 94
6.3 Example: Bidirectional Data Flow. 95
6.4 Example: Dynamically Active Widgets. 96
6.5 Example: Asynchronous Computation. 97
6.6 Differences From Theory. 99
6.7 Conclusions and Discussion of Similar Libraries. 100

Bibliography 102

Appendix 107
A.1 Proof That Non-Interference Implies Commutativity (and Exchange). 107
A.2 Choice-Based Implementations of First-Order Switch. 107
A.3 Proofs of Preservation and Progress for Synchronous Semantics. 108
A.4 CFRP Properties . 111

vi

List of Figures

2.1 The types of the arrow operators.. 12
2.2 The abstract syntax ofL {→×+}. 15

3.1 The Arrow-choice Laws . 18
3.2 The implementation ofrunNTimes . 19
3.3 The implementation ofrunDynamic . 20
3.4 Thesettablefunction and its laws.. 24
3.5 The implementation of a drawing GUI. 26
3.6 The drawing GUI using pswitch. 27
3.7 Settability Transformations for various arrow combinators. 30
3.8 Settability Transformation for RSwitch. 32
3.9 TheStatedata type and its two accessor functions.. 33
3.10 SAimplementations of the Arrow class functions.. 34
3.11 Non-Interfering Arrow-Choice CCA Performance Results. 38

4.1 The typing rules for arrow operators with resource types.. 41
4.2 The resource type abstract syntax additions toL {→×+}. 45
4.3 Typing rules for resource typed expressions. 46
4.4 The evaluation transition judgments for our extension toL {→×+}. 54
4.5 The functional transition judgments.. 55
4.6 The temporal transition.. 57
4.7 The Union type class.. 61
4.8 Type Classes for Disjoint Union. 62
4.9 SRemove Type Class for Set Removal. 62
4.10 The Haskell Arrow classes redefined to permit resource types. 63

5.1 The CFRP extension toL {→×+}. 72
5.2 CFRP Typing rules. 73
5.3 The stack frames for the functional transition.. 75
5.4 Functional Transition judgments 1. 76
5.5 Functional Transition judgments 2. 77
5.6 Functional Transition judgments 3. 77
5.7 The frame application operator⊲⊳ . 78
5.8 Thebufferfunction. 80
5.9 Thesparfunction.. 81
5.10 A potential definition ofbrsf. 83
5.11 The updated definitions of wormhole resources for CFRP.. 84
5.12 The definition ofrunSFthat can handle asynchrony.. 86

vii

6.1 UISF graphical input/output widgets. 89
6.2 UISF Mediators between continuous and discrete. 90
6.3 UISF Delays. 92
6.4 The Timer GUI.. 95
6.5 A screenshot of the Timer GUI.. 95
6.6 The Temperature Converter GUI.. 96
6.7 A screenshot of the Temperature Converter GUI.. 96
6.8 The Mind Map GUI. 97
6.9 A screenshot of the Mind Map GUI.. 97
6.10 The compound widget for building a Pinochle hand.. 98
6.11 The Pinochle GUI. 98
6.12 A screenshot of the Pinochle GUI.. 99

A.1 The implementation ofpChoice. 109

viii

Chapter 1

Introduction

Functional Reactive Programming (FRP) is based on the idea of programmingwith signals, or time-varying
values. Signals can be continuous, in which case they are defined for every moment in time, or they can be
discrete event streams, in which case they are defined only at particular moments. Indeed, the signal is the
fundamental and primary component of FRP, and the core purpose of FRP is that it provides a denotational
semantics for signals as functions defined over time:

Signalα = Time→ α

Thus, FRP is designed to allow one to easily define behaviors for streams that react as the streams change
over time.

This idea of using continuous modeling for dynamic, reactive behavior (that is, FRP) is due to Elliott,
beginning with early work on TBAG, a C++ based model for animation [Elliott et al., 1994]. Subsequent
work on Fran (“functional reactive animation”) embedded the ideas in Haskell [Elliott and Hudak, 1997,
Hudak, 2000], and more recently, there have been a plethora of FRP models. Becauseof its inherent signal-
based design, FRP is a natural choice for real-time and continuous programming. Indeed, it has been used
in such realms as animation, robotics, GUI design, networking, and audio processing, among others.

Due to its time-varying nature, one can think of FRP as a system that shifts the control flow from the
structure of the program to the structure of the data itself. In a typical (say, imperative) program, the structure
of the program itself governs how it will behave over time; as time moves forward, the program sequentially
executes its statements, and at any line of code, one can make a clear distinction between code that has
already been run (the past) and code that has yet to be run (the future). However, in FRP, the program acts as
a signal transformer, and, as such, we are allowed to assume that the program executescontinuouslyon its
time-varying inputs—essentially, it behaves as if it is running infinitely fast and infinitely often. This design
structure allows one to think of all data in the program as beingsynchronizedin time, an idea consistent with
the family of synchronous languages such as Lustre [Caspi et al., 1987], Esterel [Berry and Cosserat, 1984],
and Signal [Gautier et al., 1987]. We consider this to be the core principle of the design and thus declare:

Key Principle (Fundamental Abstraction of FRP). A functional reactive program must be perceived to run
simultaneously and continuously, and it is in the data itself that one can examine the past, present, and
future.

FRP systems that follow this abstraction have a number of practical, advantageous features. First, if
the program has no sense of time, then it cannot describe sequential computation, which means that any
effects that the program performs will be able to freely commute with each other within a given moment in
time. Second, common temporal pitfalls that programmers fall into, such as raceconditions and deadlocks,
cannot occur. Lastly, if the program is deterministic on individual inputs, then its behavior over time will be
deterministic as well.

1

A problem with classic FRP systems (such as Fran [Elliott and Hudak, 1997]) is their propensity toward
space and time leaks [Liu and Hudak, 2007]. One method for addressing these leaks is by usingarrows
[Hughes, 2000, Lindley et al., 2010] in so calledarrowizedFRP (AFRP), which has been used inYampa
[Nilsson et al., 2002, Hudak et al., 2003, Courtney et al., 2003] (for animation, robotics, GUI design, and
more),Nettle [Voellmy and Hudak, 2011] (for networking), andEuterpea[Hudak, 2014] (for audio pro-
cessing and sound synthesis). In AFRP, instead of treating the signal asa first class value, one treats the
signal functionas the core component:

α β = Signalα → Signalβ

The arrow structure then allows the signal functions to be composed quite naturally.
Furthermore, the arrow abstraction lends itself well to aggressive optimizations. An arrow’s structure

must be defined statically, and once defined, it cannot be altered mid-computation. Therefore, regardless of
what data the signals contain, the arrow’s overall behavior is fixed.Liu et al. [2011] use this restriction to
design an optimization for a certain class of arrows, namelycausal commutative arrows(CCA), which can
often improve their performance in Haskell (using GHC) by an order of magnitude.

1.1 To Switch or Not To Switch

One problem with AFRP is that it does not naturally support the full range of capabilities that classic FRP
provides. As mentioned, an arrow’s structure must be fixed at compile-time,but classic FRP typically
provides behavior-switching mechanisms. Thus, arrows are often augmented with a higher-orderswitch
operator to recover this ability.

1.1.1 Switch

After the arrow framework was proposed byHughes[2000], it was quickly adopted for use in FRP in the
GUI language Fruit [Courtney and Elliott, 2001a, Courtney, 2004], which also introduced the first switch
function (before then, higher-order signals were dealt with by a function typically calleduntil). The design
of Yampa [Nilsson et al., 2002, Hudak et al., 2003, Courtney et al., 2003] built off of this and expanded the
idea to a variety of uses, eventually introducing fourteen different flavors of switch operators.1

Switching allows a program to accept and utilize a stream of signal functions, thus allowing for higher-
order signal function expression in which the program can update its ownstructure during execution. Addi-
tionally, in the realm of signal functions, a higher-order ability like this provides the only means of starting
and stopping signals mid-computation, which is often necessary for good performance. For instance, new
signal functions can be provided at runtime and “switched on” to augment the current behavior of a program.
Likewise, given an event that a certain signal is no longer needed, the program can “switch off” the portion
of itself that is computing values for that signal, thus preventing unneeded computations from being per-
formed. This ability to switch is very strong, and in fact, arrows with switch areequivalent toArrowApply
arrows, which themselves are equivalent to monads [Hughes, 2000].

Unfortunately, this power comes at a cost: the inherent higher-order nature of switch that allows it to
run arbitrary signal functions from a stream makes certain compile-time optimizations and static guarantees
much more difficult or even impossible. For example, arrows with switch cannot undergo the CCA opti-
mizations. Likewise, in the realm of embedded systems, where static code is required due to strict time and
resource constraints, switch can be an intolerable hole in a static guarantee.

1These fourteen operators were mostly convenience functions built atopa few primitive switchers, but they serve as an indication
of the widespread use of switching.

2

1.1.2 An Alternative to Switch

One motivation of this research is to ask whether switch is really necessary.Most FRP programmers would
be reluctant to give it up—indeed, some FRP programs would be inexpressible with just first-order arrows—
but perhaps there is an operator that is powerful enough to replace switch in most cases while still being
weak enough to allow for CCA-like optimizations. In order to consider this, wefirst must examine more
closely exactly what switching provides.

Switch allows one to express two fundamental behaviors that are otherwiseimpossible with just arrows.
First, it provides a way for signal functions to dynamically start and stop mid-computation, which is useful
not just for expressing certain programs but also for achieving better performance. Second, it allows for
higher-order signal expression, essentially providing a way to flatten a stream of streams into a single stream
or insert a dynamic signal function into the arrow structure itself.

The second of these effects is impossible to replicate in classic (non-switchable) arrows, but there is some
hope for the first. The ability to choose between whether to run a signal function or not is similar to what
is provided byarrow choice[Hughes, 2000]. Arrows extended with choice can make a dynamic decision of
how to process streaming data with the limitation that the possible choices must be statically defined. An
additional difference lies in the fact that every effect from each possible choice will be executed regardless
of the dynamic decision. This means that arrow choice cannot be used to entirely suspend a branch in the
way that switch can suspend a “switched out” signal function because even effects from inactive branches
will happen.

To address this, we can modify arrow choice by adding a new law in order tomake itnon-interfering.
Non-interfering choice asserts that effects from only one branch of the choice will happen, and so if one
branch is taken, it is as if the other does not exist.

Technically, non-interfering choice allows us only to pause signal functions and not actually start or stop
them. For this reason, we additionally provide a method for making an arrowsettable: a settable arrow’s
state can be saved, reloaded, and even reset.

Combining settability with non-interfering choice gives us the full power of thefirst effect of switch.
That is, we can “start” a signal function by using choice and then resettingits state, and we can “stop” a
signal function by indefinitely pausing it.

Interestingly, non-interfering choice allows for another unforeseen benefit: arrowized recursion. Be-
cause only one branch’s effects can take place, we can do a form of recursion that allows behaviors that were
previously only possible with switch. Combining this with settability allows for some surprising power.

1.1.3 Other Alternatives

Non-interfering choice and settability are not the only methods for trying to deal with the problems with
switch.Patai[2011] presents an approach of embracing the higher-order mentality and shows a method for
dealing with higher-order streams directly and efficiently using a monadic interface. In this way, switching
becomes a core design property.Krishnaswami and Benton[2011] have a similar approach trying to bridge
the divide between a synchronous, imperative style and an FRP-like, declarative style. Their work has a
strong theoretical basis for handling causality when dealing with higher-order signals.

Another option is to allow switch in its normal form but then pursue other avenues of optimization. For
instance Reactive [Elliott, 2009] and Elm [Czaplicki and Chong, 2013] focus on avoiding needless compu-
tation by using a “push” based design, which only recomputes values whenchanges are detected. Reactive
additionally uses deterministic concurrency for even better performance.

From a different perspective, one can think of the ideas of settability andnon-interfering choice not
as a way to recover behavior after removing switching from an FRP language but instead as a way to add
expressive power to a more traditional synchronous dataflow language. That is, there are plenty of FRP-like

3

languages that do not have the reactive power of switch, and these features can be used to extend them.
For instance, Esterel [Berry and Cosserat, 1984] is an imperative reactive language that allows pro-

grammers to create deterministic, synchronous control systems. It allows both parallel and sequential com-
position, which makes it suitable for many complex systems, but it has no concept of switching. Lus-
tre [Caspi et al., 1987] and Signal [Gautier et al., 1987] are comparable.

Synchronous dataflow languages are often useful for describing hardware, which itself is determinis-
tic and synchronous. Furthermore, hardware cannot support higher order signals for the obvious reason
that hardware wires cannot themselves carry hardware operations. However, settability and non-interfering
choice are both theoretically applicable to hardware domains.

1.2 Including Effects

An FRP program is still a pure functional program. That is, the signal-based computations are performed
using pure functions, and the input and output of the program—which may include I/O commands—are
handled separately, i.e. outside of the program. In this sense, there is anI/O bottleneckon either end of any
signal function that represents a complete program. All of the input data must be separated from its source
so that it can be fed purely into the appropriate signal function, and all ofthe output data must be separately
piped to the proper output devices. We see this as an imperfect system, as ideally the sources and sinks
would be directly connected to their data.

1.2.1 General Side Effects

A purely functional language does not admit side effects. Indeed, the original Haskell Report (Version 1.0)
released in 1990, as well as the more widely publicized Version 1.2 [Hudak et al., 1992] specified a pure
language, and the I/O system was defined in terms of both streams and continuations, which are equivalent
(one can be defined straightforwardly in terms of the other). In 1989 the use of monads to capture abstract
computations was suggested byMoggi [1989], subsequently introduced into Haskell byWadler[1992], and
further popularized byPeyton Jones and Wadler[1993].

Originally conceived as a pure algebraic structure, and captured elegantly using Haskell’s type classes,
it was soon apparent that monads could be used for I/O and other kinds of side effects. Indeed, Version 1.3
of Haskell, released in 1996, specifies a monadic I/O system. The inherentdata dependencies induced by
the operators in the monad type class provide a way to sequence I/O actions ina predictable, deterministic
manner (often called “single threaded”). The Haskell I/O monad is simply named IO, and primitive I/O
operations are defined with this monadic type to allow essentially any kind of I/O.A monadic action that
returns a value of typea has typeIO a.

To make this approach sound, a program engaged in I/O must have typeIO a, and there can be no
function, sayrunIO :: IO a→ a, that allows one to “escape” from the I/O monad. It’s easy to see why this
would be unsound. Consider the expression:

runIO m1+ runIO m2

If both m1 andm2 produce I/O actions, then it is not clear in which order the I/O actions will occur, since a
pure language does not normally express an order of evaluation for(+), and in general we would like(+)
to be commutative.

I/O is, of course, just one form of effect. For example, one might want tohave mutable arrays (meaning
that updates can be done “in-place” in constant time). A purely functionalapproach cannot provide constant-
time performance for both reads and writes. Haskell has two solutions to this problem: First, Haskell defines
anIOArray that can be allocated and manipulated in an imperative style. Predefined operations on the array

4

are defined in terms of theIO monad, and thus manipulating a mutable array becomes part of the single-
threaded flow of control induced by theIO monad, as discussed earlier.

A problem with this approach is that it is common to want to define some local computation using an
array and hide the details of how the array is implemented. Requiring that eachsuch local computation
inject the array allocation and subsequent mutations into the global I/O streamis thus not modular, and
seems unnatural and restrictive.

What we would like is a monad within which we can allocate and manipulate mutable arrays (but
not perform any I/O), and then “escape” from that monad with some desired result. Haskell’sSTmonad
[Launchbury and Peyton Jones, 1994] does just that. Haskell further defines a type constructorSTArray
that can be used to define arrays that can be allocated and manipulated justlike an IOArray. Once the
programmer is done with the local computation, theSTmonad can be escaped using the function:

runST:: (forall s. ST s a)→ a

The “trick” that makes this sound is the use of the existential (phantom) type variableswithin theSTmonad
and the operations defined on the arrays. For example, returning the value of an array reference would be
unsound—it would mean that the mutable array could be further mutated in othercontexts, with potentially
unpredictable results. However, this is not possible in Haskell’sSTmonad, because the type of the array
reference contains the hidden existential type, thus resulting in a type error.

1.2.2 Effects in FRP

Monads can be used for many pure computations as well as other kinds of effects, but the above has focused
on two kinds of effects: I/O and mutable data structures. It is important to distinguish these two, since there
are inherent conceptual differences. Mutable data structures can becreated and allocated dynamically as
required by the program. Because they have no external or observable effects, two different data structures
can be guaranteed to be distinct, and we are only limited in their use by the bounds of the system’s memory.
In contrast, I/O devices are generally fixed—each printer, monitor, mouse, database, MIDI device, and so
on, is a unique physical device—and they cannot be created on the fly. Although one could allocate multiple
virtual instances of any given device, they would all eventually be mappedto the same physical device.

It is also worth noting that for both I/O devices and mutable data structures, the sequence of actions
performed on each of them must generally be ordered, as it would be in animperative language, but concep-
tually, at least, distinct actions on a printer, a MIDI device, or some number of separately allocated mutable
data structures, could be performed concurrently.

So the question now is, how do we introduce these kinds of effects into FRP?Indeed, do these kinds of
effects even make sense in an FRP language? Without effects, FRP has limited power and a constrictive de-
sign, but so far, work has only been on either the programmer interface level [Courtney and Elliott, 2001b] or
the system’s underlying connection to imperative-style effects libraries [Cooper and Krishnamurthi, 2006].
Can we bridge the gap between these by providing arbitrary effect usage directly to the front interface in a
clear and safe way?

A normal Haskell variable is time-invariant, meaning that its value in a particular lexical context and
in a particular invocation of a function that contains it, is fixed. In a languagebased on FRP, variables can
be conceptually time-varying—their values in a particular lexical context andin a particular invocation of a
function that contains them are not fixed, but rather depend on time.

A key insight is that the sequencing provided by a monad can be achieved inFRP by using the ordering
of events in an event stream. In the case of I/O, another key insight is thateach of the I/O devices can be
viewed as a signal function that is avirtualizedversion of that device. We can guarantee the soundness of
this at the type level by introducingresource types.

5

1.2.3 Safely Virtualizing Resources

Virtualizing a real world object or device is simply the concept of viewing thatobject as a piece of the
program, or in FRP, as a signal function itself. For example, the console’sinput produces events with string
values, the console’s output takes events of strings as input, and a MIDIkeyboard could take note events as
input as well as generate note events as output. So it would seem natural tosimply include these devices as
part of the program in the form of signal functions—i.e. to program with them directly and independently
rather than merge everything together as one input and one output for thewhole program. In this sense, the
real-world objects are beingvirtualizedfor use in the program.

The only problem is that one could easily duplicate these virtualized objects since after all, once virtual-
ized, they are just values. This would cause the semantics of the program tobecome unclear. For example, a
virtualized object may be duplicated such that each instance is provided with adifferent input event stream,
but the object itself expects only one input stream—what do we do? We couldnon-deterministically merge
the streams, but this seems imprecise and may not be the desired behavior. Really, we want to ensure that
each of these virtualized devices is unique to the program. This seems difficult to achieve until we recognize
thatuniqueness of signal functions can be realized at the type level. In particular, we introduce the notion
of a resource typeto ensure that there is exactly one signal function that represents each real-world device.
Because we are using arrows, we begin by re-typing the arrows themselves to include resource types, and
then we introduce type families and classes that capture the idea of a disjoint unions of these resource types
and update the arrow combinators to use them. For example, the keyboard could be virtualized into a signal
function that produces keystroke events. We expect that every keystroke should produce a unique event,
but if this signal function were duplicated, we can no longer easily guarantee that claim. Thus, we attach
a resource type to this signal function that will propagate throughout the entire program upon composition
and then restrict the program to allow only oneKeyboardresource type. If a programmer attempts to use the
signal function more than once in the same program, the resource type will appear twice, and the program
will produce a type error.

Resource types share similarities to other type-and-effect systems. For instance, the languageClean
[Brus et al., 1987, Plasmeijer and van Eekelen, 2002] has a notion ofuniqueness types. In Clean, when
an I/O operation is performed on a device, a value is returned that represents a new instantiation of that
device; this value, in turn, must be threaded as an argument to the next I/O operation, and so on. This
single-threadedness can also be tackled usinglinear logic [Girard, 1987], and various authors have proposed
language extensions to incorporate linear types [Wadler, 1991, Hawblitzel, 2005, Tov and Pucella, 2011,
Wadler, 1990]. In contrast, resource types are not concerned with single-threadedness since there is only
one signal function to represent any particular I/O device. Rather, theirpurpose is to ensure that resources
do not conflict. Additionally, they are specialized to handle FRP.

Resource types achieve their safety benefits by taking advantage of the temporal nature of FRP. That
is, because of the fundamental abstraction of FRP, computations within singleticks of the clock cannot
share the same resource, but a computation that uses a given resourcewill monopolize that resource for all
clock ticks. Another way to constrain the temporal behavior of reactive programs is through linear-time
temporal logic (LTL) [Jeffrey, 2012, Jeltsch, 2012] and the Curry-Howard correspondence between it and
FRP. Indeed,Jeffrey[2012] lays out the basis for an implementation of a constructive LTL in a dependently
typed language such that reactive programs form proofs of LTL properties.

The advantages of resource types include:

1. Virtualization. I/O devices can be treated conveniently and independently as signal functions that are
just like any other signal function in a program. I/O is no longer a special case in the language design.

2. Transparency. From the type of a signal function, we can determine immediatelyall of the resources
that it uses. In particular, this means that we know all the resources that an entire program uses (as

6

opposed to with theIO monad, where all we know is that some kind of I/O is being performed).

3. Safety. If used properly, a signal function engaged in I/O issafe—despite the side effects, equational
reasoning is not compromised.

4. Extensibility. A user can add new resource types to the system that capture new kindsof effects or
that represent new I/O devices.

1.2.4 Wormholes

In the realm of mutable data structures, we seem to come to a slightly different conclusion. We can start
with a similar approach of lifting the interaction from individual actions to a signal function; for example,
we could define:

sfArray:: Size→ (Event Request Event Response)

such thatsfArray nis a signal function encapsulating a mutable array of sizen. That signal function would
take as input a stream ofRequestevents (such as read or write) and return a stream ofResponseevents (such
as the value returned by a read, acknowledgement of a successful write, or an index-out-of-bounds error).
Note the similarity of this approach to the original stream I/O design in early Haskell [Hudak et al., 1992].

This design is also analogous to theSTArraydesign, in that in-place updates of the array are possible in
a sound way, and every invocation ofsfArraycreates a new mutable array. The difference between this and
both theSTArraydesign as well as the virtualized resources of the previous subsection is that no changes
to the type system are required to ensure soundness (in particular, no hidden existential types are needed,
nor are resource types). Using this idea, many kinds of mutable data structures are possible, as well as
certain kinds of duplicable effects, for example, random number generation. These types of effects, being
inherently local or duplicable, are readily available in other FRP formulations.

However, although functionally sound, this design is somewhat unsatisfying in that the requests and
responses both need to be co-located. That is, these signal functions that represent mutable data structure
are inherently complicated by the fact that they have both inputs and outputs all at once.

Thus, we next ask: What happens when we split the functionality into two separate signal functions,
one for providing data and the other for producing output? In the simplest case, the data structure itself
could simply be a single mutable data cell, but by splitting it into two components, it turnsinto a method
for communicating data between otherwise unconnected parts of a program.We refer to the receiving
signal function as theblackhole, the producing signal function as thewhitehole, and the two together as a
wormhole. By analogy, wormholes are a bit likeIORefs in Haskell: one signal function provides the effect
of writing and the other reading, but in the FRP framework, the details are considerably different.

It is notable that because a wormhole is no longer a single entity, we can no longer clearly distinguish
two wormholes merely by them being invoked in different places. In fact, wemust even face the question of
what it may mean if twoof the samewhiteholes or blackholes are used in the same program. However, these
questions lead to the same place they did when we were exploring virtualizing resources, and we resolve
them in the same way as well: by using resource types. Upon constructing a wormhole, two fresh, virtual
resources must be created that are then associated with the whitehole and blackhole of the wormhole.

At this point, wormholes may seem like something of a novelty—indeed, we seem tohave built them
solely to see if we can—but as we shall see, they have a variety of practical applications.

1.3 To Asynchrony and Beyond

As mentioned, FRP creates a synchronous model of programming, or one inwhich time cannot affect
any portion of the program (or its data) without affecting its entirety. In this realm then, we can think of

7

asynchronouscomputation as another form of effect. For instance, perhaps we have acomputation that runs
unpredictably longer or shorter than others, and we would like to let it run freely. In another case, we may
simply want two unrelated tasks to run separately, free of needing to synchronize with each other on any
particular schedule.

This “asynchronous effect” seems fundamentally different than the effects discussed previously. Rather
than dealing with how to achieve a clear ordering of events in time, we instead need to consider the nature
of time itself, which should immediately give us pause. If an FRP program is expected to uphold the
fundamental abstraction of FRP, that it is synchronous and can process instantaneous values infinitely fast,
then what is the point of asynchrony? If we are using this abstraction so that we can assume that continuous
signals behave continuously, then what does it mean for one to take longerthan another? Thus, it appears
that even attempting to address asynchrony in FRP will destroy the main reasonto use FRP at all.

However, we need not lose all hope. Rather than think of time as a global constant that governs the
entire program uniformly, we borrow an idea from physics and think of time as relative. In one process,
time will appear to progress at one rate, but in another, time can move differently. Although we lose the
global impact of the fundamental abstraction, this allows us to retain its effectson a per-process scale. That
is, we can assume each process processes its inputs continuously despitethe whole network having different
notions of time.

1.3.1 Communicating Functional Reactive Processes

All that remains is a way for asynchronous processes to communicate as necessary. Because of the time
difference between processes, this information must somehow be transformed as it moves from one “time
stream” to another. With a proper design, a wormhole can be made to do exactlythis2.

The solution is to build the wormhole over a data structure that can allow for compression or expansion
of the underlying signal, essentially allowing for the time dilation that may occur between two different
signal rates. For instance, if a signal is sent from a fast process to a slow process, then the signal will appear
sped up, or at a higher frequency on the receiving end compared to how it was submitted on the sending end.

These time dilating wormholes allow us to effectively create a new language of communicating func-
tional reactive processes (CFRP) that can add asynchrony to FRP while retaining the fundamental FRP
abstraction on a per-process scale. Thus, CFRP includes an operatorto allow the creation of a new process
with its own notion of time3, and it uses the concept of wormholes to create bridges between those processes.

1.3.2 General Parallelism

Although we introduced the asynchronous effect to provide new means of expression, it provides a clear
model to allow signal functions to run in parallel, thus opening a new opportunityfor performance opti-
mization. Indeed, the design allows us to take advantage of multi-core architectures, letting each functional
reactive process proceed through time on its own core.

Thus, along with our future discussion of asynchrony, we will presenta number of high-level parallel
and concurrency operators that are built using the simple ideas of asynchrony and wormholes.

2The name “wormhole” may make more sense now, as it is a reference tothe theoretical astronomical oddity, the “Einstein-
Rosen bridge,” a one-directional path through space-time such that matter can only flow in through the black hole and out through
the white hole and that has the capacity to permit certain forms of time travel.

3In the physics-based space-time model, one could think of this as an operator that causes a new big bang or spawns a new
universe.

8

1.3.3 Other Efforts

While our work considers communicatingfunctional reactiveprocesses, the seminal work on communicat-
ing sequentialprocesses is [Hoare, 1978, Milner, 1982, 1999]. Our ideas are similar, but obviously different
based on the domain.

In presenting CFRP, we will provide a full set of statics and dynamics to describe its functionality. How-
ever, there are other models that attempt to describe the behaviors of concurrent or asynchronous programs.
For instance, theπ-calculus [Milner, 1993] provides a model to describe concurrent programs through the
use of name generation and sharing via channels. Our asynchronous use of resource types is similar, but
while names can be sent through channels, resources cannot be sentthrough wormholes. This restriction
allows us to maintain the fundamental abstraction of FRP by forcing all resources to be race-free.

Concurrency in functional languages has been explored previously,most notably in Concurrent ML
[Reppy, 1993], concurrent and parallel Haskell [Jones et al., 1996, Li and Zdancewic, 2006, Jones and Hudak,
1993], and Erlang [Virding et al., 1996], among others.

The termserializability [Papadimitriou, 1979] typically refers to the idea that a parallel execution of a
set of transactions over multiple items is equivalent tosomeserial execution, or in other words, that one can
find a total ordering of transactions. The idea oflinearizability [Herlihy and Wing, 1990] is that updates to
an object can be thought of as acting instantaneously at some point duringthe update operation. Both of
these notions are relevant to CFRP due to the fact that wormholes must be built atop data structures that are
both serializable and linearizable.

Although our time dilating wormholes are a novel concept, using non-local communication channels
to facilitate data transfer between multiple threads has been explored previously, as in teleport messaging
[Thies et al., 2005]. However, teleport messaging is designed particularly for parallelized stream programs
while CFRP is designed for asynchronous communication.

Reactive Concurrency

CFRP can be seen as an instance of a Globally Asynchronous Locally Synchronous (GALS) system [Chapiro,
1984]. Work on GALS systems tends to be in the realm of de-synchronizing synchronous programs to work
on asynchronous architectures without sacrificing determinism or synchronous semantics [Sangiovanni-Vincentelli et al.,
2000, Benveniste et al., 1999]. The design of CFRP was not led by architecture but rather by embracing the
forms of computation introduced by asynchrony without allowing them to overwhelm the fundamental ab-
straction of FRP. The wormhole communication channel, which dilates data movingthrough it rather than
being a typical FIFO queue, exemplifies this difference.

A related idea is that of synchronous programming with multiple clocks [Berry and Sentovich, 2001],
which relies on the idea that clocks tick and that these ticks can be used as synchronization points. This idea
of ticks forces an inherent discreteness which CFRP does not. AlthoughCFRP cannot fully resynchronize
two asynchronous processes, it can express continuous signals as well as discrete ones.

Another way to handle multiple clock rates is to use a clock calculus of multiple static clock rates with
sampling between them as necessary, as first seen in Lustre [Caspi et al., 1987]. This has more recently been
embedded in strongly typed functional languages (e.g. Euterpea [Hudak, 2014], Lucid Synchrone [Pouzet,
2006]) by leveraging the type system and type inference.

Parallel FRP [Peterson et al., 2000] allows concurrent signal processing by allowing multiple threads to
perform the same function on a stream of inputs. The by-product of this design is that the ordering of events
on that stream may not be preserved in the output stream. Although CFRP preserves the ordering of streams
by default, we can achieve a similar non-preserving behavior in CFRP with event streams by asynchronizing
functions and gathering their results when they are ready. Thus, if one event takes a long time to process, it
will not hold up the rest of them.

Although not explicitly concurrent,Elliott [2009] presents an FRP implementation that makes use of

9

concurrency “under the hood” with anunambiguous choiceoperator. While this may enhance performance,
it does not actually provide a method for asynchronous programming.

Elm [Czaplicki and Chong, 2013] is an asynchronous FRP language for creating GUIs. It provides built-
in asynchronizing capabilities similar to ones that can be built in CFRP, but it does not provide access to
the lower operators (e.g. wormholes, etc.) that would enable users to build their own custom concurrency
operators.

1.4 More Uses for Wormholes

Wormholes will be discussed in much more detail later, but it is worth pointing outthat they have many uses
beyond being a means of non-local communication between asynchronousprocesses. To consider this, we
will look at how wormholes must behave when both the whitehole and blackholeare in the same process.

As mentioned, a wormhole applies a time dilation over its data. The primary use for this is to allow data
to be converted between two time streams as it is communicated between processes, but the dilation will
occur even if both ends of the wormhole are in the same process. In this case, the dilation will appear as a
unit delay. In a discrete-time context, this would be a delay of the smallest unit of time, and ina continuous
model, it would be an infinitesimal delay, or a delay of change in time as that change approaches 0. This
means that if the whitehole and blackhole are composed together in sequence, the resulting structure will
act as adelayoperator. One implication of this is that wormholes are strictly causal entities, in which the
output of the whitehole is based on inputs to the blackhole that are strictly fromthe past.

More interestingly, one can consider the result of composing the blackholeto the whitehole. Of course,
this would seemingly be a vacuous signal function, but with a suitable signal function between the two, we
create a simple, causal feedback loop. Indeed, with wormholes in the language, one can typically forego the
classic arrow looping mechanisms altogether in favor of the strictly causal looping of wormholes.

In total, this means that we can allow feedback and state within our signal functions while maintaining
causality.Krishnaswami et al.[2012] also explore causality at the type level. They describe a language that
uses non-arrowized FRP yet still manages to restrict space-leaks statically. This language seems somewhat
more expressive than ours as it allows a more generic loop operator, butit is not clear whether it can be
easily adapted to allow mutation or other side effects.

10

Chapter 2

Background

2.1 Arrows

2.1.1 Signal Processing

Programming with AFRP is a lot like expressing signal processing diagrams. Where signal processing
diagrams have lines, AFRP hassignals, and where diagrams have boxes that act on those lines, AFRP has
signal functions. These signals can represent either continuously-defined time-varyingvalues or streams of
discrete events.

Because AFRP is based on arrows, we can use Paterson’sarrow syntax[Paterson, 2001] to make pro-
gramming with it easier. For example, we can turn this simple signal processing diagram:

sigfun xy

into just as simple a code snippet:

y← sigfun−≺x

In this example,sigfunis a signal function that takes the input streamx and produces the output streamy.
We will use Haskell’s arrow syntax and operators to express code examples. Thus, the above code

fragment cannot appear alone, but instead must be part of aproc construct. The expression in the middle
must be a signal function, whose type we write asα β for some typesα andβ . The expression on the
right may be any well-typed expression with typeα , and the expression on the left must be a variable or
pattern of typeβ .

The purpose of the arrow notation is to allow the programmer to manipulate the instantaneous values of
the signals. For example, the following is a definition forsigfunthat integrates a signal and adds one to the
output:

sigfun= proc x→ do
y← integral−≺x
returnA−≺y+1

The notation “proc x→ do ...” introduces a signal function, binding the namex to the instantaneous values
of the input. The second line sends the input signal into an integrator, whose output is namedy. Finally, we
add one to the value and feed it into the signal functionreturnA, that returns the result. The last line of this
notation has no binding component—instead, whatever value is produced in the last line is returned as the
output stream.

11

arr :: (α → β)→ (α β)
first :: (α β)→ ((α ,γ) (β ,γ))
(>>>) :: (α β)→ (β γ)→ (α γ)
(|||) :: (α γ)→ (β γ)→ ((α +β) γ)
loop :: ((γ ,α) (γ ,β))→ (α β)
delay :: β → (β β)

Figure 2.1: The types of the arrow operators.

Of course, one can use arrows without Haskell’s arrow syntax. Arrows are made up of three basic
operators: construction (arr), partial application (first), and composition (>>>). Furthermore, we extend our
arrows with choice (|||) [Hughes, 2000] to allow dynamic control flow, looping (loop) [Paterson, 2001] to
allow value-level recursion, and delay (delay). The types of these operators are shown in Figure2.1.

For example, the signal functionsigfundefined earlier can be written without arrow syntax as follows:

sigfun= integral>>>arr (λy. y+1)

Note thatreturnA is defined simply asarr id, which is why it is used for clarity to return values in the last
line of arrow syntax but is omitted from the above definition ofsigfun. In later chapters, we will also make
use of the functionconstA:: β → (α β), which takes one static argument and returns a signal function
that ignores its input stream and returns a constant stream of the given value.

Events and Event Streams

The classical interpretation of a signal of typeα is that it is a function from time toα defined for all points
in time. We call this acontinuoussignal. However, we frequently require the ability to define a signal that
has values at only discrete points in time and is undefined elsewhere. Theseso-calledevent streamsare
represented by encapsulating the signal’s type with an option type. We will use the following:

data Eventα = Eventα | NoEvent

Note that we are overloading the nameEventsuch that it is both the general type as well as the constructor
for an event. Thus, any signal that has typeEventα is defined when it provides anEventand undefined
when it providesNoEvent.

We will further make use of the fact thatEventis a functor in the obvious way and freelyfmapfunctions
overEventvalues.

2.1.2 Strictly Causal Looping

Functional reactive programming itself does not need to be causal. That is, values along a signal can, in fact,
depend on future values. Of course, in real-time systems, causality is forced to be preserved by the nature
of the universe. For example, a program’s current output cannot depend on a user’s future input. Thus, in
the world of effectful FRP, we limit ourselves to causal signal functions.

The main impact of this limitation has to do with fixed points and looping in the signal function domain.
We restrict signal functions so that they cannot perform limitless recursion without moving forward in time.
That is, all loops must contain a delay such that the input only depends on past outputs. We call thisstrictly
causal looping.

12

We use thedelayoperator as an abstract form of causal computation1:

delay:: a→ (a a)

Based solely on the type, the current output ofdelay icould depend on the previous, current, or even future
inputs; however, the typical definition (and the one that we will use) is as a unit delay operator2, and as such,
the current output would depend on only the previous inputs. Used in tandem with the arrowloop operator
from Figure2.1, one can define strictly causal loops:

dLoop:: c→ ((c×a) (c×b))→ (a b)

ThedLoopoperator takes an initial value for the looping parameter, which will update in timebut always be
slightly delayed. Notice that whendLoopis given the simple swapping function (λ (x,y).(y,x)) as its second
argument, it reduces to an instance of thedelayfunction acting as a unit delay.

2.1.3 State via loop and delay

A key component of FRP systems (AFRP included) is the ability to perform stateful computation. For
example, Yampa includes theintegral function that integrates its input signal, a process impossible without
some form of internal state.

Although stateful signal functions can be achieved in a variety of ways, we follow Liu et al. [2011] in
the use of thedelayoperator along withloop (or equivalently, thedLoopoperator defined above). In this
model, we use the loop as a feedback mechanism, allowing an auxiliary output containing the state to be fed
back as an input, and we use the delay to prevent an infinite feedback loop. Indeed,Liu et al. [2011] even
demonstrate that in a fixed rate, discrete time system,integralcan be defined using this method:

integral= proc x→ do
rec v← delay0−≺v+dt∗x
returnA−≺v

Note here that therec keyword in arrow syntax invokes theloop operator and that we assumedt is a global
time step.

2.1.4 Switch

As discussed in the introduction, the ability to dynamicallyswitchone signal function for another during
the execution of a program is a staple of most FRP systems. Considering thatone of our primary goals is to
show an alternative to switching, here we will describe switch’s capabilities.

The idea of switching was introduced along with the earliest models of FRP [Elliott and Hudak, 1997].
These non-arrowized FRP implementations had the ability to sequence periodsof signal function execution,
a process that is inherently monadic in nature. However, the move to the arrow abstraction would not allow
this behavior, and to prevent any loss in expressiveness,Nilsson et al.[2002] introduced theswitchfunction
in Yampa.

Actually, Yampa includes some 14 different variations on the switch function ranging from the simplest
switch to the recurring, parallel, batch-input, decoupled switch. We will briefly examine three of these
switchers.

1Although thedelayoperator has been around for some time,Liu et al. [2011] introduced the concept of this operator as the
basis of causal computation. That said, they referred to it asinit.

2As mentioned in the introduction, we use the idea of a unit of time to refer to the smallest amount of time when in a discrete-time
context and an infinitesimal delay in a continuous one.

13

Switch

The most basic switch function has the following type:

switch :: (α (β ,Eventγ))
→ (γ → (α β))
→ (α β)

The first argument is the initial signal function that the result will behave as. When that signal function
produces an event, the switch will use the data from that event along with its second argument to produce a
new signal function. From then on, it will behave as that new signal function.

Recurring Switch

A slightly more advanced version of switching allows for the signal function tobe switched out more than
once:

rSwitch :: (α β)
→ ((α ,Event(α β)) β)

Here, the resulting signal function takes an event stream of signal functions along with the stream of inputα
values. When the event stream contains an event, it switches into the signalfunction contained in the event.

Parallel Switch

The parallel version of switch is significantly more intimidating from its type signature and likewise is also
quite powerful:

pSwitch :: Functor col
⇒ col (α β)
→ ((α ,col β) Eventγ)
→ (col (α β)→ γ → (α col β))
→ (α col β)

The parallel switcher works oncollectionsof signal functions, where a collection must be aFunctor(perhaps
a list). First, it is given an initial collection of signal functions to run and a signal function that produces
update events. The third argument takes the current collection of signal functions and the value from an event
in order to produce a new collection of signal functions. In total,pSwitchwill run every signal function in
its collection and produce as output a collection of their results.

Note that any one of these versions of switch is strong enough to implement theothers. The reason for
Yampa’s many varieties of switch is not due to power differences, but rather due to ease of use. That is, for
example, usingswitchto do an operation that requiresrSwitchis tedious, so both varieties are provided.

2.2 Basic Language

In future chapters of this report, we will create new languages to demonstrate new features and design
paradigms that we introduce. These languages all share a common basis, or ancestor language. We present
this basic language here.

We specify our language in a similar manner toLindley et al.[2010]. We start with the lambda calculus
extended with product and sum types and general recursion, and when necessary, we will refer to it as
L {→×+}. We show the abstract syntax for this language in Figure2.2. We letτs range over types,vs over
variable names,es over expressions, andΓs over environments. A type judgmentΓ ⊢ e :: τ indicates that
that it follows from the mappings in the environmentΓ that expressione has typeτ. Sums, products, and
functions satisfyβ - andη-laws. This is a well established language, so rather than repeat the typingrules,

14

Typ τ ::= () unit
| τ1× τ2 binary product
| τ1+ τ2 binary sum
| τ1→ τ2 function

Var v
Exp e ::= v variable

| (e1,e2) pair
| fst e left-pair projection
| snd e right-pair projection
| left e left-sum injection
| right e right-sum injection
| case(e;x1.e1;x2.e2) case analysis
| λv.e abstraction
| e1 e2 application

Env Γ ::= v1 :: τ1, ...,vn :: τn type environment

Figure 2.2: The abstract syntax ofL {→×+}.

it suffices to say that they are as expected. We also borrow an expectedoperational semantics that utilizes
lazy evaluation.

Note that theEventdata type we defined earlier is equivalent to the typeα +(), but we use the event
notation for readability.

15

Chapter 3

Choice and Settability

3.1 A Case for Non-Interfering Choice

We will begin this section by exploring one of the main uses of switchers: as a method to allow the dynamic
starting and stopping of signal functions. We will present our first-order alternative and then demonstrate it
in a few practical settings.

3.1.1 Pausable Signal Functions

At a basic level, switch is often used to improve performance of an AFRP program. Without switch, signal
functions will last forever, and this typically means that they will compute future values indefinitely. Using
switch, one can “turn off” signal functions that are not currently necessary and even turn them back on if
they are required again in the future.

For example, consider the scenario where we would like to integrate a streamonly when a certain
condition holds. Näıvely, we can write the following program:

integralWhenNaive :: (Double,Bool) Double
integralWhenNaive= proc (i,b)→ do

v← integral−≺ i
vprev← delay0−≺v
let v∆ = v−vprev

rec result← delay0−≺ if b then result+v∆ elseresult
returnA−≺ result

This program will only update the result when the boolean isTrue, but it is still unsatisfying that the integral
is being computed at all when it is not being used. If integral were instead acostly signal function and the
boolean were usuallyFalse, this could be seriously problematic to performance.

In cases like this, switch can be employed to prevent the integral from running when it is not needed:

integralWhenSwitch:: (Double,Event Bool) Double
integralWhenSwitch= proc (i,eb)→ do

rec v← rSwitch(constA0)−≺ (i,
fmap(λb→ if b

then (integral>>>arr (+v))
else (constA v)) eb)

returnA−≺v

16

For this version, we modified the type to make it more amenable to switching by converting the streaming
boolean value to an event stream that will send events only when the streamwould change fromTrue to
Falseor back. Internally, we use therSwitchfunction that we introduced in Section2.1.4to switch between
integral and a constant function. Each time we switch intointegral, it is fresh and has no history from the
last time we were usingintegral, so we additionally compose it witharr (+v) so it can maintain its history.

3.1.2 Non-interfering Choice

Although the above example is a fairly common use for switch, careful examination of the problem reveals
that switch is far more powerful that necessary. That is, while switch allows us to dynamically incorporate
new signal functions into the running computation, here, we are simply making achoiceof whether to run a
component signal function based on a dynamic value. Our solution to this problem will thus be built around
arrow choice, so we will begin by examining it more closely.

The general choice operator we use (||| in Figure2.1) can actually be built from a simpler component:

left :: (α β)→ ((α + γ) (β + γ))

whereleft f calls f when the input signal containsLeft values and acts as the identity function otherwise.
With theleft function, we can also define an analogousright function and then use the two together to define
|||.

Choice also comes with a set of laws that we show in Figure3.1. For us, the most notable law is the
exchangelaw, which acts as a weak form of commutativity betweenleft functions andright functions. One
may ask why choice does not demand full commutativity (i.e.left f >>> right g = right g>>> left f), and
in the context of signal processing, this question is very sensible. After all, it seems intuitively obvious that
either theleft function or theright function will run, but in no case will both run. However, because arrows
can have effects regardless of their dynamic inputs, and the compositionalorder of these effects can alter
the program itself, choice is weakened. It is precisely this leniency that makes switching necessary in cases
such as the above example.

In order to give choice the extra power it needs to be an adequate replacement for switch, we strengthen
theexchangelaw into the more powerful:

Non-interference arr Right>>> left f = arr Right

Indeed,non-interferenceimplies exchange and even commutativity as it is stronger than either (see Ap-
pendixA.1 for details). It states that once the streaming value is tagged as aRight value, then it will not
be applicable toleft f , and so it should behave as if theleft f is not even there. Thus, by including the
non-interference law for choice, we assert that either signal functions cannot have static effects or that the
choice operation has the power to dynamically choose which effects to perform.

We can see this in practice by considering a concrete example. Let’s consider the case of the signal
function:

left integral>>> right integral

and we supply it with a signal that varies betweenLeft1.0 andRight2.0 every second (that is, on the interval
[0.0,1.0), the signal isLeft 1.0, on [1.0,2.0), it is Right1, and so on). Examining the output would reveal
the following pattern:

[0.0,1.0) : Left0.0− Left1.0
[1.0,2.0) : Right0.0−Right2.0
[2.0,3.0) : Left1.0− Left2.0
[3.0,4.0) : Right2.0−Right4.0

In other words, when the “left” integral is inactive, it turns off, and behaves as if no time passes. The same
is true for the “right” integral.

17

Extension left (arr f) = arr (left f)
Functor left (f >>>g) = left f >>> left g
Exchange left f >>>arr (right g) = arr (right g)>>> left f
Unit f >>>arr Left = arr Left>>> left f
Assoc. left (left f)>>>arr assoc+ = arr assoc+>>> left f

assoc+ (Left (Left x)) = Left x
assoc+ (Left (Right y)) = Right(Left y)
assoc+ (Right z) = Right(Right z)

Non-interference arr Right>>> left f = arr Right

Figure 3.1: The standard laws for arrow choice with our new non-interference law below.

3.1.3 Pausable Signal Functions Revisited

With non-interfering choice in our arsenal, we can define a new version of integralWhenin an even more
intuitive and straightforward way:

integralWhenChoice:: (Double,Bool) Double
integralWhenChoice= proc (i,b)→ do

rec v← if b then integral−≺ i
else returnA−≺v

returnA−≺v

Because we are not actually switching out of theintegral signal function, it will retain its state internally.
When it is executed, it will calculate and add the latest delta of integral, and otherwise, it will simply wait.

3.1.4 A Single First-Order Switch

The most basic switching operation is to non-recursively switch out one signal function for another dy-
namically. For example, we could write a simple guessing game that accepted an event stream of guesses,
and when the correct answer was provided, it would switch into a signal function that ignored its input and
declared that the game was over:

guess:: Event Int ()
guess= switch(arr f) (λ t→ label t)

where f (Event i)|(i == 3) = ((), Event“You Win!”)
f = ((), NoEvent)

wherelabel is a signal function widget that ignores its streaming input and displays the text it was given
as its static argument. Note that we are using the plain, non-recurring, non-parallel version of switch that
we presented in Section2.1.4. In guess, when the event containing 3 is processed, the string “You win!” is
given to the label, and the guessing is switched out for that label.

18

runNTimes:: Int→ (α β)→ ([α] [β])
runNTimes0 = constA[]
runNTimes n sf= proc (b : bs)→ do

c← sf−≺ b
cs← runNTimes(n−1) sf−≺ bs
returnA−≺ (c : cs)

Figure 3.2: The implementation ofrunNTimesusing structural recursion.

For this example again, switch is too strong. Notice that the argument given to the switched-in signal
function is not itself a signal function. In fact, it’s just a constant! We can rewrite this with non-interfering
choice:

guesschoice:: Int ()
guesschoice= proc i→ do

rec haveWon← delay False−≺haveWon|| (i == 3)
if haveWonthen label “You Win!” −≺ ()

else returnA−≺ ()

Note that we changed the input stream to a continuous stream as opposed toan event stream simply to make
the example clearer.

Reacting to dynamic events

The above versions ofguessare quite primitive, and although we use switching in the first one, we are
far from using its full power. We can make the example slightly more complex by adding an additional
component to the input such that the program is actually reactive:

guess′ :: Event(Int,String) ()
guess′ = switch(arr f) (λ t→ label t)

where f (Event(i,s))|(i == 3) = ((), Event s)
f = ((), NoEvent)

In guess′, the text to put in the label is no longer static and instead is part of the guess event, and in its current
form, switching is a necessity as it is the only way to provide the dynamically streaming string to the static
label function. However, we could once again lift the need for switching if we could redesign the label to
instead take animpulse. An impulse is a one time event that initializes a signal function, so in this case, the
type for labelwould change fromString→ (α ()) to (Event String) ().

With an impulse driven label widget, we can once again convert theguess′ function to a switch-free
alternative:

guess′choice:: (Int,String) ()
guess′choice= proc (i,s)→ do

rec haveWon← delay False−≺haveWon|| (i == 3)
let imp= if not haveWon&& i == 3

then Event selseNoEvent
if haveWonthen label−≺ imp

else returnA−≺ ()

19

runDynamic:: (α β)→ ([α] [β])
runDynamic sf= proc lst→ do

caselst of
[] → returnA−≺ []
(b : bs)→ do c← sf−≺b

cs← runDynamic sf−≺bs
returnA−≺ (c : cs)

Figure 3.3: The implementation of the choice-basedrunDynamicfunction using arrowized recursion.

3.1.5 Arrowized Recursion

As we have shown in the previous two examples, there is a direct usage fornon-interfering choice, but the
non-interference law also gives us a less obvious benefit. By restrictingthe arrow effects to only one branch,
we open the door to the possibility of a new kind of recursion.

Typically, arrows can perform recursive behaviors in one of two ways. First, arrows can use theloop
functionality to perform a value level recursion, or a sort of fix point recursion. After all, one of the laws for
loop is:

loop (arr f) = arr (λ b→ fst (fix (λ (c,d)→ f (b,d))))

Second, there isstructural recursion. Structural recursion happens when the host language’srecursion
is used to create an arrow in a recursive way. For instance, we might have a function like:

runNTimes:: Int→ (α β)→ ([α] [β])

When defining this function, we use Haskell’s conditional syntax to recur on the value of the first argument:
while it is greater than zero, we run the signal function and recur, and when it is equal to zero, we return
a constant stream of the empty list. We show a definition ofrunNTimesusing this form of recursion in
Figure3.2.

A key frustration with structural recursion is that the recursive argument is static as opposed to streaming.
Thus, structural recursion is often performed in tandem with higher-order switching to allow a streaming
value to be used in place of the static argument.

One may be inclined to perform recursion using arrow choice, but with the standard choice laws, this
can be problematic. In general, if both branches of an arrow choice statement perform effects, then both of
those effects must be applied statically regardless of the dynamic streaming values provided. In other words,
recursion within arrows, even when guarded by arrow choice, can loop indefinitely in certain implementa-
tions.

The non-interference law forces us to delay effects until the dynamic values are ready, which in turn
allows us to use arrow choice for recursion. We call this new form of recursionarrowizedrecursion. In
practice, it is very similar to structural recursion except that instead of using the host language’s conditional,
we use arrow choice.

With arrowized recursion, we can write a function similar to the aboverunNTimesbut that needs no static
argument to perform its recursion. In fact, we can make the input stream of lists the recursive argument and
eliminate the need for an “N” altogether. We call this functionrunDynamicand show it in Figure3.3.

When used,runDynamichas exactly the behavior one would expect of using standard arrow choice.
That is, any signal functions that are not in currently active branchesare stopped. For example, if we were

20

to runrunDynamic integralwith a signal defined as:

[0.0,1.0) : [1.0]
[1.0,2.0) : [2.0,3.0]
[2.0,3.0) : [1.0]
[3.0,4.0) : [2.0,3.0,4.0]

then we would see the following results:

[0.0,1.0) : [0.0]− [1.0]
[1.0,2.0) : [1.0,0.0]− [3.0,3.0]
[2.0,3.0) : [3.0]− [4.0]
[3.0,4.0) : [4.0,3.0,0.0]− [6.0,6.0,4.0]

It should be noted that using arrowized recursion creates new signal functions by need (i.e. the new
integral that is created att = 3 above), but once they are created they are kept around in perpetuity. This is
discussed again in Section3.6.2.

3.1.6 Dynamic GUI

One power of switch, showcased particularly inFruit [Courtney and Elliott, 2001a], is the ability to allow a
dynamic number of signal functions to execute. That is, by default, arrows have a fixed structure, and the
streaming values moving through an AFRP program cannot affect that structure. However, switch allows
one to dynamically alter the arrow at runtime based on the streaming values.

For example, one may desire a GUI that gathers the names of an unknown group of people. If the size of
the group were fixed or at least known at compile time, then this is achievable trivially with arrows, but if the
size is a parameter that is filled in by the user of the GUI, then standard arrows are stymied. One approach
is to use a switching mechanism.

For this example, we will assume a few GUI widgets:

label :: String→ (() ())

getInteger :: () Int

getIntegerE:: () Event Int

getName :: () String

Note that we have both a regular and event-based version ofgetInteger: the event-based one, which produces
an event each time the value changes, is useful for our example with switch,and we will use the regular one
with choice.

We can use these widgets in combination with therSwitchfunction to make our GUI:

getNames:: () [String]
getNames= proc ()→ do
← label “How many people?”−≺ ()

en← getIntegerE−≺ ()
rSwitch(constA[])−≺ (repeat(),

fmap(λ n→ runNTimes n getName) en)

where therunNTimesfunction is the one we discussed in the previous subsection (that uses structural recur-
sion to run the given signal function the given number of times, as shown in Figure3.2).

21

The above definition ofgetNames, although correct, is using the higher order nature of switch when it
is not truly necessary. Switching gives the power to substitute in any new signal function for the currently
running one, but here, the nature of the new signal function is already known: it will be some number of
getNamewidgets. Because this fact is known at compile time, we can use arrowized recursion instead to
create a simpler, switch-free GUI.

getNames:: () [String]
getNames= proc ()→ do
← label “How many people?”−≺ ()

n← getInteger−≺ ()
runDynamic getName−≺ replicate n()

BecauserunDynamicuses arrow choice to do arrowized recursion, we do not need to use any switching.

3.2 A Case for Settability

In this section, we will explore a second main use of switchers: the ability to start a signal function mid-
computation with no prior state. Once again, we will begin with a simple yet canonical example before
describing our first-order alternative and some further usage examples.

3.2.1 Restartable Computation

Although pausing signal functions is useful (as in theintegralWhenexample of Sections3.1.1and3.1.3),
there are times when we really do want to restart a signal function, resettingits state to its initial defaults. In
fact, with switching, this is even easier than pausing considering that switch naturally starts its new signal
function from the beginning.

For instance, let us consider the scenario where we would like to take the integral of a stream, but at
any moment, we may be given an event that indicates that we should reset theintegral’s accumulation to
its initial default. With switch, this is actually trivial: we simply lift theintegral function into the resetting
event, and send everything into a recurring switcher:

integralResetSwitch:: (Double,Event()) Double
integralResetSwitch= proc (i,e)→ do

rSwitch integral−≺ (i, fmap(const integral) e)

Without switch, this seems like a tough problem, and nothing about non-interfering choice lends any help.
One idea is to try to simulate the behavior of a restart without actually touchingintegral itself. That is,

because the function we are lifting is just an integral, we could take a snapshot of its output at the restarting
moment and then continuously subtract that value from future outputs:

integralResetBasic :: (Double,Event()) Double
integralResetBasic= proc (i,e)→ do

o← integral−≺ i
rec k← delay0−≺k′

let k′ = if isEvent ethen o elsek
returnA−≺o−k

Although this is a valid solution to this particular situation, a similar solution cannot always be found. To do
so requires a function that point-wise transforms the output to what it wouldhave been if the signal function
were started at the designated point in time, and this function must be computablefrom the output from that
point in time forward.

22

3.2.2 Settability

At this point, the idea of lifting a signal function into the event stream, as we did inintegralResetSwitch
above, should seem unnecessary. Indeed, we are not even switching into some dynamically given new
signal function but rather just using a new instance of the same signal function again. Rather than switching,
our first-order approach is to develop a notion of signal functionsettability, or a way to change the internal
state of a signal function at arbitrary points.

Because we are dealing with state, we will begin with an even more primitive example and examine the
delayoperator directly. At first glance, it seems to suffer from the same problem asintegral—thedelaywill
always output old values, so what can we do to reset it? However, modifying it to be resettable requires only
the addition of a single input event stream:

resettableDelay:: β → ((β ,Event()) β)
resettableDelay i= proc (b,e)→ do

out← delay i−≺b
returnA−≺ caseeof

NoEvent→ out
Event() → i

WheneverresettableDelayis given an event, it will immediately output its initial value again, essentially
behaving as if it has only just started. In fact, we can take this one step further and construct a version of
delaythat can be set to any value of our choosing:

settableDelay:: β → ((β ,Event(Maybeβ)) β)
settableDelay i= proc (b,e)→ do

out← delay i−≺b
returnA−≺ caseeof

NoEvent → out
Event Nothing→ i
Event(Just s) → s

With settableDelay, the event stream can potentially carry a new value to set the internal state,and if there
is no value, we perform a reset. It may seem superfluous to have an event of an option, but adding the ability
to set the state does not make resetting the state obsolete.

A fortuitous bonus to this function is that, in addition to being able to set the state, we can also capture
the current state. That is, because the input stream is necessarily settingthe new current state, it can also be
made to provide it directly. Thus, we can usesettableDelayto both “store” and “load” state.

General Settability

Although a settable version ofdelay may be useful on its own, it would be much more useful to have
any arbitrary signal function be settable. However, this would require manually changing every internal
delayoperator to its settable alternative and then properly routing the state-setting events to the appropriate
places. Additionally, if capturing the state at a given moment were important, allof the inputs to thedelay
functions would also need to be grouped and appropriately routed to the output. This would be exceptionally
cumbersome and not at all feasible. What we want is a function like:

settable:: (α β)→ ((α ,Event State) (β ,State))

that will automatically take a signal function and allow us to both pass in an optional new state as well
as save its current state. For now, we will assume that theStatetype can encode an arbitrary type (along

23

settable:: (α β)→ ((α ,Event State) (β ,State))

Identity

≈

Uniformity

≈

Default

≈

Figure 3.4: Thesettablefunction and its laws.

with a special “reset” value), and we will discuss it in more detail when we discuss the implementation of
settability in Section3.4.2.

This settablefunction should hold to certain principles of behavior. For example, if it is never provided
with a state, then it should do nothing. Similarly, if the state it produces is used to set it, then there should
be no observable difference in behavior. Additionally, there should be aparticular value ofStatethat acts
as areset(in our settableDelayfunction from earlier, this wasEvent Nothing). Thus, if one were to feed a
constant stream of reset states, the output would always use the default values. We declare these principles
as laws of behavior forsettableand show them diagrammatically in Figure3.4.

In fact, with an appropriate code transformation, any arrow can be extended with asettablefunction. We
will explore the details of this transformation in Section3.4, but for now, it suffices to state that it is possible
and available in our examples.

3.2.3 Restartable Computation Revisited

With thesettablefunction, definingintegralResetis just as trivial as with switch:

integralReset:: (Double,Event()) Double
integralReset= proc (i,e)→ do
(v,s)← settable integral−≺ (i, fmap(const reset) e)
returnA−≺v

24

Rather than lifting a dynamic signal function to the signal level just to be activated by switch as we did
previously, we lift only a reset signal. The difference in the amount of code between this function and
integralResetswitch is negligible (it basically comes down to ignoring the state output of the settable signal
function), but the conceptual difference is quite important: rather than needing to stop a currently running
signal function to replace it with a new, fresh instance of itself, it is possibleto refresh it while leaving it
active.

3.2.4 Freezing and Duplicating

This settablefunction has applications beyond just resetting arbitrary, stateful signalfunctions. By separat-
ing the state from the signal function, we are essentially separating the current behavior from the structure.
That is, thesettablefunction gives us the power tofreezesignal functions.

Typically freezing a signal function is thought of as a higher-order operation achievable only with a
switch operator. Specifically, freezing is the process of stopping a running signal function mid-execution
and providing it as a piece of data to reuse. Later, it can be resumed by using a switcher to reintegrate it into
the structure of the program.

Rather than providing a copy of itself, a function made settable will provide a stream of itsessence(i.e.
its current state), which can then be reinserted at any time later. It is worth noting that this does not provide
any advantage over switch in terms of resources or memory, but it does provide the ability to freeze and
resume without actually needing switch in the language.

Example

For this example, we will construct a GUI for drawing. The main window will feature a drawing pane,
but the user will be able to create new panes and switch between them. When anew pane is created, it is
automatically populated with a copy of whatever is currently on the current pane.

For this example, we will assume a few widgets:

drawing :: () ()

choosePane:: () Int

button :: String→ (() Event())

The drawing widget is a stateful, effectful widget that provides a canvas and allows the user to draw; the
choosePanewidget returns anInt stream that represents the currently selected pane; and thebuttonwidget
takes a static label and produces an event stream that indicates when the button has been pressed.

With these widgets, we can create the GUI we described (shown in Figure3.5). The state for the GUI
is kept as a list of drawing states, initialized in the sixth line as a one element list containing aresetstate.
This initial list describes a GUI with a single pane that has a blank drawing canvas. When a user wishes to
duplicate the current pane, the current state is added to the list allowing the GUI to “save” the original pane
while providing a duplicate state for the new one. The key here is that insteadof keeping track of different
instances of the signal function, each with its own state, we keep track of multiple states themselves and use
them with a single signal function.

To make a version of this GUI with switching is surprisingly complicated. Instead of keeping track of
multiple states for the singledrawing widget, we keep a collection of multipledrawing widgets that we
can switch between as necessary. The only version of switch that provides this information is the parallel
pSwitch, which processes collections of signal functions. Therefore, we will start by using concepts bor-
rowed fromGiorgidze and Nilsson[2008] for the practical use of pswitch. However, because we are only
actually running a singledrawingwidget at a time, we are forced to use some clever engineering:

25

gui :: () ()
gui= proc ()→ do

edup← button“Duplicate pane?”−≺ ()
edel ← button“Delete pane?”−≺ ()
i← choosePane−≺ ()
rec stateLst← delay[reset]−≺ stateLstnew

((),statenew)← settable drawing−≺ ((),stateLst!! i)
let stateLstnew= case(edup,edel) of

(Event(),)→ set i stateLst statenew++[statenew]
(NoEvent,Event())→ delete i stateLst
→ set i stateLst statenew

returnA−≺ ()

Figure 3.5: The implementation of the GUI from Section3.2.4.

• First, in order to satisfy pswitch’s requirement for a collection, we create anew indexed list data type
IList. Applying fmapover it applies the given function only to the currently indexed element.

• We need an event every time the user selects a different pane, and we achieve this by using the
helper functionunique, which converts a continuous stream to a discrete one by providing an event
containing the value of the stream whenever it changes.

• We need the switching to be repeatable, so we callpSwitchrecursively.

The result is shown in Figure3.6.

3.3 An Alternative to pSwitch

Here, we will pull together the ideas of both settability and non-interfering choice that we have highlighted
in the previous sections to present a high power yet first-order versionof a parallel switcher.

As we mentioned in Section2.1.4, parallel switchers allow for whole collections of signal functions to
be managed and switched in or out at once. One example of the usefulnessof this kind of switcher can be
seen in the musical realm where one might have a program that plays music withsoftware “instruments”
that are actually themselves signal functions. The music is given as a sequence of “On” and “Off” events,
where the “On” events provide the instrument to play and some initializing data about what note to play, and
the “Off” events tell which instrument to stop:

data NoteEvt=NoteOn UID Instr InitData
| NoteOff UID Instr

type Instr= InitData→ (() Sound)

sumSound:: [Sound] Sound

Note that theUID type is a unique identifier that is used to connect a givenNoteOnevent with itsNoteOff
counterpart, and theSounddata type represents the sound that an instrument produces. ThesumSoundsignal
function is for summing dynamic lists of sounds together.

26

data IList a= IList Int [a]
instanceFunctor IListwhere

fmap f (IList i lst) = IList 0 [f (lst !! i)]

guiswitch :: () ()
guiswitch= proc ()→ do

edup← button“Duplicate pane?”−≺ ()
edel ← button“Delete pane?”−≺ ()
ei ← unique>>>choosePane−≺ ()
pSwitch initialSFs(arr test) k−≺ (edup,edel,ei)
returnA−≺ ()
where initialSFs= IList 0 [drawing]

test((NoEvent,NoEvent,NoEvent),) = NoEvent
test(inp,) = Event inp
k (IList iprev lst)(NoEvent,NoEvent,Event i) =

pSwitch(IList i (set iprev lst (lst !! iprev))) (arr test) k
k (IList i lst)(NoEvent,Event(),) =

pSwitch(IList i (delete i lst)) (arr test) k
k (IList i lst)(Event(), ,) =

pSwitch(IList i (lst++[lst!! i])) (arr test) k
k ilst = pSwitch ilst(arr test) k

Figure 3.6: The implementation of the GUI from Section3.2.4using switch instead of settability.

27

Although we will use the samepSwitchthat we introduced in Section2.1.4, for clarity, we will show its
type signature again, this time with a few of the type variables instantiated for ourexample.

pSwitch:: [UID,() β]
→ (() Eventγ)
→ ([UID,() β]→ γ → [UID,() β])
→ (() [β])

For our collection, we use a mapping ofUID to signal function (which we implement as a list for simplicity),
and we set the input typeα to ().

For this musical example, the initial list of signal functions will be empty, the events to change that list
will be NoteEvts, and the function will use theNoteEvtdata to add or remove signal functions from the list
as necessary:

maestro:: (() Event[NoteEvt])→ (() Sound)
maestro music= pSwitch[] music f>>>sumSound

where f lst [] = lst
f lst (NoteOn u i imp: rst) = f ((u, i imp) : lst) rst
f lst (NoteOff u i: rst) = f (filter ((6= u) . fst) lst) rst

In order to remove our reliance on switch, we need to make a few small changes to the layout of the
problem. First, as we did in Section3.1.4, we will need to change the instruments from functions that take a
“static” initializing argument to functions that take that argument as an impulse. Second, we need to know
statically what the different signal functions are, so we make use of a finitedata type and add one layer of
indirection:

data Instr= Trumpet| FHorn | Trombone| Tuba

type Instrument= Event InitData Sound

toInstrument:: Instr→ Instrument

It is critically important that theInstr type is finite because, due to the fact that choice is not actually
higher order, we need to know exactly whichInstrumentsignal functions can possibly be called. This
technique of representing functions by a first-order data type and then interpreting them later is known as
defunctionalization[Reynolds, 1972, Danvy and Nielsen, 2001] and has been established as a viable method
of converting higher-order functions into first-order ones. Fortunately, in most situations where parallel
switching is used, the possibilities of signal functions are known statically, soa transformation like this one
is not difficult.

With these changes made, we can utilize thepChoicefunction. The idea behindpChoiceis that as long
as we know the possible signal functions that we may use, we can run eachone a dynamic number of times.
So, rather than keep a dynamic list of signal functions, we keep a static list of signal functions and a dynamic
list of signal functionstates. We then use a combination of structural and arrowized recursion: structural
recursion to provide access to each possible signal function and arrowized recursion to allow a dynamic
number of runs per possibility.

The type ofpChoiceis:

pChoice:: Eq key⇒ [(key,Eventα β)]→
([(key,(UID,Eventα))] [β])

and as it is somewhat complicated, we leave its implementation and a more detailed description of its inner-
functioning to AppendixA.2.

28

We can usepChoiceto reimplement our music program without switch:

maestro:: [NoteEvt] Sound
maestro= arr (map f)>>>pChoice lst>>>sumSound

where lst= map(λ i→ (i, toInstrument i)) allInstrs
f (NoteOn u i imp) = (i,(u,Event imp))
f (NoteOff u i) = (i,(u,NoEvent))

whereallInstrs is a complete list of all of theInstrs that might be played. In fact, one notable difference
between this version ofmaestroand the switch-based alternative from earlier is thisallInstrs list: the reason
that we can write this program at all is becauseallInstrscan be defined statically.

3.4 Implementing Settability

As we mentioned in Section3.2.2, we can achieve settability of any arrow with a code transformation. Here,
we will provide a detailed description of the transformation process beforepresenting Haskell code that
implements it.

3.4.1 Design

In essence, the idea of settability is the idea of having access to the internal state of an arrow. Thus, as we
discussed previously, it is encapsulated by a function like:

settable:: (α β)→ ((α ,Event State) (β ,State))

that will automatically take a signal function and allow us to both pass in an optional new state as well
as save its current state. However, in order to achieve this, we will need torewrite the underlying arrow
to support this behavior. Therefore, we will describe a recursive transformation that will provide settable
capabilities to ordinary arrows.

Intuitively, this settability transformation is a simple process of routing state update information in
through the various arrow combinators so that it can be easily accessed by any internal delay operators
and then routing current state data back out through the combinators to the level of thesettablecall. For
each combinator, there is a transformation that achieves exactly this goal; weshow circuit diagrams for these
transformations in Figure3.7and describe them in detail below. Note that we use the notationsf to denote
the signal functionsf after having been transformed, and we assume that theEvent Stateinput stream and
Stateoutput stream are always the lower input and output.

• We will begin at the lowest level by examining thedelayoperator itself. In Section3.2.2, we showed a
design for a settable version of delay, but we need to modify it just slightly in order for it to be general
enough for oursettabletransformation: in addition to taking in anEvent Statestream, it also needs to
emit its currentStateas a stream. This is rather trivial as its current state is identical to its own input
stream, but this is important to the transformation as a whole. Thus, our circuitdiagram shows the
input stream both being sent to the embeddeddelayoperator as well as being duplicated to theState
output, and the output is determined by a case analysis of theEvent Stateinput with data from the
delay’s output.

• The simplest transformation is that of thearr operator, which has no state and should essentially
remain unaffected. In this case, we ignore the inputEvent Stateand return a constant stream of the
null, or reset, state.

29

delay i

arr f

sf1>>>sf2

first sf

loop sf

left sf
(with Right input)

left sf
(with Left input)

Figure 3.7: The circuit diagrams showing the settability transformations for thevarious arrow combinators.

30

• The composition of two functions is a little more interesting. Each of the two composed signal func-
tions may have state, so we need to split the incomingEvent Stateinto two pieces and pass the first to
the first signal function and the second to the second. We gather the resulting states together and join
them into a single output state.

• Applying a partial application (first) is a simple matter of rerouting the state data and the unused input
stream properly.

• Looping is handled similarly to partial application with a simple rerouting of streams.

• The most complicated transformation is for our non-interfering choice’sleft operator. This is because
there are two difficult questions that we must address in designing this transformation. First, in the
case of an inputRight value, the embedded signal function is not executed, so where can we get a
Statevalue for the outputStatestream? And second, again in the case of an inputRightvalue, if we
are given anEvent Statethat requires updating the embedded signal function, how can we get that
event where it needs to go? The way to address both of these questions is toallow the transformed
choice operator to contain some internal state, which we achieve withloopanddelay.

Furthermore, in an effort to clarify the behavior of the transformed choice, we provide two diagrams
to describe its behavior: one that shows how it behaves when given aRight value and the other for
when it is given aLeft value. Thedelays are shared between both diagrams: the upperdelayshould
be assumed to be initialized with aNoEventvalue and the lower with a null, orreset, state value. The
mergefunction is a standard overwriting event merge that favors the left (newlyincoming) event in
the case of two events.

When given aRight input, the input stream is identical to the output stream. TheEvent Stateinput is
merged with the storedEvent Stateand stored once again, thus updating the store with any new setting
events. The outputStateis the stored one.

When given aLeft input, we will execute the embedded signal function. We still merge theEvent State
input with the stored one, but the result goes directly into the embedded signal function, and the store is
instead updated with aNoEvent, indicating that there are no pastEvent States waiting to be delivered.
The output of the transformed, embedded signal function, both the streaming Leftvalue as well as the
outputState, become the output of the overall transformed signal function, but the outputStateis also
stored for potential future use. The storedStatevalue is discarded outright as it is now obsolete.

Setting Switch

Although the stated purpose of this chapter is to develop language constructs to allow us to remove switchers
from FRP, the constructs themselves do not necessarily preclude switching. Indeed, we can extend the ideas
of settability to include switching without much work at all.

We will begin by instead looking at theappoperator from theArrowApplyclassHughes[2000]:

app:: (a b,a) b

This operator is very similar to a switch, but it is notably different in that it treats the new signal function
input as a continuous stream instead of as discretely separate events. This is important because once the
higher-order signal function is used, it is discarded, ready to be replaced at the next moment. This means
that, in essence, there is no sense of state here, which in turn means that making it settable should have
no impact on its behavior. Another way to reach this conclusion is to considerwhat it would mean to set
the state ofapp. Whatever may happen, that state will be immediately overwritten by the streaming signal
function component. Ultimately, for the purposes of settability,app is a pure signal function.

31

rSwitch def

Figure 3.8: The circuit diagram showing the settability transformation for the repeating switcher.

Althoughapp is stateless, switchers are not. However, the above explanation will come in handy as we
consider the case for the moment that switching occurs.

Let us no consider applying the settability transformation to the repeatingrSwitch. In general, the state
of the switcher is the pair consisting of the currently running signal functionand its state. Therefore, the
output state will be a joined state of these two. Because we only see the currently running signal function
when it is supplied as an event, the transformedrSwitchmust keep its own internal state, which we can
implement with a loop and delay. Finally, the input state event must be allowed to overwrite the current
behavior except for when a switching event occurs, in which case thatswitching event takes priority. We
show this all diagrammatically in Figure3.8.

3.4.2 Haskell Implementation

Rather than relying on Haskell’s rewrite rules or Template Haskell, we can perform the entire transformation
with only type classes. Our method involves creating a wrapper for a generic arrow that itself instantiates
the arrow classes. Then, any code that is an arbitrary arrow could justas well be this wrapper.

Thus, our goal will be to concretely define our types and then instantiate thearrow classes using them.
We lay out the process in this section and also note that the code is available online as a Haskell package.1

Data Types

The first type we must choose a concrete representation for is theStatedata type. For a singledelay, the
definition ofStateseems obvious: it is a maybe type of the stored value (just as we saw in thesettableDelay
example from Section3.2.2). One way to extend this to arbitrary signal functions would be to extend the idea
of arrows to include an extra parameter that indicates what that arrow’s state is. Then, when we compose
two arrows, we combine the two component states into one joined state. Despite being cumbersome, this
becomes especially challenging in the presence of arrowized recursion,where we would need some sort
of coinductively defined state type to allow for type unification. Indeed, thisshould be technically possible
using Haskell’s type families and other features, but the complexity would detract from our point. Therefore,
to keep the types simple, we make use of Haskell’sDynamicdata type to store arbitrary state information
from individualdelayfunctions.2 Also, rather than use an auxiliary option type to represent a default state
or an absence of state (as we did in thesettableDelayfunction in Section3.2.2), we will build this directly
into the type.

We show the definition of theStatedata type along with the few helper functions we need in Figure3.9.
Note that becauseNoStaterepresents an absence of state information, trying to split it returns a similar lack
of information.

1hackage.haskell.org/package/SettableArrow
2Technically, usingDynamicin this way enforces aTypeablerestriction to the types of the individual state components, but this

is of little consequence.

32

data State= NoState
| DState Dynamic
| PairState State State

reset= NoState

split :: Event State→ (Event State,Event State)
split NoEvent = (NoEvent,NoEvent)
split (Event NoState) = (Event NoState,Event NoState)
split (Event(PairState l r)) = (Event l,Event r)

join :: State→ State→ State
join l r = PairState l r

merge:: Event→ Event→ Event
merge NoEvent e= e
merge e = e

Figure 3.9: TheStatedata type and its two accessor functions.

With theStatetype defined, we next build our wrapper for a general arrow:

data SA() α β = SA((α ,Event State) (β ,State))

Already, we can see that thisSAdata type is merely hiding the extra piping that will be required to store and
load the state.

Instantiating Arrow

Next, we show howSA () can instantiate the arrow operators themselves. If it can, then any program
written using the arrow operators could just as well be written for the generic arrow () as forSA().
Thus, this instantiation will essentially provide a method to perform a code transformation to allow any
arrow to behave as if it could be made settable. In fact, it will not even matter ifthis instantiation actually
obeys the arrow laws; because the arrow it is built atop does, we can always strip off the wrapper and be left
with an arrow that does satisfy the laws. The implementations are shown in Figure3.10.

The implementations follow directly from the circuit diagrams from Figure3.7, and thus we will omit
any further description of how they function.

Settable

It feels like we could make anSA() settable merely by removing theSAwrapper – after all, the underlying
arrow will be of the appropriate type. However, this approach limits modularityby forcing the input and
output arrows of thesettablefunction to be different. Therefore, we instead write asettablefunction forSA
directly:

settable(SA f) = SA$ proc ((b,es),e′s)→ do
(c,s)← f −≺ (b,merge es e′s)
returnA−≺ ((c,s),s)

Thissettablefunction is straightforward with one exception. If there is already a state-update event that
is propagating a new state (shown here ase′s), and the settable signal function is also given a state-update

33

arr f = SA$ arr
(

λ (b,)→ (f b,NoState)
)

first (SA f) = SA$ proc ((b,d),es)→ do
(c,s)← f −≺ (b,es)
returnA−≺ ((c,d),s)

(SA f)>>> (SA g) = SA$ proc (b,es)→ do
let (el ,er) = split es

(c, sl)← f −≺ (b, el)
(d,sr)← g−≺ (c, er)
returnA−≺ (d, join sl sr)

loop (SA f) = SA$ proc (b,es)→ do
rec ((c,d),s)← f −≺ ((b,d),es)
returnA−≺ (c,s)

delay i= SA$ proc (snew,es)→ do
sold← delay i−≺snew

returnA−≺ (f sold es,DState(toDyn snew))
where f s NoEvent= s

f (Event NoState) = i
f (Event(DState d)) = fromDyn d

left ∼(SA f) = SA$ proc (bd,es)→ do
rec (sold,eold)← delay(NoState, NoEvent)−≺ (snow,enext)

let enow= merge es eold

(snow,enext,cd)← casebdof
Left b→ do

(c,s)← f −≺ (b,enow)
returnA−≺ (s,NoEvent,Left c)

Right d→ returnA−≺ (sold,enow,Right d)
returnA−≺ (cd,snow)

Figure 3.10:SAimplementations of the Arrow class functions.

34

event (es), which one takes precedence? In fact, the new one must take precedence in order to guarantee the
laws we set out in Figure3.4.

Implementation in Practice

The implementation described in this section has been fully achieved in Haskell and can be found at
https://github.com/dwincort/SettableArrow. That said, the library’s source code is actually slightly
different than the code shown in the previous subsection because the code we have provided has a significant
performance overhead.

The biggest problem with settability comes from the fact that making a signal function settable causes
it to expand considerably, and that each composition especially has a costlyoverhead. For instance, if one
uses the arrow functionsecondand then attempts to make it settable, thensecond fis first expanded to:

arr swap>>>first f >>>arr swap

(for a pure definition ofswap). Thus, one use ofsecondcauses two uses of composition, which each in turn
need to be made settable.

Thus, the major difference between what we have shown here and the code in the SettableArrow library
is that the library code has been hand-optimized to our best ability. First, we removed the arrow syntax,
replacing it entirely with the arrow combinators themselves. Second, we additionally define the derivable
arrow operators such assecondandright (with the obvious, expected definitions). Third, we introduce a
lifting operator:

uncheckedSA:: Arrow ()⇒ (b c)→ SA() b c
uncheckedSA a= SA$ first a>>> (second$ constA NoState)

This function is useful in the special cases where the user knows that a function has no internal state (or
potentially when internal state will never need to be set). Instead of recursively applying the settable trans-
formation, this function simply ignores any incoming state and returnsNoStateas output. Thus, when the
performance cost of usingsettableis otherwise too high, one can useuncheckedSAjudiciously to reduce the
amount of slower transformed code.

With these optimizations (excluding usinguncheckedSA), we find that the performance cost is typically
about 2-3x.

3.5 Optimizations

Providing such an expressive, first-order alternative to the higher-order switch function is a boon for opti-
mizations as it allows the arrow structure to be fully determinable at compile time. Forinstance, Causal
Commutative Arrows (CCAs) are a particular subclass of arrows that have been shown to be highly optimiz-
able [Liu et al., 2011], but they are restricted to be only first-order. As a demonstration of the optimization
capabilities of our work, we extend the Haskell CCA transformation to include non-interfering choice and
show the promising results. We begin with a brief overview of CCAs.

3.5.1 Causal Commutative Arrows

Causal Commutative Arrows are arrows that have two additional laws: a commutativity law that essentially
states that signal function effects can be reordered at will, and a product law that governs the behavior of the
causal operator (theinit or delayoperator). With these two laws at their disposal,Liu et al.[2011] describe a
transformation that allows an arrow to be reduced to a normal form, which they call the Causal Commutative
Normal Form (CCNF), and then even stream fused into a standard function. The authors demonstrate that
GHC can then aggressively optimize this, yielding performance increases of orders of magnitude.

35

https://github.com/dwincort/SettableArrow

The CCA transformation is of particular interest to us as it is what we will be extending to add support
for non-interfering choice, but first, we must describe the CCNF. The CCNF of an arrow is either of the
form:

arr f

or

loop (arr f >>>second(delay i))

where f is a pure function andi is a state. We can express these more simply by calling themArr f and
LoopD i f. The transformation, then, is the process of reducing an arrow built with the arrow operators into
one of these two forms. It is a recursive transformation that applies a setof reduction rules until the normal
form is produced.

For instance, if the transformation comes across an arrow of the formfirst sf, then it will recursively
reducesf and then choose one of the following two rules based on the result:

first (Arr f) 7→ Arr (f × id)
first (LoopD i f) 7→ LoopD i (juggle. (f × id) . juggle)

wherejuggle is a pure helper function to reorder the inputs and outputs as necessary.

3.5.2 Extending CCA

CCAs already have a mechanism for dealing with choice, and at first glance, it appears to work with non-
interfering choice too. However, it is the arrowized recursion that non-interfering choice allows, and not the
choice operator directly, that actually poses a problem for the CCA transformation.

As is, the CCA transformation does not support arrowized recursion. Of course, as we mentioned when
we introduced it in Section3.1.5, the standard arrow laws are not guaranteed to support it, so its absense
is perfectly sensible. However, the absense of recursion support isnot due to inability – indeed, with the
non-interfering choice law guarding the recursion, we can add that functionality in a straightforward manner.

Intuitively, the presence of arrowized recursion will present us with thefollowing two scenarios:

Arr f = Arr (g f)

LoopD i f = LoopD(j i) (g f)

In the first case, we find that a signal function of the formArr f is defined based on that same functionf ,
and the second is the same except for bothf and its statei. However, becausef andg (and j) are pure
functions, this is a trivial relation to solve: indeed the solution to the first formis as simple as applying a fix
point operator:

f = fix g

The second form is slightly more complicated as a precise definition would require the use of a coinduc-
tive data type fori. That is, we would want a data type such as:

data StateCCA k= S(k (StateCCA k))

However, for our purposes, it is acceptable to relax this requirement and instead assume a more powerful
Statedata type that can encode arbitrary values (this would be a similar type to theStatethat we used when
describing Settability in Section3.2.2.

36

3.5.3 Haskell Implementation

We model the Haskell implementation off of the original CCA transformation design. We use Template
Haskell along with a clever use of the Arrow type classes to perform a preprocessing step on only the arrow-
ized components. Thus, rather than try to interfere with Haskell’s native recursion support, we introduce a
new type class to capture it only where we need it:

classArrowFix () where
afix :: (b c→ b c)→ b c

TheArrowFix type class introduces theafix function that acts as a fix point function particularly for arrow-
ized recursion. In practice, we could merely defineafix to be equivalent to the regular fix point operator, but
we will make better use of it for the transformation.

Specifically, when the recursive transformation encounters an arrow of the formafix f, the first thing it
will do is to produce a fresh, unique “hole”. The hole (which we represent with •) is a special internal data
structure that acts likeArr or LoopDexcept that instead of holding the functionf and statei, it keeps track
of the modifying functionsg and j. That is, if the hole is anArr form, then we know that we will eventually
come to a scenario such as

Arr f = Arr (g f)

and sincef is unknown and will be deduced via the fix point operation, the hole instead keeps track ofg.
Applying this hole as the argument tof and then recursively running the transformation will reduce the
result to one of the two forms we identified in the previous subsection, which we have already shown can be
solved easily.

To facilitate this, we create a second set of transformation rules that are nearly identical to the original
except that they expect an additional argument. For instance, if the transformation comes across a partial
application of a hole, then it will follow one of the following two rules:

first (•Arr g) 7→ •Arr (λ f → (g f× id))
first (•LoopD j g) 7→ •LoopD j (λ f →

(juggle. (g f× id) . juggle))

Note the similarities between this and the description for the non-hole version atthe end of Section3.5.1.
They are almost identical except for the fact that the hole’s arguments are functions of functions.

State

At the end of the previous subsection, we mentioned that we would use anStatetype to encode the arbitrary
state componenti of a CCNF arrow of the formLoopD i f. Just as we used for the Haskell implementation
of Settability, we utilize Haskell’sDynamicdata type as an all-purpose state wrapper here.

3.5.4 Performance Results

We followed the same procedure for performance testing thatLiu et al.[2011] use. That is, for each program,
we:

1. Compiled with GHC, which has a built-in translator for arrow syntax.

2. Translated the arrow syntax to arrow combinators using Paterson’sarrowp pre-processor [Paterson,
2001] and then compiled with GHC.

3. Normalized into CCNF combinators and compiled with GHC.

37

Name GHC arrowp CCNF Stream

Dynamic Counters 1.0 1.66 10.91 12.73
Chained Adder 1.0 1.91 4.06 4.29

Chained Integral 1.0 2.17 13.27 15.40

Figure 3.11: Non-Interfering Arrow-Choice CCA Performance Ratio (higher is better)

4. Normalized into CCNF combinators, rewrote in terms of streams, and compiled with GHC using
stream fusion.

The three benchmark programs we used are based on the examples from this paper but are simplified. The
first uses therunDynamicfunction to run multiple stateful counters at the same time. The second and third
use a function similar torunDynamicthat runs a signal function multiple times but chains the output from
one run to the input of the next, essentially linking them together. For the second, we link together a basic,
stateless adder, and for the third, we link an integral function.

The programs were compiled and run on an Intel Core i7 machine with GHC version 7.6.3, using the
-O2 optimization. The results are shown in Figure3.11, where the numbers represent normalized speedup
ratios.

In general, the results show a similarly dramatic performance improvement compared with standard
CCA. Notably, the performance of the chained adder, although improved inCCNF, does not show nearly the
speedup that the others show. We believe this is because the chained adder has no internal state whatsoever,
making the pre-processed performance better.

3.6 Other effects of switching from switch

As stated earlier, arrows with switch are fundamentally more powerful than those without. Thus, it was
never our goal to demonstrate that non-interfering choice and state settability could provide the tools to
replace switch outright, but rather that switch’s power is often underutilized, and in those cases, switch can
be replaced.

3.6.1 First order

The primary and most important difference between switch and non-interfering choice is that switch is truly
higher order while choice is not. This means that while programs with switch canaccept streams of signal
functions and then run those signal functions, programs with only choice cannot.

3.6.2 Memory Use

One of the main reasons to use switch in a program is to improve performance. Rather than run a signal
function when its results are not being used, we can switch it off, reducing unneeded computation. Signal
functions that have been switched out will never be restarted and so canbe garbage collected to free memory.

With non-interfering choice, we can similarly stop a signal function, but because it might be restarted, it
cannot be garbage collected. Rather, once started, it will remain in memory forever. This is a fundamental
reason for demonstrating state settability of signal functions: a signal function that is waiting in memory can
have its state re-set so that it can behave as a fresh instance of itself. Thus, with proper management of state,
we should never be creating new signal functions while others are left for dead but stranded in memory.
Therefore, though our system will always use at least as much memory asa version with switch and often

38

times more, it should be capped by the maximum amount of memory that a comparableswitch-based version
would use at any one time.

39

Chapter 4

General Effects in FRP

4.1 Resource Types

As mentioned in the introduction, we wish to treat I/O devices as signal functions. Consider, for example, a
MIDI sound synthesizer with type:

midiSynth:: Event Note ()

midiSynthtakes a stream ofNoteevents as input and synthesizes the appropriate sound of each note. Now
consider this code fragment:

←midiSynth−≺notes1
←midiSynth−≺notes2

midiSynthis intended to represent a single output device, but there are two occurrences of it above; so what
happens? Are the event streamsnotes1 and notes2 somehow interleaved or non-deterministically joined
together? Clearly, there is a problem.

Likewise, we can imagine a similar problem with input. Supposekeyboardis intended to produce events
for every key press:

keyboard:: () Event KeyPress

Now consider this code fragment:
inp1← keyboard−≺ ()
inp2← keyboard−≺ ()

What is the relationship betweeninp1 andinp2? Do they return the same result, or are they different? If they
are the same, then individual key presses are generating multiple events, but if they are different, then which
one should get the event? Again, there is a problem.

The solution to these problems is to somehow prevent duplication of certain signal functions like those
above. To do this, we introduce the notion of aresource type. Resource types are essentially a phantom
type parameter to each signal function that represents what resourcesthat signal function accesses. We then
assert that if two signal functions share even one resource, then theycannot be composed together. Because
this is done at the type level, this check is static and can be caught before runtime.

As the resource type is part of the type signature of a signal function, weshow it in the type signature

as follows: the typeα R
 β is a signal function that “consumes” the resources in setR, while converting

a signal of typeα into a signal of typeβ . For the two examples above, adding resource types yields the
following signatures:

midiSynth:: Event Note
{MidiSynth}
 ()

keyboard :: ()
{Keyboard}
 Event KeyPress

40

TY-ARR
⊢ e : α → β

⊢ arr e : α /0
 β

TY-FIRST
⊢ e : α R

 β

⊢ first e: (α× γ) R
 (β × γ)

TY-COMP

⊢ e1 : α R1
 β ⊢ e2 : β R2

 γ
R1∪R2 = R R1∩R2 = /0

⊢ e1>>>e2 : α R
 γ

TY-CHC

⊢ e1 : α R1
 γ ⊢ e2 : β R2

 γ
R1∪R2 = R

⊢ e1 |||e2 : (α +β) R
 γ

TY-LOOP
⊢ e : (α× γ) R

 (β × γ)

⊢ loop e: α R
 β

TY-DELAY
⊢ e : α

⊢ delay e: α /0
 α

TY-SWITCH

⊢ e1 : α R1
 (β ,Eventγ) ⊢ e2 : γ → (α R2

 β)
R1∪R2 = R

⊢ switch e1 e2 : α R
 β

Figure 4.1: The typing rules for arrow operators with resource types.

With these types, the above code snippets will not type check.
An additional benefit of resource types is that they provide a new level of transparency to the meaning

of a function. Where before, the type of a signal function provided onlythe types of the inputs and outputs,
now we also have easy, static access to the entire set of resources that aprogram may use.

4.1.1 Typing Rules

Because they exist only at the type level, we can conceive of resourcetypes as having no runtime component;
therefore, discussing their behavior should reduce to simply examining theireffects on typing rules.

In 2.1.1and Figure2.1, we mentioned the standard arrow operators. We now must update these operators
to include resource types, and we show the typing rules for these updatedoperators in Figure4.1. Note that
because we are viewing resource types as a purely type-level entity, thebehaviors of these operators will
not change. Rather, our new rules will simply apply extra restrictions to makeprograms that improperly use
resources produce type errors.

We will examine each of these typing rules in depth:

• The TY-ARR rule states that the set of resource types for a pure function lifted to a signal function is
empty. Obviously, there can be no resource use in a pure function.

• The TY-FIRST rule states that transforming a signal function usingfirst does not alter the resource
type.

41

• The TY-COMP rule states that when two signal functions are composed, their resource types must be
disjoint, and the resulting resource type set is the union of the two. This is exactly the behavior we
outlined in the previous section, and it is in this rule that resource types showtheir power.

• The TY-CHC rule is for the choice operator. The resulting resource type set is the union of those
of its inputs, which are not required to be disjoint. Unlike with composition, where the argument
signal functions will both be used, at any given moment, only one argumentto choice can be active.
Therefore, there will be no resource conflicts between the two arguments, and we need not worry
about whether the resources are disjoint. Of course, because we cannot know which branch will be
active, the result’s resource type set still must be the union of the arguments’.

• The TY-LOOP rule states that looping a signal function does not alter the resource type.Looping
allows data to be fedback through a signal function, but it has no inherent resource usage.

• The TY-DELAY rule states that the set of resource types for a stateful delay function is empty. Al-
though we may think of a delay operation as using memory and memory usage as aresource-worthy
effect, each use ofdelaywill create a new piece of memory, and there will never be contention between
them.

• There are many different varieties of switch, as we described earlier, but they are all related. Therefore,
it suffices to show the typing rule for the simplest one. The TY-SWITCH rule, similar to the rule for
choice, states that the union of the resources of the two arguments make up the resource type of the
result. The reasoning is much the same as for choice: the two signal functions in the arguments can
never be active at the same time, so their resource types can overlap without contention.

4.1.2 Where Do Resources Come From?

When we introduced resource types above, we used an example with a MIDI synthesizer. We stated that the
synthesizer could be represented as a signal function, and then to make itsafer, we “tag” it with aMidiSynth
resource type. Here we explore what that actually means and the connection between the resource type and
the resource it indicates.

Concretely, we think of resources as devices that performeffects, or that collect some sort of input and
provides some output to the world. In Haskell, one would typically achieve thissort of effect by utilizing
the IO monad. Thus, the synthesizer might support a function such asmidiSynthM:: Note→ IO (); this
monadic action would send individual notes to the synthesizer and return a unit response. To lift this to the
realm of signal functions, we would make use of the Kleisli arrow (or equivalent).

From there, we must manually tag low level signal functions that access resources with the appropriate
resource types. At first this may seem unsafe, but because this would be done by the language or library
designer rather than the end programmer, our end programming safety guarantees are unaffected. Thus, the
designer can create a basis of signal functions that are typed to overlapin resources where appropriate such
that the programmer can use to build resource-safe applications.

Although this approach is possible, it has two irritating problems. First, it conflates the design of resource
types with the domain in which they are being used. That is, a language specification will be forced to have
many built-in signal functions to cover the range of resources that the language requires. Second, there is
still a small disconnect between the resource types and the resource actions. When a program has a particular
resource in its resource type, there is no clear definition of what effectthat resource will have. This means
that it is possible for a designer to mis-mark a signal function with the wrong resource type, and there is no
easy way to detect the error. That is, confining resource types to solelythe type level restricts their ability to
connect to the program.

42

4.1.3 Activating Resources

In order to provide a clear connection between virtual resources and the signal functions that use them,
we provide a direct operator thatactivatesresources. We do this by introducing a new fundamental arrow
operator:rsf (to be read as “resource signal function”).

Thersf operator takes a resource as an argument and uses the nature of that resource to construct a signal
function. This means that we can no longer think of resources strictly as phantom types, but rather, they will
have real substance that will have an effect on the execution of a program.

This pattern brings to mind ideas of defunctionalizationReynolds[1972], and indeed, the process here is
similar. All resources are declared statically as types, and usingrsf is tantamount to choosing which fixed re-
source to activate. The key usefulness of this is that it provides a clear separation between a core component
of the language (thersf operator) and information about the environment (the resources themselves).

We can illustrate the behavior ofrsf with an example, and thus we once again turn our attention to the
scenario of a MIDI synthesizer. The point ofrsf is that because theMidiSynthresource type is available in
the environment, the user will be able to use the signal function:

rsf MidiSynth:: Event Note
{MidiSynth}
 ()

What exactly is the type ofrsf itself? That will depend on the resource. In this example, the resource is one
that consumesNoteevents and produces(), but other resources may be different.

4.1.4 Virtual Resources

The resources we have examined so far are all associated with concrete, real-world devices. Thus, all the
resource types are pre-defined and not dependent on any particular program. However, there is no reason
why we cannot introduce “virtual” resources during execution, and in fact, this is precisely what we must
do to support wormholes.

As mentioned in Section1.2.4, a wormhole is a way to transfer information non-locally, and it behaves
as a mutable reference in memory where the writing end (the whitehole) and the reading end (the blackhole)
can be separated. In order to ensure their safe usage, these two endsmust be accessed no more than once,
and we use resource types to enforce this restriction. Thus, upon introducing a wormhole, we must also
introduce two fresh resources.

Unlike global resources that represent real-world devices, these virtual resources have a limited scope
in which they function, and outside of that scope, they should disappear.In this sense, their introduction is
a lot like a let construct, and it is this similarity that leads us to name the wormhole introduction operator
letW. Within the scope of theletW statement, there are two additional resources that can be used byrsf,
and at its conclusion, those resources are removed from the resourceenvironment.

One important contribution we make in the design of wormholes is recognizing that the order of exe-
cution of a wormhole affects program behavior. One could allow the read and write from a wormhole to
happen in either order, but this allows two nearly identical programs to potentially have very different behav-
iors. We show that restricting wormholes such that the read always happens before the write allows sounder
reasoning as well as introduces a new possibility for control flow. Intuitively, regardless of the structure of
a program, we want the read to be immediate while the write takes place “between”time steps. In this way,
we can be sure that any data read from a wormhole was generated in the previous time step, allowing us to
use wormholes to create causal connections.

4.1.5 Resource Commutativity

We introduced resource types in order to address the question of what happens if the same resource is
accessed more than once at the same time. However, we can broaden this question to ask what the observable

43

effect of accessing two different resources at the same time should be.The fundamental abstraction of FRP
indicates that that functionality should be perceived as instantaneous; thus, any resource effects should also
be instantaneous. This implies that the order of multiple resource interactions should not matter, or that
resource access must becommutative.

This is a natural conclusion, and we can use it to describe resource types in a slightly different way: the
purpose of resource types is to allow only effects whose ordering can be commuted. That is, if two effects
require an ordering (for instance, if the same effect is performed twice insuccession), then it cannot be
permitted. This concept extends to wormhole resources as well: the ordering of the blackhole and whitehole
must not matter, and thus they are specifically designed so that the whitehole only relies onpast inputs to
the blackhole.

This means that if an arrow itself is commutative, that adding resource interaction governed by resource
types to it will not affect its commutativity. Indeed, much like how the causal commutative arrow (CCA)
transformation [Liu et al., 2011] reorders an arrow to group all stateful (e.g.init) effects separate from pure
computation, one could use the same techniques to group all resource effects. In fact, because wormholes
can be used to store state (as we shall discuss in more detail in Section4.4), a resource version of the CCA
transformation would be strictly stronger than the traditional one.

4.2 A Resource Typed Language

Because we are storing key program information in the resource types and using them as both types and
values, it no longer suffices to simply provide some new typing rules for ournew operators (rsf andletW).
In this section we will explore the foundations of a language that fully integrates resources.

4.2.1 Language Definition

We start withL {→×+}, the basic lambda calculus extended with product and sum types and general
recursion that we introduced in Chapter2.2. From there, we add the type for resource-typed, arrow-based
signal functions, and we add expressions for the three standard operators for them (arr, first, and>>>) as
well as choice (|||), loop, and delay. In the process, we also add resources as a new component to the
language, complete with types for resources and a resource environment. Finally, we connect the resources
by adding our new introduction (letW) and application (rsf) operators.

We show our extension toL {→×+}’s abstract syntax in Figure4.2and the typing rules for the newly
added expressions in Figure4.3. In addition to the previous syntax, we letrs range over resources,ts over
resource types, andRs over resource environments. A type judgmentR ⊢ r :: t indicates that resource envi-
ronmentR contains an entry mapping resourcer to resource typet. Typically, we will combine judgments
to the formΓ,R ⊢ ... indicating that both environments may be used.

Lastly, we make the following definition of programs that our language supports at the top level:

Definition 1 (Program). An expression p is aprogram if it has type()
R
 () for some set of resources R.

This restriction is actually rather minor. As our language is defined for FRP,it is reasonable to require
that the expression being run is a signal function. Furthermore, as all input and output for a program should
be handled through resources, the input and output streams of a program need not contain any information.

4.2.2 Resources

Resources can be thought of as infinite streams of data that correspondwith real world objects, and the
default resource environment,Ro, is essentially the real world (i.e. user and outside data interaction) split

44

Res r
RTp t ::= 〈τin,τout〉 resource type
Typ τ ::= ...

| τ1
{r1,...}
 τ2 resource typed SF

Exp e ::= ...
| arr e SF construction
| first e SF partial application
| e1>>>e2 SF composition
| e1 |||e2 SF choice
| loop e SF looping
| delay e SF delay
| rsf r SF resource application
| letW rw rb ei in e wormhole introduction

REn R ::= r1 :: t1, ..., rn :: tn resource environment

Figure 4.2: The resource type abstract syntax additions toL {→×+}.

up into discrete, quantized pieces, but new “virtual” resources can be added to resource environments via
wormholes.

Resources are used at both the type level and the expression level. At the type level, resources are
associated with the signal functions that use them. Specifically, they are included in the set of resources that
is part of the type of signal functions.

At the expression level, resources can be accessed for input and output via thersf expression, which
essentially lifts a resource into a signal function tagged with a type level version of that resource such that
the input type of the signal function is the input type of the resource and theoutput type is similarly the
output type of the resource. All resource interaction, and thus all I/O, isdone viarsf.

The purpose of resources is to track I/O; therefore, despite the fact that they are “usable” at the expression
level, we do not want them to escape through an abstraction and so we do not think of them as typical first-
class values.

4.2.3 Signal Function Expressions

It’s worth noting that these typing rules are almost identical to the ones from Figure4.1. The only change
is that because we have a more well-specified language, we have typing environmentsΓ andR to use, and
indeed, our rule forrsf makes use of the resource type environmentR. Specifically:

• The TY-RSF rule says that the input and output types of the signal function that interacts with a given
resource must match the input and output types given by the form of the resource. Furthermore, the
signal function created will have the singleton resource type set containing the used resource.

• The TY-WH says that the body of the wormhole is a signal function provided that tworesources are
added toR: one of the form〈(),τ〉 (the whitehole) and one of the form〈τ ,()〉 (the blackhole) where
τ is the type of the initializing expression. The result of the whole expression isthe same as that of
the body except that the resourcesrw andrb are removed from the resource set. This omission is valid
because the virtual resources cannot escape the wormhole expression.1

1This is similar to a trick used in Haskell to hide monadic effects by using the universal type quantifierforall to constrain the

45

TY-ARR
Γ,R ⊢ e : α → β

Γ,R ⊢ arr e : α /0
 β

TY-FIRST
Γ,R ⊢ e : α R

 β

Γ,R ⊢ first e: (α× γ) R
 (β × γ)

TY-COMP

Γ,R ⊢ e1 : α R1
 β Γ,R ⊢ e2 : β R2

 γ
R1∪R2 = R R1∩R2 = /0

Γ,R ⊢ e1>>>e2 : α R
 γ

TY-CHC

Γ,R ⊢ e1 : α R1
 γ Γ,R ⊢ e2 : β R2

 γ
R1∪R2 = R

Γ,R ⊢ e1 |||e2 : (α +β) R
 γ

TY-LOOP
Γ,R ⊢ e : (α× γ) R

 (β × γ)

Γ,R ⊢ loop e: α R
 β

TY-DELAY
Γ,R ⊢ e : α

Γ,R ⊢ delay e: α /0
 α

TY-RSF
Γ,R(r : 〈τin,τout〉) ⊢ rsf r : τin

{r}
 τout

TY-WH
Γ,R(rw : 〈(),τ〉, rb : 〈τ ,()〉) ⊢ e : α R′

 β
Γ,R ⊢ ei : τ R= R′ \{rw, rb}

Γ,R ⊢ letW rw rb ei in e : α R
 β

Figure 4.3: The typing rules for the new expressions.

46

4.2.4 No More Switching

An astute reader will note the removal of the switch operator. Indeed, with the addition of wormholes to the
language, switching is no longer safe.

To illustrate this point, we can consider a simple example. Switch allows one to take values at the signal
level and convert them into values at the signal function level. For instance, one could imagine a signal
function such as the following:

switchSF:: α /0
 Event(β R

 γ)

This signal function takes values of typeα and produces events of signal functions of typeβ R
 γ, all without

using any resources itself. However, what if one of those produced signal function output events used one
or both ends of a wormhole? TheswitchSFsignal function could escape theletW scope, but then if we were
to switch into its argument, we would be given access to the wormhole resources. Switch’s ability to allow
wormhole resources to escape their scope makes it dangerous to us.

There are ways to address this. For instance, we could restrict switch sothat the switched in signal
function is not allowed to use any resource types. Alternatively, we couldrefine the definition of a program
to only allow resources that are inRo, forcing all wormhole resources to be “cleaned up” before the program
could run. However, to enhance clarity in our further discussion, and because we proved in the previous
chapter how so much of switch’s behaviors can be achieved by choice, we instead choose to omit switch
from our resource-typed language.

4.3 Examples

We have extended a simple arrowized model of FRP by introducing resource types as a means to achieve
regulated side effects and wormholes to provide a form of non-local communication. We demonstrate the
usefulness of these concepts with a few examples derived from two different FRP domains; the first examples
will demonstrate resource types in general, and the last two will focus on wormholes.

The examples will generally use the arrow syntax rather than the more abstract arrow combinators to
make their behavior clearer. Additionally, we will assume a few basic data types such as numbers and
Boolean values as well as typical operators over them.

4.3.1 Composition

For our first example, we will look at how resource types behave undersignal function composition. As
the typing rules make clear, a signal function cannot compose with another signal function that it shares a
resource with, but it is allowed to compose with one in which it does not sharea resource. For this example,
we will use music as our domain (common in e.g. Euterpea [Hudak, 2014]), and explore the practice of
connecting multiple MIDI devices2.

Although MIDI devices typically have separate unrelated streams for inputand output, many devices
can be set to act as stream transformers that instead add notes produced by the device in real time to the
input stream. This is especially useful in cases where one has many MIDI devices but a limited quantity of
ports to connect them to the computer. In cases like these, one can “daisy chain” the devices, or connect
them together in sequence, to gather all of the MIDI events produced into one large set. In this model, MIDI
resources would have the type:

〈Event MidiData,Event MidiData〉

scope. Here, the resources are only available inside the body of the wormhole.
2MIDI stands for “Musical Instrument Digital Interface” and it is a standard protocol for communication between electronic

instruments and computers.

47

Although we are not limited by number of ports in a virtual setting, we can stillvirtually daisy chain multiple
devices in order to apply a single operation uniformly across all of the MIDIevents.

For example, here is a signal function that daisy chains three MIDI keyboards together and then trans-
poses all of the notes they produce by a given number of steps:

daisy:: Number→
(

Event MidiData
{MIDI1,MIDI2,MIDI3}

 Event MidiData
)

daisy n= proc notesin→ do
notes2← rsf MIDI1−≺notesin
notes3← rsf MIDI2−≺notes2
notes4← rsf MIDI3−≺notes3
returnA−≺ transpose n notes4

If we had accidentally used the same MIDI device more than once, the program would result in a type error.
Thus, the disjoint resource types ensure that the different devices are kept distinct, just like in the real world.

4.3.2 Recursion

Sticking with MIDI and the musical domain, we can define a signal function thatcreates an “echo” effect
for notes played on a MIDI device. We achieve this by delaying and loopingthe notes back through the
device itself, attenuating each note by some percentage on each loop:

echo:: (Number,Number)
{MIDI1}
 Event MidiData

echo= proc (rate, freq)→ do
rec notesout← rsf MIDI1−≺ notes

notes ← delayT −≺ (1.0/freq, decay rate notesout)
returnA−≺notesout

Note the use of therec keyword, which will induce the loop operator and rule (from Section4.2.3).
Theechosignal function takes a decay rate and frequency as time varying arguments and uses them to

add an echo to the notes played on the MIDI device. It uses two helper functions:decay rate nsattenuates
each note innsby rate, dropping notes when their volume falls below an audible threshold; anddelayT−≺
(t,ns) delays each event innsby the amount of timet.

4.3.3 Conditionals

As mentioned earlier, signal function composition requires that the resource types of the arguments be
disjoint. However, for conditionals (i.e. case statements), the proper semantics is totake thenatural union
of the resource types. Consider the following functions for sending sound data to speakers:

playLeft :: Sound
{SpeakerL}
 ()

playRight :: Sound
{SpeakerR}
 ()

playStereo:: Sound
{SpeakerL,SpeakerR}

 ()

48

We can use these to define a signal function for routing sound to the proper speaker (often called a demulti-
plexer):

data SpeakerChoice= Left‖ Right‖ Stereo

routeSound:: (SpeakerChoice,Sound)
{SpeakerL,SpeakerR}

 ()
routeSound= proc (sc,sound)→ do

casescof
Left → playLeft −≺ sound
Right → playRight −≺ sound
Stereo→ playStereo−≺ sound

This is well typed, since the case statement in arrow syntax invokes the inference rule for the choice operator
(|||).

The routeSoundsignal function may only make use of one speaker at a time, but it feels natural that it
should acquire both theSpeakerL andSpeakerR resource types, because we cannot know at compile time
which speakers will be used. Furthermore, even though different branches of the case statement use the
sameresources, those resources will never be used more than oncesimultaneously.

4.3.4 Clarifying Domains

An added feature of resource types is that they increase the transparency of code. For example, consider the
following non-resource-typed program designed to control a simple robot:

controlRobot:: Bool (Double,Double)
controlRobot= proc b→ do

returnA−≺ if b then (−5,0) else(10,10)

Without documentation, it is near impossible to discern what this program’s purpose is. In fact, this program
was designed to control a robotic car that has two motors (one to control each front wheel) and a bump sensor
on the front. The sensor provides aBoolvalue to show its status, and the motors each take aDoubleargument
that control their speed. On the whole,controlRobotmakes the robot go straight unless its bump sensor is
hit, at which point it does a brief turn in reverse before continuing straight again.

The problem withcontrolRobotis what we have referred to as theI/O bottleneck. Running the program
that utilizescontrolRobotprobably looks something like:

repeatForever$ do
inp← runIOinput

runIOoutput (tick controlRobot inp)

We have tworunIO∗ commands performing effects, and we are stepping thecontrolRobotsignal function
forward in a pure way. This creates a conceptual (and code-level) gap between where any data is produced
and where it is used. With resource types, the input and output devices can be consolidatedinto the signal
function itself, making the function of the program much clearer. Consider the following:

MotorL :: 〈Double,()〉
MotorR :: 〈Double,()〉
SensorBump :: 〈(),Bool〉

49

R= {MotorL,MotorR,SensorBump}

controlRobotR :: ()
R
 ()

controlRobotR = proc ()→ do
b← rsf SensorBump−≺ ()
if b then rsf MotorL−≺−5

else dorsf MotorL−≺10
rsf MotorR−≺10

We can see clearly whatcontrolRobotR does—the type shows us what resources are being used, and they
are being used alongside where they are produced, within the signal function itself. Furthermore, we know
that, for example, if we want to add a command to the right motor when the bump sensor isTrue, we can.
However, if we want to do that when the bump sensor isFalse, we will have a type error—if we must, we
know that we need to rewrite code rather than simply add it.

Let’s now consider a more complicated program. In a monadic framework, functions controlling a robot
might look like the following:

moveArmUp :: IO ()
moveArmDown:: IO ()
moveArmLeft :: IO ()
moveArmRight:: IO ()
clawGrab :: IO ()
clawRelease :: IO ()

These functions activate various motors in the robot arm to move the arm as expected. We might also have a
compound function:toss:: IO (). The documentation fortosssays that it moves the arm while releasing the
claw to toss whatever the claw was holding. Perhaps we have testedtoss, and now want to make the tossed
object go higher, so we would like to additionally runmoveArmUpin parallel withtoss. Is this a good idea?
We don’t actually know howtossworks; if it calls moveArmDowninternally, that could result in a motor
conflict. With resource types, these functions all become much clearer. Consider the following:

moveArmUpSF :: α
{MotorVertical}
 ()

moveArmDownSF :: α
{MotorVertical}
 ()

moveArmLeftSF :: α
{MotorHorizontal}
 ()

moveArmRightSF :: α
{MotorHorizontal}
 ()

clawGrabSF :: α
{MotorClaw}
 ()

clawReleaseSF :: α
{MotorClaw}
 ()

tossSF :: α
{MotorVertical,MotorClaw}

 ()

Now, not only is it clear which motorstossSF uses, but trying to runtossSF at the same time asmoveArmUpSF
will result in a type error.

4.3.5 Data transfer

One strength of wormholes is their ability to transfer data between two disparateparts of a program. Typi-
cally, this would involve rewriting signal functions so that they consume or produce more streams so that one
can create a stream link between the two components to be connected. However, this work is unnecessary
with wormholes.

50

We will consider the following two programs:

P1 :: R′1⊆ R1⇒ (Integer
R′1
 Integer)→ (()

R1
 ())

P2 :: R′2⊆ R2⇒ (Integer
R′2
 Integer)→ (()

R2
 ())

We will assume that as long asR′1 andR′2 are disjoint, thenR1 andR2 are disjoint also. These two programs
both do almost the same thing: they acquire a stream ofIntegers from a source, apply a given signal function
to them, and then send the result to an output device.

Our goal is to connect these two programs in order to cross their streams. That is, we would like the
stream fromP1 to go to the output device ofP2 and vice versa. Without wormholes, we would be forced to
examine and change the implementation and type of at least one of these two programs. However, instead,
we can define:

main= letW rw1 rb1 0 in
letW rw2 rb2 0 in

P1 (rsf rb1 >>> rsf rw2) >>>
P2 (rsf rb2 >>> rsf rw1)

We pair two wormholes together almost like twodelayexpressions, except that we swap the inputs and
outputs. This provides us with two functions that are able to communicate even when no streams seem
readily available.

4.4 Delay and Loop

We have provided looping as a built-in feature via theloop arrow operator, and in our introduction (Sec-
tion 2.1.2), we described that its use in FRP will always be paired with an associated use ofdelayto enforce
causality. With wormholes, these two functions are no longer fundamental but instead can be constructed.

We start by showing that a strictly causal implementation ofdelaycan be produced as syntactic sugar
with a wormhole:

TY-DELAY
Γ,R ⊢ ei : α

Γ,R ⊢ delay ei : α /0
 α

delay i
def
= letW rw rb i in rsf rb>>> rsf rw

By attaching the blackhole and whitehole of a wormhole back to back, we create a signal function that
accepts present input and returns output delayed by one step. Essentially, we see that thedelayoperator is
the connection of two ends of a wormhole.

Interestingly, we can attach the wormhole ends the other way too. Obviously,this can lead to a trivial

signal function of type()
/0
 () that does nothing, but if we provide a signal function to be run in between

the connection, we can build the following:

TY-DLOOP
Γ,R ⊢ ei : γ Γ,R ⊢ e : (γ×α)

R
 (γ×β)

Γ,R ⊢ dloop ei e : α R
 β

dLoop i e
def
= letW rw rb i in proc a→ do

x← rsf rw−≺ ()
(y,b)← e−≺ (x,a)
rsf rb−≺y
returnA−≺b

51

We are able to achieve a delayed form of looping by a clever use of a wormhole. We first produce a new
wormhole and provide the loop’s initialization value as its initial value. We extractthe loop datax from the
wormhole by accessing the whitehole, feed that along with the input valuea to the signal functione, we
loop the resulting loop datay by sending it to the blackhole, and finally we return the generated valueb.
Due to the causal behavior of wormholes,b values that are output fromebecome newa input values toeon
the next iteration. Thus, the input on thenth iteration is given by the output on then−1st iteration.

With the results of this example, we no longer need to provide looping or delay as fundamental operators
in our language.

4.4.1 Wormhole Loop Syntax

There is one problem with using wormholes for looping, which is that doing it inpractice often feels some-
what imperative. The nature of explicitly writing to blackholes and reading from whiteholes can obscure the
underlying feedback that is occurring.

Actually, a similar problem happens with arrow loop itself, since theloop operator is not always easy
to use. The solution in this case is that arrow syntax is extended with arec keyword, which allows the pro-
grammer to write recursively defined streaming values. Thisrec syntax is then translated into an invocation
of the loop operator [Paterson, 2001]. Of course, it is possible to rewrite non-causal loops with this syntax,
and doing so can create an infinite loop, so one often needs to use adelayoperator of some sort to prevent
this.

We can create a similar system with wormholes. That is, we can create a customsyntax that eases
program development and that desugars into standard wormhole creationand application. It will be nearly
identical to the arrow looprec syntax in appearance, but it will rely on a different underlying transformation.
We will still have arec block, and within that block, values are allowed to be recursively defined. However,
rather than simply hoping that the user usesdelayoperators in the appropriate places, we provide a new
operator,introduce, which we will use in the desugaring.

The introduceoperator behaves to the user identically todelay. That isintroduce:: α → (α /0
 α), and

it must be used whenever a new recursive value is defined. For instance, if we have a signal functionsf,
and we would like its output fed back to itself as input, with an initial value of 0, then we could write the
following in ourproc syntax:

rec x← introduce0−≺y
y← sf−≺x

Basically, the rule of thumb is that streaming values on the right side of anintroducedo not need to have
been defined yet. However, because this syntax is designed for resource typed FRP, which is commutative
by design, the real rule is that the value to the right of theintroducemust simply be defined within (or before)
therec block.

The desugaring is as expected. We create a new wormhole and we populateit with initial values gathered
from eachintroducefrom therec block. Then, at the start of therec block, we read the whitehole, and at
the end of it, we write to the blackhole. All of theintroducestatements are removed post-desugaring.

For the example above, the block will desugar to:

letW rw rb 0 in
x← rsf rw−≺ ()
y← sf−≺x
()← rsf rb−≺y

If there are more than oneintroducestatement in the block, then they can be grouped together: the value
stored in the wormhole would be a tuple of all of theintroduced values, and they could be read all at once
from the whitehole and written all at once to the blackhole.

52

4.5 Semantics

We provide a discrete, synchronous operational semantics for the resource typed arrowized FRP language
we have built. As these semantics are somewhat complex, and in an effort to demystify them, we separate
the functionality into three distinct transitions. At the highest level, we apply a temporal transition. This
transition details how resources behave over time and explains how the signal function itself is “run”. (Recall

from Definition 1 that only expressions with type()
R
 () are allowed as “runnable” programs.) Because

our language is lazy and evaluation is performed when necessary, expressions may be able to simplify
themselves over time. Therefore, this transition will return an updated (potentially more evaluated) version
of the input program.

The temporal transition makes use of a functional transition to interpret the flow of data through the
component signal functions of the program at a given point in time. Thus,the judgments in the functional
transition handle how the instantaneous values of the signals are processed by signal functions.

Because the expressions to be run can contain arbitrary lambda calculus,the functional transition judg-
ments make use of an evaluation transition when necessary to evaluate expressions when strictness points
are reached. This is a fairly simple transition that performs as a typical, lazy semantics of a lambda calculus.

A top-down view of the three transitions is the most intuitive way to describe theirfunctionality. How-
ever, to define them, it is easier to start with the evaluation transition and work up from there. Therefore, we
present the following transitions:

e 7→ e′ Evaluation transition
(V ,x,e)⇛ (V ′,y,e′,W) Functional transition

(R,W ,P)
t
7→ (R ′,W ′,P′) Temporal transition

where
eande′ are expressions

V andV ′ are sets of triples
x andy are values

W andW ′ are sets of wormhole data
R andR ′ are resource environments, and
P andP′ are programs

In the following subsections, we discuss these transitions in more detail.

4.5.1 Evaluation transition

The evaluation transition is used to evaluate the non-streaming components of the language. We start by as-
suming a classic, lazy semantics for lambda expressions and application, product-type pairs and projection,
and sum-type case analysis and injection as provided byL {→×+}. We show our additional rules for the
additional expressions of our language in Figure4.4. Note that we leave outdelayand loop due to them
being implementable via wormholes.

We use the notationeval to denote that expressione is a value and needs no further evaluation.
Obviously, these rules are very straightforward: no evaluation is done on signal functions in this transi-

tion. This transition is important for the operations ofL {→×+}, but it is strictly a formality here.
The languageL {→×+} has a standard Canonical Forms Lemma associated with it that explains that

for each type, there are only certain expressions that evaluate to a valueof that type. By simple examination
of these new rules to the transition, we can extend the lemma as follows:

Lemma 1 (Canonical Forms). If e val and e: α R
 β , then e is either an SF constructor, an SF partial appli-

cation, an SF composition, an SF choice statement, an SF resource interaction, or a wormhole introduction.

53

ET-ARR
arr(e) val

ET-FIRST
first(e) val

ET-COMP
(e1>>>e2) val

ET-CHC
(e1 |||e2) val

ET-RSF
rsf r val

ET-WH
(letW rw rb ei in e) val

Figure 4.4: The evaluation transition judgments for our extension toL {→×+}.

4.5.2 Functional transition

The functional transition details how a signal function behaves when given a single step’s worth of input. It
is a core component of the temporal transition described in the next section as it essentially drives the signal
function for an instant of time. It is a big step semantics. The functional transition judgments are shown in
Figure4.5.

Before we discuss the judgments themselves, it is important to examine the components being used.
First, one will notice the setV . V represents the state of the resources (both real and virtual) in the world at
the particular moment in time that this transition is taking place. Each element ofV is actually a triple of a
resource, the value that resource is providing at this moment, and the valueto be returned to that resource. At
the start, we assume that all of the elements have the form(r,x, ·), which indicates that resourcer provides
the valuex and has no value to receive. It should be no surprise that the only judgments that read from
or modify this set are FT-RSF and FT-WH, the judgments for resource interaction and virtual resource
creation.

The second argument to each of the judgments (typicallyx in Figure4.5) represents the streaming value
being piped into the signal function. However, since the functional transition is only defined for an instant
of time, rather than this value being an actual stream, it is the instantaneous value on the stream at this time
step. Its partner is the second result, or the instantaneous value of the streaming output of the input signal
function.

The third argument is the expression being processed. The purpose ofthe functional transition is to
describe how signal functions behave when given values from their streaming input, and as such, it is only

defined for signal functions (that is, expressions that have the typeα R
 β for some setR). Notably, there

are only judgments corresponding to the forms given in the updated canonical forms lemma (Lemma1). On
the output end, this term represents the potentially further evaluated form of the input expression. We prove
later in Theorem2 that this output expression is functionally equivalent to the input one.

The first three terms of the output correspond to the three terms of the input,but there is also an additional
termW , which contains data about any wormholes processed during this transition. In addition to adding the
two virtual resources created by a wormhole expression to the resourceenvironment, we need to separately
keep track of the fact that they are a pair. Therefore,W contains elements of the form⌊⌈rb, rw,e⌋⌉ whererb is
the name of the blackhole end of the wormhole,rw is the name of the whitehole end, ande is the value in
the wormhole. We will use this information later to properly update wormholes over time in the temporal
transition.

54

FT-ARR
(V ,x,arr(e))⇛ (V ,e x,arr(e), /0)

FT-FIRST
e 7→∗ e′ (V ,x,e′)⇛ (V ′,y,e′′,W)

(V ,(x,z),first(e))⇛ (V ′,(y,z),first(e′′),W)

FT-COMP
e1 7→

∗ e′1 (V ,x,e′1)⇛ (V ′,y,e′′1,W1) e2 7→
∗ e′2 (V ′,y,e′2)⇛ (V ′′,z,e′′2,W2)

(V ,x,e1>>>e2)⇛ (V ′′,z,e′′1 >>>e′′2,W1∪W2)

FT-CHC1
x 7→∗ left(x′) e1 7→

∗ e′1 (V ,x′,e′1)⇛ (V ′,y,e′′1,W)

(V ,x,e1 |||e2)⇛ (V ′,y,e′′1 |||e2,W)

FT-CHC2
x 7→∗ right(x′) e2 7→

∗ e′2 (V ,x′,e′2)⇛ (V ′,y,e′′2,W)

(V ,x,e1 |||e2)⇛ (V ′,y,e1 |||e′′2,W)

FT-RSF
(V ∪{(r,y, ·)},x, rsf r)⇛ (V ∪{(r, ·,x)},y, rsf r, /0)

FT-WH
e 7→∗ e′ (V ∪{(rw,ei , ·),(rb,(), ·)},x,e′)⇛ (V ′,y,e′′,W)

(V ,x, letW rw rb ei in e)⇛ (V ′,y,e′′,W ∪{⌊⌈rb, rw,ei⌋⌉})

Figure 4.5: The functional transition judgments.

Note also that we use the terme 7→∗ e′ to denote continued application of the evaluation transition7→ on
euntil it is evaluated to a value. That value ise′

As this is a critical piece of the overall semantics, we examine each of the judgments individually:

• The FT-ARR judgment does not touch the resources, so the inputV is returned untouched in the
output. The expressione x does not need to be evaluated due to the lazy semantics, but it is the
streaming output nonetheless. The final two outputs reveal that no further evaluation of the expression
has been done and no wormhole data was created.

• The FT-FIRST judgment is only applicable when the input streaming value is a pair (which is assured
by the type checker by using the TY-FIRST rule). The first element of the pair is recursively processed
with the argument tofirst, and the output is formed by the updatedV ′ and by re-pairing the output
y. As the body of thefirst expression,e, was evaluated, its updated form is returned along with any
wormhole data the recursion generated.

• The FT-COMP judgment first sends the streaming argumentx throughe1 recursively. Then, with the
updatedV ′, it sends the resulty throughe2. The resultingV ′′ andz are returned. Once again, the
updated expression is returned in the output. Lastly, the wormhole data fromboth recursive calls of
the transition are unioned together and returned.

• The FT-CHC1 judgment is applicable for a signal function choice operation when the streaming argu-
ment evaluates to aleft value. This argument is defined in typing rule TY-CHC to be a sum type. The
“left” expression,e1 is evaluated and a recursive call is made. The output is formed by the updatedV ′,
the new streaming output, the choice operator applied to the updatede′′1 and the original, unevaluated
e2, and any wormhole data from the recursive call.

• The FT-CHC2 judgment proceeds similarly to the FT-CHC1 judgment, but whenx is a right value
instead of aleft value.

55

• The FT-RSF judgment requiresV to contain an element of the form(r,y, ·), wherer is the resource
being accessed,y is the value the resource currently has, and no output has been sent to this resource
yet. The streaming valuex is put into the resource, and the result is the streaming valuey from what
was in the resource. The setV is updated, replacing the triple used here with a new one of the form
(r, ·,x′) showing that this resource has essentially been “used up”.

• The FT-WH judgment first evaluates its bodye to the valuee′. For its recursive call, it updates the set
V with two new triples corresponding to the two new resources created in the wormhole operation:
(rw,ei , ·) and(rb,(), ·). These are two fresh, unused triples thatrsf operators can make use of in the
body e′. As triples are never removed,V ′ will include these two triples as well. The result is this
V ′ with the new triples, the streaming value y, the updated bodye′′, and the wormhole data from the
recursion updated with the element⌊⌈rb, rw,ei⌋⌉ corresponding to this wormhole. Note that the returned
expression is no longer a wormhole but has been replaced with the body ofthe wormhole. This is
because now that this wormhole has been evaluated, its values live insideV and it has been cataloged
in W —it is no longer needed in the expression.

The following theorems provide some extra information about the overall functionality of this transition.

Theorem 1(V Preservation). If (V ,x,e)⇛ (V ′,y,e′,W), then∀(r,a,b)∈V , ∃(r,a′,b′)∈V ′ and ∀⌊⌈rb, rw, i⌋⌉ ∈
W , ∃(rb,ab,bb) ∈ V ′ and∃(rw,aw,bw) ∈ V ′.

This theorem states that the elements in the inputV are preserved in the output. In fact, there is a direct
correspondence between them such that if the input set has an element with resourcer, then the output will
too. Furthermore, when new values are added (as in FT-WH), they correspond to values inW . The proof
is straightforward and proceeds by induction on the functional transition judgments. It has been omitted for
brevity.

Theorem 2. [e Preservation] If e: α R
 β and(V ,x,e)⇛ (V ′,y,e′,W), then e′ : α R′

 β and e′ has the same
structure of sub-expressions as e with the exception that wormhole expressions may have been replaced by
their bodies. For each so replaced, there is a corresponding element inW of the form⌊⌈rb, rw, i⌋⌉ such that rb
and rw are the virtual resources of said wormhole. Furthermore, R⊆R′ and∀r ∈ (R′\R), either⌊⌈r, , ⌋⌉ ∈W

or ⌊⌈ , r, ⌋⌉ ∈W .

This theorem states exactly how the output expressione′ can be different from the input expressione.
Notably, it will still be a signal function with the same input and output types andit will still behave in
essentially the same way, but its set of resource types may grow. Specifically, if the resource type set does
grow, it is because a wormhole expression was reduced to its body and thevirtual resources it introduced
are now visible at a higher level. A notable corollary of this theorem is that ifW = /0, thene= e′.

Proof. The proof follows by induction on the judgments and the typing rule TY-WH for wormholes. A
cursory examination of the judgments reveals that the only one to change the form of the expression from
input to output is FT-WH, which replaces the input expression with the body of the wormhole. The typing

rule tells us that ife: α R
 β ande is a wormhole, then the body ofehas typeα R′

 β whereR=R′ \{rw, rb}.
Although the resource type set may have grown, it could only have grownby the addition ofrb, rw, or both.
Furthermore, the element⌊⌈rb, rw,ei⌋⌉ is added to the outputW .

Lastly, it may appear that multiplersf commands on the same resource could be problematic; after all,
the FT-RSF judgment initially requires the resourcer to have a triple of the form(r,y, ·), but it results in the
third element of the triple being filled in. That is, there is norsf command judgment where the triple has a

value in the third element. However, as we prove later in Theorem3, if the program has typeα R
 β , then it

must have at most onersf command for any given resourcer.

56

Vin = {(r, read r, ·) | r ∈R}∪{(rw, i, ·) | ⌊⌈rb, rw, i⌋⌉ ∈W)}∪{(rb,(), ·) | ⌊⌈rb, rw, i⌋⌉ ∈W)}

(Vin,(),P)⇛ (Vout,(),P′,Wnew)

R ′ = {update r o′ | r ∈R,(r, ,o) ∈ Vout,o 7→∗ o′}

W ′ = {⌊⌈rb, rw, if o= · then i elseo⌋⌉ | (rb, ,o) ∈ Vout,⌊⌈rb, rw, i⌋⌉ ∈ (W ∪Wnew)}

(R,W ,P)
t
7→ (R ′,W ′,P′)

Figure 4.6: The temporal transition.

4.5.3 Temporal transition

Because signal functions act over time, we need a transition to show their temporal behavior. At each time
step, we process the program, taking in the state of the world (i.e. all the resources) and returning it updated.
There is only one temporal transition, but it is quite complicated. It is shown in Figure4.6.

This transition says that the resource environmentR, the set of wormhole dataW , and a programP
transition into an updated resource environment, an updated set of wormhole data, and a potentially more
evaluated program.

Before we can begin to analyze how the transition behaves on a fine grain level, we first need a method
of actuallyinteractingwith resources. This happens via the use of two functions:

read :: 〈τin,τout〉 → τout

update :: 〈τin,τout〉 → τin→ 〈τin,τout〉

The read function simply returns the current output value of the given resource,merely “peeking” at what
is there. Theupdate function takes a resource and the value to give to it and returns an updated version of
the resource.

The first precondition extracts data from the resources and wormholes and compiles it into a form that
the functional transition can use. For the resources, we create triples ofthe form(r, read r, ·) meaning that
the resourcer provides the valueread r and is waiting for a return value. For wormholes, we actually create
two triples, one for the blackhole and one for the whitehole. The whitehole uses the whitehole resource
namerw and the current value in the wormhole, and the blackhole usesrb and produces only().

This data is provided to the functional transition along with the programP. BecauseP has type()
R
 ()

by definition, the streaming argument is set to(). The result of the functional transition is the updated value
setVout, the streaming output ofP (which the type guarantees to be()), the updated program, and a set of
any new wormhole data encountered during execution.

The last two preconditions are analogous to the first one: they extract theresource and wormhole data
fromVout. For every element inVout that corresponds to a resource inR, we take the output valueo, evaluate
it, and push it to the resource. The resulting updated resources make up the new setR ′. It may be thato
was never filled and is still empty—theupdate operation is executed regardless in order to push the resource
one time step into the future. Note that because of the use of the evaluation transition, this step acts as a
strictness point for the streaming values of the signal functions.

The wormhole data is extracted in much the same way. For every element inVout that corresponds to a
blackhole in either the original wormhole data setW or in the new additionsWnew, we examine the output
valueo. If o was filled in, then the updated wormhole entry contains the new value; otherwise, the wormhole
keeps its old value.

Each application of the temporal transition is designed to represent one moment in time, or one unit
time step. We could easily parametrize this transition with an actualδ t, or change in time, but this is not

57

necessary. In fact, one can think of real time itself as a resource whosevalue can be probed at any moment,
and in doing so, the semantic behavior of the transition is allowed to be independent of real time.

In total, we see that the temporal transition uses the programP to update the resourcesR and the
wormhole dataW . Because of Lemma1, we can see thatR ′ contains all the resources thatR did, and
similarly, W ′ contains all of the elements from bothW andWnew. Therefore, if(R,W ,P)

t
7→ (R ′,W ′,P′),

then this transition can repeat indefinitely. That is, the next step would be(R ′,W ′,P′)
t
7→ (R ′′,W ′′,P′′) and

so on. Since each pass through the transition represents one moment in time, this makes sense as a valid
way to represent program execution over time.

We can use the temporal transition to establish an overall semantics for a program P in our language.
Recall thatRo is the default resource environment containing all the resources of the real world.

Definition 2 (Program Evaluation). If P is a program (that is, an expression of the form()
R
 () for some set

R), then P will have the infinite trace starting at state(Ro, /0,P) that uses only the temporal transition
t
7→.

4.6 Safety

Here we show the safety that resource typing provides. We intend to showthat if a program is well typed,
then no two components will compete for the same resource. To express this,we must first define what it
means to interact with a resource.

Definition 3 (Resource interaction). A program P interactsonce with a resource r at a given time step
if it reads the value produced by r at that time step, returns a value to r at that time step, or does both
simultaneously.

With this definition, we can state our resource safety theorem:

Theorem 3 (Resource safety). If a program P: α R
 β , then P will interact only with resources in R, and

for each resource it interacts with, it will do so at most once per time step.

This theorem tells us that any program that type checks will only use the resources in its type and never
have the problem where two components are vying for the same resource.The program will be entirely
deterministic in its resource management, and from the type alone, one will be able to see which resources
it has the potential to interact with while it runs.

Proof. The proof of resource safety begins by examining the temporal transition.Because each element in
R is a unique resource, we know that interacting once each with different elements inR will never cause a
problem. Furthermore, as all we do to createR ′ is exactly oneupdate operation on each resource,R ′ will
likewise have unique resources. The concern, then, comes from the functional transition. We must prove
that updates inVout are not being overwritten by future updates during the functional transition.

Therefore, the bulk of the proof proceeds by induction on the functional transition where we must show
that any elements inV are only being updated at most once. Based on the updated Canonical Forms Lemma

(Lemma1), we know that sinceP : α R
 β , it must be one of the five SF operators. We examine each in turn:

• SF constructor: If P is of the formarr(e), then by typing rule TY-ARR, R= /0 and it will use judgment
FT-ARR. There are no other transitions nor resource interaction being performed in this judgment,
and sinceR= /0, we trivially satisfy our conditions.

• SF partial application: If P is of the formfirst(e), then by typing rule TY-FIRST, we know that if

e has typeα R′
 β , thenR= R′. Furthermore, we know thatP will proceed via judgment FT-FIRST.

By our inductive hypothesis, we know thate will interact with each resource inR′ at most once, and
since no resource interaction happens in this judgment, we satisfy our conditions.

58

• SF composition: WhenP is of the forme1>>>e2, it will proceed by the FT-COMP judgment. By
typing rule TY-COMP, we know thate1 has resource type setR1 ande2 has resource type setR2 such
thatR1∪R2 = R but R1∩R2 = /0. By our inductive hypothesis,e1 evaluates interacting with at most
the resources inR1 ande2 evaluates interacting with at most the resources inR2. However,R1 andR2

share no common resources, and together, they make upR. Therefore,P does not interact with any
more resources than those inR, and any inR that it interacts with, it does so at most once.

• SF choice: WhenP is of the forme1 |||e2, it will proceed by the FT-CHC1 or FT-CHC2 judgment.
Typing rule TY-CHC tells us thate1 has resource type setR1 ande2 has resource type setR2 such
that R1∪R2 = R. By our inductive hypothesis, we know that eithere1 evaluates interacting with at
most the resources inR1 or e2 evaluates interacting with at most the resources inR2, but only one
transition is used. We know thatR is the set of all common resources inR1 andR2, so regardless of
which transitionP proceeds through (runninge1 or e2), only resources inR will see interaction, and
they will only be interacted with at most once. Therefore, we satsify our conditions.

• SF resource interaction: If P is of the formrsf r, then it will proceed by the FT-RSF judgment.

Typing rule TY-RSF tells us that its type must beα
{r}
 β . The transition completes in one step

with no preconditions making use of no further calls, but in fact,V is being modified, so resource
interaction is taking place. We see that the element inV for resourcer is the only one being accessed
and it happens precisely once. The access is allowed because triviallyr ∈ {r}.

• wormhole introduction: Pwill proceed by the FT-WH judgment when it is of the formletW rw rb ei in e.

Typing rule TY-WH tells us thatehas typeα R
 β the same asP. First, we recognize that no resource

interaction can be performed byei because it is never evaluated as a expression by the functional tran-
sition. Even though we add values toV , we do not modify and existing values, so we are not doing
any true resource interaction in this transition. Therefore, our inductivehypothesis tells us that only
acceptable resource interaction is done in the transition of the precondition.

This proof takes the progress and preservation of our semantics for granted. The proofs for these can be
located in AppendixA.3.

4.7 Haskell Implementation

In addition to the typing rules and operational semantics, we built an implementationof arrowized FRP with
resource types and wormholes within the Haskell language. This implementationdiffers slightly from the
language design we have specified, but this is due to a few particular limitationsin Haskell. At the end
of this section, we will discuss possible extensions to the Haskell language specification (or, more likely,
language extensions for GHC) that could allow us to overcome these limitations.

4.7.1 The Resource Type

We will begin by building a system to allow for resource types. Essentially, a resource is a type-level entity
that can be accessed to perform a read or effectful update (recall the read andupdate functions from the
previous section). We choose to represent the idea of resources as atype class, and then new resources can
be created by allowing types to instantiate this class. We make use of GHC’s functional dependencies and

59

multiple parameter type classes to write this:

classResource r a b| r → a, r→ b where
read :: r → IO b
update:: r → a→ IO ()

rsf :: r → (a
{r}
 b)

Where in our theoretical model, theread and update functions were pure, here we allow their Haskell
counterpartsread andupdateto perform effectfulIO actions. Thus, we additionally require resources to
obey the following Resource Law:

read r>> read r= read r

To instantiate this class with a resource type, one would provide as the three type parameters the re-
source, its input type, and its output type. Then, for the given resource, one can define thereadandupdate
functions which will perform the resource’s I/O effects.

Rather than force the user to instantiate thersf function, there should be a default implementation pro-
vided by the library author, or the one who defines the arrow type. For instance, one could build this resource
type system on top of a simple Kleisli Automaton over theIO monad:

data a b= KA (a→ IO (b,a b))

In this case, a simple implementation ofrsf could be:

rsf r = KA $ λ a→ do
update r a
b← read r
return (b, rsf r)

With this infrastructure in place, a user can define resources very easily. For instance, if a user wanted
to declare a resource for printing lines of text to the terminal console, he could do so:

data Console= Console
instanceResource Console String() where

read = return ()
update = putStr

Thus, resources are extensible both over the nature of the underlying arrow type as well as by the user
who wishes to add new resources to his environment.

4.7.2 Resource Type Sets

Resource types alone are not enough; next, we need a way to represent sets of resource types. Our im-
plementation is inspired by Haskell’s HList library [Kiselyov et al., 2004] for heterogeneous lists, and as
such, resource type sets will actually be implemented using lists of types (whichhave an inherent order and
may have duplicates). Our goal in this subsection will be to create type classes and families to allow us
to perform our main set operations: union, disjoint union, and set removal. In addition to some of GHC’s
more well-known language extensions (multiple parameter type classes, etc.),we make use of the newer
type families and data kinds extensions as well.

To begin, we use an updated version of the type equality class from HList, here with equality constraints
and Boolean data kinds:

classTypeEq(x :: k) (y :: k)(b :: Bool) | x y→ b
instance(True∼ b) ⇒ TypeEq x x b
instance(False∼ b)⇒ TypeEq x y b

60

classUnion (xs:: [∗]) (ys:: [∗]) (zs:: [∗]) | xs ys→ zs
instanceUnion ′[] ′[] ′[]
instanceUnion ′[] ys ys
instanceUnion xs ′[] xs
instance(ElemOf x ys b, res∼ IfThenElse b ys(x ′: ys),Union xs res zs)

⇒ Union (x ′: xs) ys zs

Figure 4.7: The Union type class.

An instance ofTypeEqhas its third type asTrue only when the first two types are equal. Although it is
possible to write a similar construction using Haskell’s closed type families, the twoversions are not the
same. This version ofTypeEqwill unify more eagerly in the case of type inequality, which will prove
essential for how we intend to use it.

We will also need a way to make a type level decision based on whether types are equal, so we introduce
the following closed type family:

type family IfThenElse(b :: Bool) (x :: k) (y :: k) :: k where
IfThenElse True x y= x
IfThenElse False x y= y

If the first type argument is True, the result is the second (the “then” clause), and if it is False, the result is
the third (the “else” clause).

Together, type equality and the conditional type family allow us to write a type class that computes type
level list inclusion:

classElemOf(x :: ∗) (ys:: [∗]) (b :: Bool) | x ys→ b
instanceElemOf x′[] False
instance(TypeEq x y b,ElemOf x ys z, r ∼ IfThenElse b True z)

⇒ ElemOf x(y ′: ys) r

The first instance states that a type is never an element of an empty type list. The second states that a type is
an element of a type level list either if it is equal to the head of that list or if it is an element of the tail.

With these classes and family established as the basics, we can begin in earnest with the set operations
we need. We present a type class that performs the union of two sets in Figure 4.7. The first three instances
dictate that the union of a set with the empty set (in either order) is the set itself.The last states that we can
find the union of two sets by examining the head of the first set. If it is an element of the second set, then
the result is the union of the tail of the first set and the second set. Otherwise, the result is the union of the
tail of the first set and the head of the first set added to the second set.

Another way of viewing our set union operation is that is is appending the twounderlying lists together
but skipping any elements that the two lists have in common.

Next, we can use this union operation together with a disjointness test to createour disjoint union type
class, which we show in Figure4.8.

Lastly, we create a type class that represents set removal, which we showin Figure4.9. Unlike the
other type classes, this class will have an associated function that performs the removal. The first instance
states that removing an element from an empty set is just the empty set. The second states that removing an
element from a set whose head element is that element is the tail of the set. Thethird states that removing
an element from a set whose head element is not that element is the same as removing the element from the

61

classDisjoint (xs:: [∗]) (ys:: [∗])
instanceDisjoint ′[] ′[]
instanceDisjoint ′[] ys
instanceDisjoint xs ′[]
instance(ElemOf x ys False,Disjoint xs ys)

⇒ Disjoint (x ′: xs) ys

classUPlus(xs:: [∗]) (ys:: [∗]) (zs:: [∗]) | xs ys→ zs
instance(Disjoint xs ys,Union xs ys zs)⇒ UPlus xs ys zs

Figure 4.8: The Disjoint type class for establishing disjointness and the UPlustype class for performing the
disjoint union.

classSRemove(x :: [∗]) (ys:: [∗]) (zs:: [∗]) | x ys→ zswhere
sremove:: x→ (b

ys
 c)→ (b

zs
 c)

instanceSRemove x′[] ′[] where
sremove = unsafeCoerce

instance(ys∼ zs)⇒ SRemove x(x ′: ys) zswhere
sremove = unsafeCoerce

instance(SRemove x ys ys′,(y ′: ys′)∼ zs)⇒ SRemove x(y ′: ys) zswhere
sremove = unsafeCoerce

Figure 4.9: The SRemove type class removes resource types from resource type sets. It has a value-level
function as well.

62

classCategory() where

id :: b
′[]
 b

(>>>) :: (UPlus r1 r2 r3)⇒ (b
r1
 c)→ (c

r2
 d)→ (b

r3
 d)

classCategory()⇒ Arrow () where

arr :: (b→ c)→ (b
′[]
 c)

first :: (b
r
 c)→ ((b,d)

r
 (c,d))

classArrow ()⇒ ArrowChoice() where
(|||) :: (Union r1 r2 r3)⇒ (b

r1
 d)→ (c

r2
 d)→ (Either b c

r3
 d)

classArrow ()⇒ ArrowLoop() where
loop :: ((b,d)

r
 (c,d))→ (b

r
 c)

Figure 4.10: The Haskell Arrow classes redefined to permit resource types. Note that we are only including
the primitive operations and leaving out any that can be defined in terms of them (e.g.second).

tail while including the head in the result. One may note that we use a trick similar to what we did in the
TypeEqclass to test for type equality.

We need the value-level functionsremove, but it has no value-level computation, so we fix it for all
instances asunsafeCoerce:: a→ b. Although seemingly overpowered, we are using this coercion in a safe
way: not only is the function itself constrained by the class, but because itcan only be used when the type set
and the element to remove satisfy the class, we can be sure that we will not change the type into something
inappropriate.

4.7.3 Re-Typing the Arrow Operators

We now have both type level resources as well as a method to represent and operate over sets of types. What
remains is to use these types in the typing of the arrow operators, as we did in Figure4.1.

In Haskell, arrows are represented by theArrow type class, which itself is a subclass of theCategory
type class. In order to retain our ability to use arrow syntax in our code, wefollow the same pattern.3 Thus,
instead of recreating our arrows from scratch, we simply modify the existingclasses to suit our needs.

We show the code for these type classes as well as relevant portions of the ArrowChoicetype class
(which provides the choice operations) and theArrowLooptype class (for loops) in Figure4.10.4 Note that
we require the (|||) function for choice rather than the more traditional and simplerleft. Because choice
allows for a union of types, we can on longer define (|||) as a composition ofleft andright; however, we can
defineleft andright in terms of (|||).

3As we will discuss in Section4.7.6, GHC does not currently support rebindable syntax for Arrows, which means no method
of re-typing the Arrow classes will make using the arrow syntax with resource types possible. However, we show this process to
future-proof the concept, or to prepare for when this feature is supported.

4Note that the code we present is not actually valid Haskell code because we are using the symbol for our arrow. In Haskell,
a symbol like this can only be used as a binary type operator, but we use itas an operator over three types (input to the left, output
to the right, and resources above). In Haskell, we are technically forced to use a prefix type operator instead, but for the sake of
clarity and consistency with our examples, we take the liberty of using the symbol operator.

63

4.7.4 Wormholes

In our theoretical model, wormhole resources were subtly different from physical resources. Specifically,
wormhole resources were handled with a separate virtual resource environmentW . In practice, it is simpler
to instead make wormhole resources just the same as physical ones. Thus,implementing wormholes comes
down to instantiating theResourcetype class.

Ideally, we would be able to use local class instances such that we could generate new types for our
resources and then locally declare them as instances of theResourcetype class for the wormhole body.
Although local type class instances have been discussed, no version has yet made it into GHC, so we are
forced to take another approach.

We will make two new types to represent whiteholes and blackholes and provide each with a hole for a
phantom type so that we can keep their types distinct in the presence of multiplewormholes:

newtypeWhitehole r t= Whitehole(IORef t)
newtypeBlackhole r t= Blackhole(IORef t)

Within every whitehole and blackhole is a reference (anIORef) to the piece of memory that they both non-
locally share. Writing theResourceinstances is straightforward:

instanceResource(Whitehole r t) () t where
read(Whitehole ref) = readIORef ref
update = return ()

instanceResource(Blackhole r t) t () where
read = return ()
update(Blackhole ref) t = writeIORef ref t

Now that we have wormhole resources, we can consider writing theletW operator to introduce them.
We will make one change from the version we discussed earlier in the chapter. Because Haskell has no way
to simply extend the type environment for a body, we turn the body argument into a function that takes two
resource values (one for the whitehole and one for the blackhole). Thus, the type of this function will look
like:

letW:: ∀ rt r r ′ r ′′ t b c .
(SRemove(Whitehole rt t) r r ′,SRemove(Blackhole rt t) r ′ r ′′)⇒

t→ (Whitehole rt t→ Blackhole rt t→ (b
r
 c))→ b

r ′′
 c

To remove the wormhole resource types from the output resource type set, we use two instances ofSRemove.
The implementation ofletW would be straightforward to write were it not for the fact that creating a

whitehole and blackhole requires anIORef. Therefore, we must introduce one more function that our arrow
must be able to support to allow wormholes:

classArrow ()⇒ ArrowIO () where
initialAIO :: IO d→ (d→ (b

r
 c))→ (b

r
 c)

This class and its function allow an arrow to be built from the results of an initializing I/O action. A function
like this is required to build wormholes, but it also clearly breaks the guarantees of resource safety if used
incorrectly. Thus, we allow it for the implementation ofletW but expect that it is not exported to library
users.

We now give the implementation ofletW:

letW t inner= sremove(undefined:: Blackhole rt t) $
sremove(undefined:: Whitehole rt t) $

initialAIO (newIORef t)
(λ ref→ inner (Whitehole ref) (Blackhole ref))

64

Notice that this is where we make use of the value-levelsremovefunction from theSRemoveclass. Without
it, we would not be able to make the output resource set match the one returned by theinner function.

4.7.5 An Arrow Instance

We have done our best up until this point to avoid choosing any particular instance of the arrow class—
resource types should be relatively universal and applicable to many forms of arrows—but at this point in
our discussion of implementation, we will provide a sample signal function implementation.

As hinted at earlier, our implementation will be similar to the Kleisli Automaton, but we will augment
it slightly to properly deal with resources. Specifically, we will define our arrow data type as follows:

data SF r b c= SF(b→ IO (c, IO (),SF r b c))

TheSFdata type has two separate ways of dealing withIO actions rather than the single way that the Kleisli
Automaton has: the actions can be performedduring the arrow’s execution, or they can be gathered up in
the outputIO () to be performed later (betweentime steps).

Instantiating the arrow classes is trivial with this data type, and our instanceslook identical to those for
the Kleisli Automaton but withreturn() filled in for the extraIO () outputs and a simple bind (>>) whenever
two of those actions need to be combined. Indeed, that extra output becomes relevant only for resources,
such as when we are defining our default implementation ofrsf:

rsf r = SF$ λ b→ do
c← read r
return (c,update r b, rsf r)

As can be seen here, the extraIO () output allows us to delay executing theupdate actions until between
time steps, which is critical for making wormholes behave properly.

Recall from Definition1 that for a signal function to be a program, it must have type()
R
 (), and we

can write a function that will allow us to run a program:

runSF:: ()
R
 ()→ IO ()

runSF(SF sf) = do
((),action,sf′)← sf ()
action
runSF sf′

4.7.6 Limitations

There are two limitations with the implementation we have presented in this section.

Abstract Types With Wormholes

The implementation we have provided works with any concrete resource types, but it cannot always handle
arbitrary resource type sets. This means that any full program can be defined, but functions that transform
arbitrary other signal functions may be rejected by the type checker.

An example will help illustrate this point. Let’s assume we have a signal function that does some
arbitrary resource interaction with resourcesR and that has an output type that is the same as its input type:

mySF:: a
R
 a

mySF= . . .

65

Perhaps we want to wrap this with a wormhole to create a feedback loop. We can define the following:

mySFloop :: a→ (()
R
 ())

mySFloop a= letW a(λ w b→ rsf w>>>mySF>>> rsf b)

As long asmySFis defined and concrete, this will work fine.
However, as functional programmers, we may naturally want to abstract the behavior of “wrapping” a

function with a wormhole, and so we desire to write:

wrap :: (a
r
 a)→ a→ (()

r
 ())

wrap sf a= letW a(λ w b→ rsf w>>>sf>>> rsf b)

With this, we could simplifymySFloop = wrap mySF, which seems great. Unfortunately, this is impossible.
The type checker does not know whatr will be, and so it cannot verify critical steps such as whether
the whitehole or blackhole resources we create might already be part ofr. This is frustrating because we
as programmers know that the resources of a wormhole we construct will be fresh and absent from any
arbitraryr, but Haskell’s type checker is currently not up to the task of deducing this.

This limitation only appears when combining signal function transformers (such as the abovewrap
function) with uses of wormholes. Thus, we see it as an acceptable limitation for our prototype of resource
types. We believe the issue could be overcome in more dependently typed languages, so for a fully working
implementation, we must either extend or abandon Haskell.

Rebindable Syntax

Currently, arrow syntax in GHC is activated by the “arrows” language pragma and is fairly restrictive: GHC
expects all arrows to follow a particular form, and that form cannot change through a segment of arrow
syntax. With resource-typed arrows, the arrow’s type may change withinarrow syntax—indeed it will if any
rsf operations are within the syntax. GHC sees this as an error.5

Unlike the type removal from the previous limitation, this one is entirely surmountable. In fact, there is
even a template from which to begin working: monadic rebindable syntax. Therebindable syntax extension
to GHC allows one to declare his own Monad class, and then GHC will follow it exactly, even if it calls for
the type of the monad to change within the syntax. Although no effort has been made to write this extension,
it should not only be possible, but we expect it to be straightforward, if timeconsuming.

Additionally, this limitation even has a currently available workaround. AlthoughGHC does not support
rebindable syntax for arrows, Paterson’s originalarrowp arrow preprocessor6 does. Therefore, a user who
desires resource types along with arrow syntax can instead remove the “Arrows” language pragma from their
source file and run it througharrowp before handing it off to GHC. The error messages tend to be more
challenging to comprehend, and it is more of a hassle to use, but it is a technically working alternative.

5One may note that the code shown in this entire Haskell Implementation sectionnever explicitly uses Haskell’s arrow syntax,
and this rebindable syntax restriction is the reason why.

6Available on Hackage athttps://hackage.haskell.org/package/arrowp.

66

https://hackage.haskell.org/package/arrowp

Chapter 5

Asynchronous Functional Reactive
Processes

5.1 Considering Asynchrony

Arrowized functional reactive programming is naturally synchronous: components are connected via com-
position, and those connections describe a synchronous flow of information. In other words, if a signal
function has an output type ofα then it can be composed with another that has an input type ofα , and every
output from the first is synchronously fed to the second. In fact, evenif no datais being conveyed along one
of these connections, as would be the case ifα were(), there is still a sense oftime that is communicated.
Thus, to create asynchronous signal functions, we need to consider an entirely new connection method: we
must consider how we can construct a connection that somehow dissociates time from data.

5.1.1 Wormholes Revisited

Of course, we have already discussed the answer previously; ratherthan use default composition for our
asynchronous connections, we use specially designed wormholes that apply a time dilationover their con-
tents, warping those contents to match the timing of their output. Where synchronously there would be
a unit delay between the blackhole’s inputs and the whitehole’s outputs, asynchronously, there must be a
different sort of effect on time. Instead of the whitehole emitting exactly what the blackhole accepted, it will
emit a stretched out or compressed image of it depending on the nature of time inits output. For example,
if a sine wave were passed through a wormhole from one process to another running at half the speed (in
a discrete realm, this would correspond to it experiencing half as many time steps per second), then the
receiving process would perceive the frequency of that sine wave as twice as fast.

Of course, the fundamental nature of the wormhole will not change—evenwith this new model, if the
two ends of the wormhole share the same notion of time (i.e. are in the same process), then this will simplify
to the same unit delay that we started with.

Operationally, we can achieve this in a discrete model by allowing the underlying data structure of
the wormhole to sometimes return nothing (indicating a stretching of time, or that no new data has been
generated from the blackhole since the last whitehole access) and other times return multiple elements (a
compression of time, in which multiple elements have “queued up”). Thus, we build our wormholes atop a
queue structure, which we model using a list.

Interestingly, we generally do not need to worry about how large this list can get or other common
issues of buffering. Because wormholes are designed to be read only by one source (the whitehole), we
do not need to keep any buffer history between whitehole accesses. Thus, the amount that the buffer can

67

grow is governed by the number of times its blackhole is written to before its whitehole is read, which
is typically predictable and fairly well bounded. Of course, one can design a pathological case where the
process writing to the blackhole stalls indefinitely, but as long as the system behaves fairly, this should not
be a realistic problem.

The letW operator changes slightly to reflect this. The blackhole resource remainsthe same, but the
whitehole resource will now be of type〈(),List t〉. Additionally, as the underlying data type is now a list,
the initial value given to the wormhole will also be a list.

Because of this underlying queue, wormholes somewhat resemble channels from other languages. Al-
though they are conceptually similar in that they both ferry data from one place to another, their use is
somewhat different. Unlike the output of a channel, from which individual data can be popped off and used,
the output from a wormhole consists of the time dilated data from another process.

5.1.2 Forking

With this model, communication between asynchronous components can, and in fact must, be done entirely

at the resource level (i.e. with wormholes). Therefore, any asynchronous process will have the type()
R
 ().

But still, we must be careful—we cannot simply compose two asynchronous signal functions together even
if their input and output types are() because any connection using standard composition would still enforce
a synchronization point.

Therefore, we introduce a new operator:

fork :: ()
R
 ()→ α R

 α

The fork operator will spawn a new process for the given signal function and allow it to run freely with its
own sense of time. In its own process, it will behave as an identity.

As mentioned above, even when inputs and outputs seem to convey no information, they are still com-
municating a sense of time; this is the case withfork as well. Although the embedded signal function is
specificallynot synchronized with the input() stream, that stream still provides a notion of time to the
asynchronous process.

This may seem confusing or irrelevant, but it has a serious impact when considered in the presence of
arrow choice. If afork operation is in a branch of a choice that is not currently active, then it is not currently
receiving any information, about time or otherwise. Therefore, it shouldnot and must not provide any sense
of time to the asynchronous process it has created. That is, if afork is in an un-taken choice branch, then
the forked process must not be active (or must be immediately terminated). Inmany ways, this is similar
to the ideas of non-interfering choice discussed in Chapter3, which dictate that if a branch is inactive, the
program as a whole should behave as if that branch does not exist.

At first glance, this seems dangerous—What if we stop a process mid-execution, leaving it in some sort
of unsafe state?—however, we can easily sidestep this issue by relying onthe fundamental abstraction of
FRP. Because we assume that instantaneous values are processed infinitely fast, then at any given point in
time, the instantaneous value is either processed entirely or not at all. Thus,we can never be “in the middle
of” anything.

Operationally, we handle this by treating each time step for a given process as a transactionthat will
either succeed completely or fail completely. Thus, if the process stops mid-execution, the transaction fails
and no effect is observable.

In total, we have a system where multiple signal functions can run independently of each others’ notions
of time and yet still communicate when needed. That is, we have a system ofcommunicating functional
reactive processes, which we refer to as CFRP.

68

5.2 Motivating Examples

Before proceeding with the formal syntax and semantics of CFRP, we provide a few examples to help mo-
tivate the design we have chosen. In these examples, we demonstrate some high level, expressive operators
that can be built using the CFRP tools. In Section5.4, we will define these operators in more detail.

5.2.1 Fork

Forking a signal function to run with its own notion of time is the most primitive asynchronous computation
that CFRP offers. That said, it is powerful and useful even on its own.

In the world of computer music, it is not uncommon to want to present a GUI to a user while simulta-
neously producing music, and indeed, FRP can be used for both. Unfortunately, the GUI will probably be
running at around 30-60 frames per second, but in order to get high quality sound, the pitch produced must
be rendered at more like 44,100 samples per second.

This thousandfold disparity would pose a problem for a synchronous FRP model, but it is exactly the
problem that the fork primitive is designed to overcome. Furthermore, we can make use of fork’s interaction
with choice to provide the user with an option to dictate whether the music should beplaying or not. If the
user opts to silence the music, the forked process will stop executing.

We will assume two domain specific signal functions: a widget that producesa selection option (select::

String→ (() Bool)) and a sound player (playSound:: ()
{Speakers}
 ()). With these, we define:

musicGUI:: ()
{Speakers}
 ()

musicGUI= proc ()→ do
b← select“Play music?”−≺ ()
if b then fork playSound−≺ () elsereturnA−≺ ()

While the selection isTrue, theplaySoundfunction will proceed at its own time rate in its own process, but
when the user sets it toFalse, it will stop and the process will stop as well.

5.2.2 Asynchrony in network packet maps

Although the forking from the above example is useful, CFRP can also handle the more interesting case
where the asynchronous processes need to communicate as well. For example, in the realm of networking,
one may have two signal functions, one for determining an incoming packet’sdestination and another for
examining the packets to determine an optimal network map. Every network map is guaranteed to be correct,
so it is acceptable to use an old map when routing, but it is essential that the system routes packets as fast
as possible. Even though creating the network map may take a long time, a fully synchronous system will
force packets to wait whenever the map is being recalculated, but with CFRP, we can construct new maps in
an asynchronous process that experiences time more slowly, allowing us toretain fast routing performance.

We might describe this scenario with the data typesPacket, Dest, andMap and the signal functions
route:: (Packet,Map) DestandmakeMap:: Packet Map. Using arrow syntax, we can write the syn-
chronous version:

router :: Packet Dest
router= proc p→ do

m←makeMap−≺ p
d← route−≺ (p,m)
returnA−≺d

This router will executemakeMapfor everyPacket, slowing down packet routing severely. Even with a
modified makeMap′ :: (List Packet) Map that accepts batches of packets, we will get an intermittent

69

slowdown; for example, ifmakeMap′ ran on batches of ten packets, then every tenth packet would be
delayed while the map was being created.

Instead, we can create anasyncoperator that will automatically forkmakeMap′ to its own asynchronous
process and provide wormholes for communication between the processes. With makeMap′ running with
its own, slower notion of time on the other end of a wormhole from the main process, the stream ofPackets
it receives will be compressed and theMaps that it produces expanded. Operationally, this means that
new Packets will queue up in the input wormhole, and as soon asmakeMap′ finishes oneMap, it will
collect the queuedPackets and begin working on the next one. Meanwhile,route will run quickly on
eachPacketand automatically see newMaps whenever they are created. Theasyncoperator has the type
async:: (List α β)→ (α List β) and we will define it from CFRP primitives in Section5.4.1once we
present the language more fully. That said, we can use it now to code an asynchronous version of the router:

router :: Packet Dest
router= letW rw rb (mdefault : ε) in proc p→ do

mnew← async makeMap′−≺ p
mprev← rsf rw−≺ ()
let m= if null mnew then head mprev elsehead mnew

()← rsf rb−≺m
d← route−≺ (p,m)
returnA−≺d

Note that we use a supplementary wormhole initially supplied with a default map simplyto keep track of
state during a time step. That is, the wormhole feeds the old map back to the beginning of the process in
case no new map is ready by the next time step.

5.2.3 Speculative Parallelism

One of the benefits of non-deterministic asynchrony is the ability to perform multiple operations at once and
observe which is fastest. In particular, we can start two tasks, and whenone of them finishes, we can accept
the value it returns and ignore or even cancel the other task. This is calledspeculative parallelism.

Let us assume we have two signal functions that represent our two tasks. In synchronous FRP, these two
signal functions will both compute their results in one time step, and even if one finishes first, the program
will wait for the other. One option to try to address this is to allow the signal functions to take multiple time
steps to complete. That is, we can let the input be an event stream that is assumed to only ever provide a
one-time “impulse” event and allow the output to likewise be an event stream that will only return a value
when it has taken enough steps to have produced that value.

Even with events and the ability to delay returning a value, synchronous FRPmodels will not work
properly because the two signal functions will still proceed in lock-step. Even though one may finish before
the other, their synchronization on each step will prevent one with many fast steps from ever beating one
with a few computationally intensive steps.

The asynchronous nature of forking can overcome this hurdle. Because we can allow each signal func-
tion to run with its own time, we can actually observe which is faster, even if it is theone that takes more
time steps. Thus, we can provide a function for speculative parallelism:

spar:: (Eventα Eventβ)
→ (Eventα Eventγ)
→ (Eventα Event(β + γ))

Whenspar e1 e2 is given an impulse, it will fork bothe1 ande2. Eventually, some time later, it will produce
an event that is either aLeft β if e1 finished first or aRightγ if e2 did. At that point, it will stop both signal

70

functions and produce no more events. Thesparfunction can be defined from CFRP primitives, and we will
show this definition in Section5.4.3.

As a practical case, we can once again consider the network routing mapsfrom our previous example.
Let us assume that there are two different implementations ofmakeMap′: one that spends a brief time step
on each packet in its batch, incorporating the packets into the map one by one, and the other that creates a
map out of the batch of packets and then merges that in its entirety to the older mapall in one long time
step. Which approach is faster may be indeterminable at the outset, so we would like to run both and use the
result from whichever finishes first. Withspar, this is trivial.

5.2.4 Parallel Composition

Although asynchrony typically implies nondeterminism (as in the previous examples), we can also use it to
define a certain class of deterministic, concurrent scenarios such as a parallel, no-feedback function pipeline.
As long as there is no feedback, the parallel composition of two signal functions is possible because the first
one can begin work on the “next” value while the second one is still working on the “current” value. In fact,
whole chains of signal functions can be parallelized in this way. Of course, this mentality assumes discrete
events, and so we must restrict this procedure to only apply to event streams.

For this example, let us assume we have a signal function producing data to process, two signal functions
for computation, and a signal function for delivering output:

source:: ()
{src}
 Eventα

sf1 :: Eventα Eventβ
sf2 :: Eventβ Eventγ

sink:: Eventγ
{snk}
 ()

Note the use of resourcessrcandsnk.
Rather than simply compose these all in series, we can asynchronize each one, but instead of relying on

a master thread to manage the others, we use the parallel composition operator:

(>|>) :: (α Eventβ)→ (Eventβ ())→ (α ())

which we will define in Section5.4.2. Note that the type of>|> is similar to that of simple composition.
With it, we can connect the output of one signal function directly to the next one and still reap the benefits
of parallelism:

pipeline:: ()
{src, snk}
 ()

pipeline= source>|> sf1 >|> sf2 >|> sink

For a practical case, consider an FRP implementation of a program interpreter. Program interpreta-
tion proceeds through a number of steps: perhaps parsing, optimizing, and evaluating. While optimizing
one piece of code, we could theoretically start parsing the next, but standard synchronous composition of
these steps would force us to wait until each code event is optimized and even evaluated before we can
begin parsing the next one. However, because parsing depends on neither optimization nor evaluation and
optimization does not depend upon evaluation, we can connect these with>|> instead of>>> and see a
performance improvement.

71

Typ τ ::= . . .

| τ1
{r1,...}
 τ2 resource typed SF

Var v
Exp e ::= . . .

| arr e SF construction
| first e SF partial application
| e1>>>e2 SF composition
| e1 |||e2 SF choice
| fork e SF fork
| rsf r SF resource interaction
| letW rw rb ei in e wormhole introduction

Env Γ ::= v1 :: τ1, ...,vn :: τn type environment
Res r
RTp t ::= 〈τin,τout〉 resource type
REn Ψ ::= r1 :: t1, ..., rn :: tn resource environment

Figure 5.1: The CFRP extension toL {→×+}.

5.3 The Language

5.3.1 Syntax

Once again, we will start withL {→×+}, the basic lambda calculus extended with product and sum types
and general recursion that we introduced in Chapter2.2 and extend it further with arrow operations, re-
sources, and wormholes1. This extension is shown in Figure5.1.

We letτ range over types,v over variable names,e over expressions, andΓ over environments. A type
judgmentΓ ⊢ e :: τ indicates that it follows from the mappings in the environmentΓ that expressione has
typeτ. Sums, products, and functions satisfyβ - andη-laws. Further, we letr range over resources,t over
resource types, andΨ over resource environments.

Lastly, we define processes that CFRP supports, and note that CFRP can run any process as a top level
program:

Definition 4 (Process). An expression e is aprocess if it has type()
R
 () for some set of resources R.

5.3.2 Typing Rules

The part of the language not associated with resources and signal functions (that is,L {→×+}) is necessary
but tangential to our discussion, and as such, we omit the typing rules and semantics. It suffices to say that
they are as expected for a non-strict, functional language.

The seven signal function expressions allow the construction of complex signal functions in CFRP. The
rules are presented in Figure5.2, and we will examine the new or altered ones in more detail here:

• The TY-FORK rule states that a forked signal function must have type()
R
 (). The whole expression

acts as the identity signal function to its streaming input.

1We will additionally use the notationε for the empty list, : for construction, and++ for appending two lists.

72

TY-ARR
Γ ⊢ e :: α → β

Γ;Ψ ⊢ arr e :: α /0
 β

TY-FIRST
Γ;Ψ ⊢ e :: α R

 β

Γ;Ψ ⊢ first e:: (α× γ) R
 (β × γ)

TY-COMP

Γ;Ψ ⊢ e1 :: α R1
 β Γ;Ψ ⊢ e2 :: β R2

 γ
R1⊎R2 = R

Γ;Ψ ⊢ e1>>>e2 :: α R
 γ

TY-CHC

Γ;Ψ ⊢ e1 :: α R1
 γ Γ;Ψ ⊢ e2 :: β R2

 γ
R1∪R2 = R

Γ;Ψ ⊢ e1 |||e2 :: (α +β) R
 γ

TY-FORK
Γ;Ψ ⊢ e :: ()

R
 ()

Γ;Ψ ⊢ fork e:: α R
 α

TY-RSF

(

r :: 〈τin,τout〉
)

∈Ψ

Γ;Ψ ⊢ rsf r :: τin
{r}
 τout

TY-LETW
Γ;Ψ, rw :: 〈(),List τ〉, rb :: 〈τ ,()〉 ⊢ e :: α R′

 β
Γ;Ψ ⊢ ei :: List τ R= R′ \{rw, rb}

Γ;Ψ ⊢ letW rw rb ei in e :: α R
 β

Figure 5.2: The typing rules for the CFRP signal functions.

73

• The TY-LETW rule is for wormhole introduction. It says that the body of the wormhole is a signal
function provided that two resources are added toR: one of the form〈(),List τ〉 (the whitehole) and
one of the form〈τ ,()〉 (the blackhole) whereList τ is the type ofei . The result of the whole expression
is the same as that of the body except that the two new resources are removed from the resource set.
This omission is valid because the virtual resources cannot escape the wormhole expression.

5.3.3 Operational Semantics

The operational semantics for CFRP are broken up into two main transitions: theevaluation transition
for evaluating basic lambda calculus and thefunctional transitionfor interpreting the flow of data through
the component signal functions of the program through time. Beyond thesetwo, we have theexecutive
transition, a one judgment transition that defines the course of program execution.Thus, we present the
following three transitions:

e 7→ e′ Evaluation transition
(S,T,R,W) ⇛ (S′,T ′,R ′,W ′) Functional transition
(T,R,W) ⇓ (T ′,R ′,W ′) Executive transition

whereeare expressions,Sare program states,T are process maps,R are resource maps, andW are worm-
hole maps.

These semantics follow a similar three-tier system to the semantics for synchronous FRP with resource
types from Chapter4.5. However, where the synchronous semantics use a big-step transition for the middle
tier, we use a small step, which allows us to merge the synchronous “temporal”transition right into the func-
tional transition. Furthermore, the small step semantics are critical for being able to express the interleaving
of processes that is necessary in describing the asynchrony inherent in CFRP.

Evaluation Transition

The evaluation transition is used to evaluate the non-streaming components of CFRP. n an effort to conserve
space, we take as given a classic, non-strict, functional semantics for lambda expressions and application,
product-type pairs and projection, sum-type case analysis and injection, and list-type construction and case
analysis. Furthermore, we simply let all seven signal function expressions of CFRP go “unevaluated” so
that they can be handled fully in the functional transition.

CFRP has a standard Canonical Forms Lemma associated with it that explains that for each type, there
are only certain expressions that evaluate to a value of that type. The relevant portion of this lemma for our
purposes is as follows:

Lemma 2 (Canonical Forms). If e is a value and e:: α R
 β , then e is either an SF constructor, an SF partial

application, an SF composition, an SF choice statement, a fork, a resourceinteraction, or a wormhole
introduction.

Functional Transition

The functional transition is a small-step, stack-based transition that details how signal function expressions
behave. Not only does it describe how a signal function handles an instantaneous value of input, but it also
governs the conceptual passage of time and applies a code transformation, updating the program itself when
certain code segments are executed.

With four inputs and outputs, the functional transition looks rather complex, but in actuality, no single
judgment uses all of the inputs. Therefore, we will occasionally omit matchinginputs and outputs for a
given judgment with the implication that the judgment holds them constant.

74

FR-FIRST
(·,z) frame

FR-COMP1
(·>>>e2) frame

FR-COMP2
(e1>>> ·) frame

FR-CHC1
(· |||e2) frame

FR-CHC2
(e1 ||| ·) frame

Figure 5.3: The stack frames for the functional transition.

The first argument to the transition is the program state, which is used by every judgment in the transi-
tion. The program state consists of a control stackK, an expressione, a streaming valuev, and update data
U and can come in one of two forms:

1. An evaluation stateof the formK⊲ (e,v,U) corresponds to the evaluation of signal functione with
instantaneous streaming valuev and update dataU relative to a control stackK.

2. A return stateof the form K ⊳ (e,v,U) corresponds to the evaluation of a stackK with possibly
transformed signal functione, resulting instantaneous streaming valuev, and update dataU .

The control stackK represents the context of evaluation and is represented as a list offrames. The possible
frames are shown in Figure5.3, and we use the operator ; to add frames to the stack.

The setU contains pairs of resources along with input data for those resources.This is necessary because
writing to resources happens conceptuallybetweentime steps, and soU acts as a buffer that accumulates
resource writes until they are ready to be written.

The judgments for the most basic arrow expressions (SF construction, partial application, and com-
position) utilize only the program state. We show them in Figure5.4 without the clutter of the other of
the transition’s arguments where it is assumed that the other parameters proceed through the transition un-
changed. Furthermore, as these judgments are relatively straightforward, we omit a detailed description of
them.

The second argument to the functional transition,T, is a mapping from process identifiers to program
states and is used to represent the currently running processes. It is necessary for forking new processes, as
seen in the following two judgments to handle thefork operator:

FT-FORK
p fresh, T ′ = T[p 7→ ε⊲ (e,(), /0)]

(K⊲ (fork e,x,U),T)⇛ (K⊳ (fork e p,x,U),T ′)

FT-FORKp
T ′ = if p∈ Dom(T) then T elseT[p 7→ ε⊲ (e,(), /0)]
(K⊲ (fork e p,x,U),T)⇛ (K⊳ (fork e p,x,U),T ′)

Note that we allow thefork operator to take an optional additional process identifier argument. Thus,in the
judgment FT-FORK, we fork a new process with a fresh process ID, and in the FT-FORKp judgment, the
identifier is available. Although in this second judgment we know that we have forked before, we still must
check to see if the forked process is inT in case it was terminated due to a choice statement. Also, note that
this judgment assumes thatR andW are held constant through the transition.

The parallel judgments to the FT-FORK ones are those for governing the behavior of choice (|||). Recall
that CFRP utilizes the ideas of non-interfering choice to allow the branching decision to affect the program
behavior. Specifically, any forked processes from an un-taken branch of a choice expression are terminated.
In order to express this behavior, we make use of the following meta-level function overT:

getChildrenOf :: T→ (α R
 β)→ T

75

FT-EVAL
e 7→ e′

(K⊲ (e,x,U))⇛ (K⊲ (e′,x,U))

FT-ARR
(K⊲ (arr e,x,U))⇛ (K⊳ (arr e,e x,U))

FT-FIRST1
x 7→ x′

(K⊲ (first e,x,U))⇛ (K⊲ (first e,x′,U))

FT-FIRST2
(K⊲ (first e,(x,z),U))⇛ (K;(·,z)⊲ (e,x),U)

FT-FIRST3
(K;(·,z)⊳ (e,y),U)⇛ (K⊳ (first e,(y,z),U))

FT-COMP1
(K⊲ (e1>>>e2,x,U))⇛ (K;(·>>>e2)⊲ (e1,x,U))

FT-COMP2
(K;(·>>>e2)⊳ (e1,y,U))⇛ (K;(e1>>> ·)⊲ (e2,y,U))

FT-COMP3
(K;(e1>>> ·)⊳ (e2,z,U))⇛ (K⊳ (e1>>>e2,z,U))

Figure 5.4: The functional transition judgments for the standard arrow combinators. The process data (T),
resource map (R), and wormhole map (W) are all assumed to be held constant.

ThegetChildrenOf function takes a process data map and a signal function and returns the set of process data
that the given signal function has caused to be forked. It is used in the judgments describing the behavior
choice as seen in Figure5.5. The FT-CHC∗ judgments show the functioning of the choice operator. For the
most part, this behavior is typical of non-interfering choice, but we take one additional step. When choosing
the left or right branch (in FT-CHCl1 or FT-CHCr1), we remove all processes fromT that were produced by
the other branch.

The last two arguments to the functional transition are associated with resources. The mappingR maps
resources to resource data. Each resource may have a different type of resource data, but regardless, the
resource and its data must implement the following two functions:

read :: 〈τin,τout〉 → Data→ τout

update :: 〈τin,τout〉 → Data→ τin→ 〈τin,τout〉

whereData represents the associated data type for the given resource. Theread function returns the current
output value of the given resource, merely “peeking” at what is there without affecting it in any way. The
update function takes an input value for the resource and returns an updated version of that resource. In
practice, as can be seen in the transition judgments, calls to these functions willgenerally be of the form
read r R(r) and similar forupdate. As might be expected, reading can happen at any time, but updating
only happens at a time step.

Because wormholes need to share an internal sense of state, we cannotsimply add two resources toR.
Instead, we use a layer of indirection in the form ofW . We create a dummy resource inR that contains the
wormhole state and then useW to map both the blackhole and whitehole virtual resources to that dummy.
We additionally include an identifier (either “W” or “B”) to keep track of whether this resource is from a
whitehole or blackhole.

76

FT-CHCe
x 7→ x′

(K⊲ (e1 |||e2,x,U),T)⇛ (K⊲ (e1 |||e2,x′,U),T)

FT-CHCl1
T ′ = T \ (getChildrenOf T e2)

(K⊲ (e1 |||e2,Left x,U),T)⇛ (K;(· |||e2)⊲ (e1,x,U),T ′)

FT-CHCl2
(K;(· |||e2)⊳ (e1,z,U),T)⇛ (K⊳ (e1 |||e2,z,U),T)

FT-CHCr1
T ′ = T \ (getChildrenOf T e1)

(K⊲ (e1 |||e2,Right y,U),T)⇛ (K;(e1 ||| ·)⊲ (e2,y,U),T ′)

FT-CHCr2
(K;(e1 ||| ·)⊳ (e2,z,U),T)⇛ (K⊳ (e1 |||e2,z,U),T)

Figure 5.5: The functional transition judgments for choice. The resourcemap (R) and wormhole map (W)
are assumed to be held constant.

FT-RSFr
r ∈R U ′ = (r,x) : U y= read r R(r)

(K⊲ (rsf r,x,U),R,W)⇛ (K⊳ (rsf r,y,U ′),R,W)

FT-RSFw
r ∈W U ′ = (r,x) : U y= read r R(fstW (r))
(K⊲ (rsf r,x,U)R,W)⇛ (K⊳ (rsf r,y,U ′)R,W)

FT-LETW
r fresh R ′ = R[r 7→ (ε ,ei)] W ′ = W [rb 7→ (r,B), rw 7→ (r,W)]

(K⊲ (letW rw rb ei in e,x,U),R,W)⇛ (K⊲ (e,x,U),R ′,W ′)

FT-TIME

R1 = R
[

r 7→ update r R(r) x | (r,x) ∈U, r ∈R
]

R2 = R1
[

r 7→ update rb R1(r) x | (rb,x) ∈U,W (rb) = (r,B)
]

R3 = R2
[

r 7→ update rw R2(r) x | (rw,x) ∈U,W (rw) = (r,W)
]

(ε⊳ (e,(),U),R,W)⇛ (ε⊲ (e,(), /0),R3,W)

Figure 5.6: The functional transition judgments that include resource and wormhole management. The
process data (T) is assumed to be held constant.

The wormhole resource state consists of a pair of queues(b,w), whereb is the accumulation of blackhole
data andw is the next readable value for the whitehole. We define theread andupdate for wormhole
resources as follows:

read rw (b,w) = w
update rw (b,w) () = (ε , b)

read rb (b,w) = ()
update rb (b,w) x = (b;x, w)

The functional transitions that make use ofR andW are the most critical transitions of CFRP, and
they can be seen in Figure5.6. These judgments behave as expected given our intuitive descriptions ofthe
operations from the beginning of the chapter and the immediately preceding descriptions of the parameters,
with two notes:

• Once virtual resources are added toW and R by the FT-LETW judgment, they will not need to
be added again, so the expression is modified to exclude theletW operator on return. Despite this,

77

ε ⊲⊳ e= e
K;(·,z) ⊲⊳ e= K ⊲⊳ first e

K;(·>>>e2) ⊲⊳ e= K ⊲⊳ e>>>e2

K;(e1>>> ·) ⊲⊳ e= K ⊲⊳ e1>>>e
K;(· |||e2) ⊲⊳ e= K ⊲⊳ e|||e2

K;(e1 ||| ·) ⊲⊳ e= K ⊲⊳ e1 |||e

Figure 5.7: The definition of the frame application operator⊲⊳ used by the unwinding operator#.

wormholes cannot be created entirely with a pre-processor due to the fact that a process that is forked,
terminated, and then forked again must recreate its wormholes. As this is a dynamic operation, it must
be handled here.

• Rather than deal with a particular form of an expression, the FT-TIME judgment handles the case
where the program is in areturn state with an empty control stack. This state signifies that the signal
function has run its course for this time step. All update data inU is processed, updatingR as
necessary, and the program begins again with the program state changing from return to evaluation
and a new empty set of update data.

Structural Preservation of the Functional Transition

The purpose of having an expression in thereturn program state in the functional transition is to allow
the transition to apply a code transformation. This transformation is useful to allow wormholes that have
been executed to not be executed again in the future. We assert that this transformation will not negatively
impact the behavior or functionality of the code, but to state this more precisely, we first define a notion of
unwindinga program state.

Definition 5 (Unwinding). If S is a program state of either the form K⊲(e,v,U) or K⊳(e,v,U), then S# e′

(read Sunwindsto e′) where e′ = K ⊲⊳ e. (The⊲⊳ operation is shown in Figure5.7.)

Basically, this gives us a way to examine the entire program so that we can compare it before and after
any transformations. We use this to show that our transformation affects theprogram in only very specific
ways.

Theorem 4(Structural Preservation). If S is a program state, S#e:: α R
 β and(S,T,R,W)⇛ (S′,T ′,R ′,W ′),

then S′# e′ :: α R′
 β such that e′ will be identical to e except that:

• There may be code in e′ that has been further evaluated by the evaluation transition than in e (as per
FT-EVAL),

• Wormhole expressions in e may be replaced by their bodies in e′ and there are corresponding updates
in W ′ andR ′ (as perFT-LETW).

The proof of this theorem follows directly from an analysis of the functional transition judgments.

Program Execution

With the functional transition well defined, we can discuss the overall execution of a program in CFRP.
Because of the asynchrony inherent in the language, we intuitively wantto think of the program as running

78

multiple signal functions at once. However, we describe it technically as only one process running at a time,
with a non-deterministic choice between which one runs.

The following judgment describes the executive transition, which defines program execution:

EXEC

(p,S) ∈ T
(S,T \{(p,S)},R,W)⇛ (S′,T ′,R ′,W ′)

(T,R,W) ⇓ (T ′∪{(p,S′)},R ′,W ′)

Note that the choice of(p,S) from T is made non-deterministically and fairly. Thus, this transition arbitrarily
chooses a process and runs one step of its execution. The returned process data is the setT ′, itself a result
of the functional transition, extended with the process that just ran(p,S′).

We can define the execution of a whole program as a sequence through this EXEC transition as follows:

Definition 6 (Program Execution). Program execution is the application of the reflexive transitive closure
over theEXEC transition⇓ starting with initial parameters T= {(p,ε⊲ (e,(),ε))}, R = Ro, andW = /0
where p is a fresh process ID, e is a process, andRo is an initial mapping of resources representing those
of the real world.

5.4 Concurrency Operators

In Section5.2, we showed some examples of the higher level constructs that can be built inCFRP. Now that
we have defined the syntax of CFRP, we will define these constructs and display their underlying principles.

5.4.1 Asynchrony

Asynchrony is trivially available in CFRP via theforkprimitive. That said, it allows no direct communication
between processes. However, by usingfork in conjunction with wormholes, we can easily create anasync
operator:

async::
(

List α R
 β

)

→
(

α R
 List β

)

async sf= letW rwi rbi ε in letW rwo rbo ε in (fork g>>> f)
where f= rsf rbi >>> rsf rwo

g = rsf rwi >>>sf>>> rsf rbo

Quite simply,asynccreates two wormholes, one for input values and one for output values,and then uses
them like channels between the main process and the forked process.

5.4.2 Parallel Composition

In Section5.2.4, we examined a signal processing pipeline that made use of parallelizing composition to link
together different signal functions such that they could each processas fast as possible. This>|> function
essentially creates two forked processes: one to do the parallel job and one to accept the result of that job.

(>|>) :: (R1∪R2 = R,R1∩R2 = /0)⇒
(

α R1
 Eventβ

)

→
(

Eventβ R2
 ()

)

→
(

α R
 ()

)

sf1 >|> sf2 = letW rw rb ε in (fork g>>> f)
where f= sf1>>> rsf rb

g = buffer(rsf rw)>>>sf2

To simplify the definition of this function, we have made use of the functionbuffer, which is shown in
Figure5.8. Thebuffer function takes a signal function that returns aList of Events and converts it into a

79

buffer::
(

α R
 List (Eventβ)

)

→
(

α R
 Eventβ

)

buffer sf= letW rw rb (ε : ε) in proc x→ do
(b :)← rsf rw−≺ ()
elementsnew← sf−≺x
case(b++compress elementsnew) of

ε → do ← rsf rb−≺ ε
returnA−≺ r

(y : ys)→ do ← rsf rb−≺ys
returnA−≺y

compressε = ε
compress(NoEvent: rst) = compress rst
compress(Event x: rst) = Event x: compress rst

Figure 5.8: Thebufferfunction.

signal function that returnsEvents one at a time. Essentially, the list is compressed to just its events—if
there are more than one, then they are buffered and returned one at a time, and if there are none and the
buffer is empty, thenNoEventis returned.

As long as there are no wormholes or resources permitting the flow of information from e2 back to
e1, then>|> can provide something resembling deterministic parallelism even though it is made of only
non-deterministic, asynchronous components.

5.4.3 Speculative Parallelism

In Section5.2.3, we discussed the idea of speculative parallelism and that it can be achieved in CFRP. In
Figure5.9, we show the definition of thesparfunction.

The spar function starts by creating a new wormhole that it uses to keep track of whether it should
continue or not. If it should continue, then it sends the impulse event streamto asynchronized versions of
its two input signal functions and observes their buffered outputs. Because we only expect a single event in
the output, we can buffer them simply to reduce the type fromList (Eventα) to Eventα . If either signal
function produces an event, then we return it and setcontinueto Falseby sendingFalseinto the blackhole.
the wormhole. Otherwise, we setcontinueto Trueand outputNoEvent.

If the wormhole indicates that the speculative parallelism is complete (that is, ifcontinueis False), then
we choose the second branch, which simply reasserts that we should notcontinue and outputsNoEvent.
Note that by choosing the second branch, we are also effectively haltingthe progress of the asynchronized
processes, preventing any unneeded computation if one of the processes is still trying to produce an output.

5.5 Language Properties

CFRP satisfies two important properties that we highlight in this section: resource safety and resource
commutativity. We will provide an intuitive sense for these two properties, buta formal treatment can be
found in AppendixA.4.

We begin with a concept of amoment in time. One moment is the computation between time steps that
a given CFRP process executes. The idea of a moment in time comes from the fundamental abstraction of
FRP, in that one moment represents the simultaneous execution of all data with the same time stamp.

80

spar:: (R1⊎R2 = R)⇒
(

Eventα R1
 Eventβ

)

→
(

Eventα R2
 Eventγ

)

→
(

Eventα R
 Event(β + γ)

)

spar sf1 sf2 = letW rw rb (False: ε) in proc a→ do
(continue:)← rsf rw−≺ ()
if continue|| isEvent athen do

el ← buffer(async(arr collapse>>>sf1))−≺a
er ← buffer(async(arr collapse>>>sf2))−≺a
case(e1,er) of

(Event b,)→ do ← rsf rb−≺False
returnA−≺Event(Left b)

(,Event c)→ do ← rsf rb−≺False
returnA−≺Event(Right c)

→ do ← rsf rb−≺True
returnA−≺NoEvent

else do
← rsf rb−≺False

returnA−≺NoEvent

collapseε = NoEvent
collapse(NoEvent: rst) = collapse rst
collapse(Event x: rst) = Event x

Figure 5.9: Thesparfunction.

81

The notion of resource safety starts with the guarantee that a signal function of typeα R
 β will not

interact with any resourcer 6∈ R. That is, resources that are not represented in the type of a signal function
will not be read or updated by that signal function.

This idea extends in two directions. First, we can consider the ramifications of this in an asynchronous
setting. Resource safety gives us the guarantee that no two processescan interact with the same resources,
which in turn means that multiple processes cannot encounter any of the typical problems of resource con-
tention.

In another direction, we can look at resource safety from a temporal perspective and state that within
any given moment in time, a process cannot interact with any resource morethan once. This satisfies the
fundamental abstraction nicely: if the same resource were accessed twiceat the same time, then there must
be an ordering to its access, but any ordering would imply that the moment itselfwas not processed entirely
simultaneously.

An extension to the idea of resource safety is that of resourcecommutativity. Once again, this comes
from the fundamental abstraction. If the order of access of two resources within the same moment makes a
difference, then this implies an ordering within the moment, which in turn implies a lackof simultaneity.

CFRP has both resource safety and commutativity.

5.6 Blocking

One might think that it would be useful to allow blocking in CFRP, and indeed, an ability to block would
be critical to a high performance implementation of CFRP. Furthermore, blocking would allow two asyn-
chronous processes to resynchronize, essentially providing the ability todo synchronized parallelism.

5.6.1 Blockingrsf

One method to achieve blocking would be to include a new version of thersf operator: ablockingresource
signal function, which we could callbrsfand would have the following typing rule:

TY-BRSF

(

r :: 〈τin,List τout〉
)

∈Ψ

Γ;Ψ ⊢ brsf r :: τin
{r}
 τout

Notice thatbrsf requires its resource to have an output type that is a list but that it returnsthe output of only
a single element. The idea here is thatbrsfwill block while the resource provides an empty list and will then
provide values one at a time as they appear.

If used on a standard resourcer, brsf r will only progress through time and return a value whenr
produces a value. It cannot be used on a blackhole (the outputs type ofa blackhole resource is not a list),
but on a whitehole, it will provide one datum that was provided by the blackhole.

With the brsf operator, it becomes possible to resynchronize two asynchronous processes. Instead of
having the two processes communicate via two wormholes accessed withrsf, like we did when defining
the asyncfunction (in Section5.4.1), we let the whitehole resources of both wormholes be accessed with
blocking. This forces both processes to wait for each other to proceed, giving them a synchronous behavior.

The main drawback of thebrsf operator and its design is that we lose our strongest guarantees in its
presence: it breaks the fundamental abstraction of FRP. That is, to usethe parlance of the previous section,
a use ofbrsfwill interrupt amoment in time. Thus, despite its apparent usefulness, we omit it and any other
blocking operators from the language.

82

brsf :: (r :: 〈x,List y〉)→ (y
R
 z)→ (x

R∪{r}
 Event z)

brsf r sf
def
= letW rw rb ε in proc x→ do

y← rsf r−≺x
prev← rsf rw−≺ ()
case(concat prev++y) of

ε → returnA−≺NoEvent
(y′ : ys)→ do ()← rsf rb−≺ys

z ← sf−≺y′

returnA−≺Event z

Figure 5.10: A potential definition ofbrsf. Note that theconcatfunction will concatenate the elements of a
list of lists into a single list.

5.6.2 Simulated Blocking

Because of the power of non-interfering choice, we can design a localversion of blocking that does not
disrupt our sense of time and thus preserves the fundamental abstraction.

Consider the definition ofbrsf given in Figure5.10. In our semantics, resources cannot be treated as
they are here (as first class values that could be arguments to functions), so this is not a function we could
ordinarily define, but it presents an interesting idea. Once per moment in time (or in other words, on each
iteration of this signal function), the given resourcer is accessed. If it returns an empty list, this indicates
that it has no ready data, and the first branch of the case statement takeseffect; in this branch, the argument
signal function is not run. However, if there is data, then the signal function is run. Furthermore, the data
gets buffered by the wormhole, meaning that if accessingr returns too much, the data is fed tosfslowly, one
element at a time.

This version ofbrsfdoes not break the fundamental abstraction, but it is also somewhat weaker than true
blocking. This is because true blocking has a non-local effect on its process, preventing the entire process
from doing anything while the blocking occurs. However,brsfwill only prevent the argument signal function
from acting, and it will have no effect on any other signal function in this process (e.g. the compositional
context).

One consequence ofbrsf’s weak form of blocking is that it may often have a negative performance
impact on the programs that make use of it. That is, when abrsf is blocking, its behavior mimics “busy-
waiting,” where it continues to loop even though it is accomplishing nothing. This is entirely necessary
when the compositional context should run regardless of the blocking, but it seems unfortunate in most
cases. Thus, implementations of CFRP are encouraged to provide a special combination of forking and
blocking that can assure there is no compositional context to the blocking in the forked process and then use
true blocking instead ofbrsf’s weak blocking to achieve better performance.

Thus, we have the ability to simulate blocking on a local scale, but we cannot achieve true process
blocking in general without breaking the fundamental abstraction.

5.7 Haskell Implementation

Just as we have extended the theory of arrowized, resource typed signal functions to include asynchrony,
so too have we extended our Haskell implementation. Thus, the implementation discussion here will build
directly off of where we ended at the end of Section4.7. Once again, we make certain modifications
to the theory we have presented in order to satisfy Haskell’s particular constraints. Note also that this

83

instanceResource(Whitehole r t) () [t] where
read(Whitehole(,w)) = readIORef w
update(Whitehole(b,w)) = do

bdata← atomicModifyIORef b(λ l → ([], l))
atomicModifyIORef w(λ → (reverse bdata,()))

instanceResource(Blackhole r t) t () where
read = return ()
update(Blackhole(b,)) t = atomicModifyIORef b(λ l → (t : l ,()))

Figure 5.11: The updated definitions of wormhole resources for CFRP.

implementation suffers from the same pitfalls and limitations as does the one in the previous chapter.

5.7.1 Updating Wormholes

Our first goal will be to update wormholes to satisfy our new specification for them. In the synchronous
FRP that we described earlier, whiteholes read the value in the wormhole datastructure but never write to
that value. In CFRP, they cannot be this simple. Rather, when data is read,the whitehole needs to remove it
from the underlying data structure so that it is not read a second time. Thus, the whitehole’supdatefunction
will perform an effect.

Furthermore, it is imperative that whiteholes be processedbeforetheir corresponding blackholes if they
are both in the same process. If the whitehole is processedafter, then blackhole data may not be visible
when the whitehole next reads. This was implicit in the design of the FT-TIME transition judgment, but we
must make it explicit here.

We begin by updating theWhiteholeandBlackholetypes to more closely match the CFRP wormhole
semantics:

newtypeWhitehole r t= Whitehole(IORef[t], IORef[t])
newtypeBlackhole r t= Blackhole(IORef[t], IORef[t])

A wormhole consists of twoIORefs, which correspond to theb andw elements of the wormhole state from
the semantics respectively. Both the whitehole and the blackhole resourceseach have access to both of
them (i.e. the firstIORefof the whitehole and the blackhole both point to the same data and likewise for the
second).

TheResourceinstances will look familiar, but they are updated to deal with lists of data (as opposed to
individual elements) as well as to include the whitehole’supdatebehavior. They are shown in Figure5.11.
Note that we perform a typical functional queue optimization here of constructing the list of data in reverse
and then reversing it when it is requested.

Now, both whiteholes and blackholes have an effect upon updating. Theblackhole adds a new element
to the underlying data structure, and the whitehole removes what it has read.

Next, we must address the ordering and assure that whiteholes are processed before blackholes. Recall
from Section4.7.5that our running definition of the data typeSF is:

data SF r b c= SF(b→ IO (c, IO (),SF r b c))

where theIO () in the output tuple is used to carry the update actions. We can achieve the ordering we want
by expanding theSF type so that instead of having a single action type (IO ()) to denote the updates, we

84

have a pair:(IO (), IO ()):

data SF r b c= SF(b→ IO (c,(IO (), IO ()),SF r b c))

We then update the default implementation ofrsf to:

rsf r = SF$ λ b→ do
c← read r
return (c,(return (),update r b), rsf r)

and in theResourceinstance forWhitehole, we overwrite that definition with the following:

rsf r = SF$ λ b→ do
c← read r
return (c,(update r b, return ()), rsf r)

When we run the signal function, we choose the proper ordering of events, and then we are guaranteed that
whitehole updates will always be before blackhole ones.

Lastly, theletW operation looks almost exactly the same as before except that the initialization value
for the wormhole is of type[t] rather than simplyt and there are twoIORefs instead of one. This has the
interesting effect of allowing one to create wormholes that have no initial value in them, a trick which we
used earlier in some of the parallelism examples.

5.7.2 Forking New Processes

In the semantics we defined in this chapter, thefork operation makes use of the helper functionshaveIForked

andgetChildrenOf to determine if it needs to fork a new process or not. In Haskell, these two functions are
non-trivial, and we approach the problem from a different perspective.

Rather than actually terminate processes that should be inactive, we insteadfreezethem. That is, we
keep them alive, but we prevent them from having any noticeable effects. Then, if they ever need to become
active again, we can simply unfreeze them. This strategy allows us to sidestepthe question ofhaveIForked,
as anyfork operation will only ever spawn one new process.

Rather than going into excruciating detail, it should suffice to say that we will extend ourSF type to
additionally include process status information: At any time, we can see anMVar which contains the current
process’s status as well as a reference to a list of the statusMVars of all child processes. The status will be
one of the following:

data PStatus= Proceed
| ShouldFreeze
| ShouldSkip
| Frozen(MVar ())
| Die

and theSFtype will become:

type PState= (MVar PStatus,PChildren)

data SF r b c= SF((b,PState)→ IO (c,(IO (), IO ()),SF r b c))

wherePChildrenrepresents the child processes.
By default, processes are in theProceedstate, which indicates that they should proceed as normal. If,

in the course of execution, a choice branch is taken that would deactivatecertain processes, then those

85

runSF:: PState→ ()
R
 ()→ IO ()

runSF(ps@(mvar,)) (SF sf) = run sfwhere
run sf= do
((),(action1,action2),sf′)← sf ((),ps)
command← takeMVar mvar
casecommandof

Proceed→ action1>>action2>>putMVar mvar Proceed>> run sf ’
ShouldFreeze→ do

wait← newEmptyMVar
putMVar mvar(Frozen wait)
takeMVar wait
run sf

ShouldSkip→ putMVar mvar Proceed>> run sf
Die→ putMVar mvar Die
Frozen → error “Impossible: Frozen in runSF′′

Figure 5.12: The definition ofrunSFthat can handle asynchrony.

processes’ states are set toShouldFreeze; a process that “should freeze” will freeze itself when it is next able
by switching itself to theFrozenstate, where it will additionally generate a newMVar that it will block on.
If a choice branch is taken such that it activates processes, then any child processes that are currently in the
ShouldFreezestate are set toShouldSkip, and any that areFrozenare awakened (theirMVars are unblocked)
and set toProceed. Thus, if a process is frozen and unfrozen so quickly that it did not even have time to
properly freeze itself, then it will be alerted to skip its current run and restart. Lastly, there is a state to
terminate the process altogether that can be used for cleaning up asynchronous processes when the program
ends.

These states allow us to update therunSF function, which we show in Figure5.12. We can see that
during thecasestatement in the body, we check to see what state the process is in before continuing. Only
if it is in a Proceedstate do we perform the effects (action1 >> action2). In any other case, we consider
the situation as a failed transaction and either block and wait (ShouldFreeze), restart (ShouldSkip), or abort
altogether (Die).

Fork Itself

Forking is essentially a special internal use of running a signal function,so it follows thatfork will make use
of runSF. More precisely, thefork command will create a newPStatefor the child process by copying the
current process’s state, add the child to the list of children in its own state, and then use GHC’s underlying
thread forking to create a new thread for the process.

Internally, fork could use any one of GHC’s mechanisms for creating a new process. We choose the
standardforkIO operator, but variants to support OS threads (GHC’sforkOS function) or specific cores
(GHC’s forkOn) are fine too. As long as GHC is run with the-threaded flag, we have found that these
perform comparably for the simple tasks we have tested.

5.7.3 Controlling Forked Processes

As discussed previously in the chapter, we control forked processesnot with a thread identifier or another
such imperative representation, but by using the choice operator to freeze or resume threads. We discussed
the machinery for this in the previous subsection, but here we will further explore the mechanism within

86

choice itself. To simplify this discussion, we will only explore the implementation of the left operator.
In the previous subsection, we mentioned a data typePChildren, which we use to store information

about the states of any child processes. The actual definition is given by:

data PChild= PForkChild PState| PChoiceChild PChildren
type PChildren= IORef[PChild]

The idea here is that every time we fork, we create a new process with its ownstate, and every time we enter
a choice statement, we create a new set of children that we can easily freeze or resume.

When we enter aleft statement, we useinitialAIO to create a newPChildrenreference, which we will
then pass to the body of theleft (or just store for later if the incoming streaming value isRight). Then, if
any component of the body forks a process, it will be added to thatPChildrenreference and we will be able
to access it directly. However, before we do, we check to make sure thatwe, the parent process, are in a
Proceedstate. If we are not, then we should not make any active changes, but if we are, then we can tell the
children to either freeze or proceed as necessary.

Other than this extra bookkeeping, choice proceeds in the typical fashionof the Kleisli Automaton
fashion.

87

Chapter 6

UISF – A Case Study

One common application of functional reactive programming is in the design ofgraphical user interfaces
(GUI). As a case study in the ideas of arrowized FRP and the concepts ofnon-interfering choice and resource
types, we built the UISF library. UISF, which stands for “User Interface Signal Function” is built in Haskell
on top of the GLFW graphics package and is currently being used as the mainGUI toolkit for the computer
music langauge Euterpea [Hudak, 2014]. The full UISF package is available on Hackage.1

This chapter will discuss the design principles behind UISF as well as demonstrate how it works with
a few examples. Note that, as mentioned in the Haskell Implementation sections forresource types (Sec-
tions 5.7 and4.7), Haskell’s type system does not fully support resource types. Thus, although UISF has
most of the operational capabilities discussed previously in this report, it cannot yet guarantee the same
safety properties. However, in the absense of resource types, we can use the arrow syntax without any
issues.

We will start with a technical description of the UISF interface in the next section. Once armed with the
basics, we will build a few example GUIs, discussing the benefits of this design as we do.

6.1 Arrowized User Interface

The UISF library focuses on theUISF data type, which is an instance ofArrow (as well asArrowChoice,
etc.). In many ways, this data type is similar to the automaton models we have used in previous implemen-
tation sections of this report, but it is extended with further features specific to GUIs.

Using UISF, we can create “graphical widgets” using arrow syntax. Each signal function component
of a UISF has the capacity to itself be a widget, such that upon composition, one can create compound
widgets—in fact, it is in this fashion that the entire GUI is created.

Unlike in the rest of this report where we use the symbol to refer to an Arrow type, we will follow
the library itself. Thus, instead of using types such asa b, we will useUISF a b.

6.1.1 Graphical Input and Output Widgets

Some of UISF’s basic widgets are shown in Figure6.1. Note that each of them is, ultimately, a value of type
UISF a b, for some input typea and output typeb, and therefore may be used with the arrow syntax to help
coordinate their functionality. The names and type signatures of these functions suggest their functionality,
which we elaborate in more detail below:

• label: A simple (static) text string widget.

1The source can be found athackage.haskell.org/package/UISF.

88

label :: String→ UISF a a
displayStr :: UISF String()
display :: Show a⇒ UISF a()
textboxE :: String→ UISF (Event String) String
radio :: [String]→ Int→ UISF () Int
button :: String→ UISF () Bool
checkbox :: String→ Bool→ UISF () Bool
hSlider, vSlider :: RealFrac a⇒ (a,a)→ a→ UISF () a
hiSlider, viSlider:: Integral a⇒ a→ (a,a)→ a→ UISF () a

Figure 6.1: UISF graphical input/output widgets

• displayStr: A simple dynamic text string widget allowing a time-varying string to be displayed.For
convenience, we also providedisplay, which “shows” the streaming argument:

display= arr show>>>displayStr

• textboxE: A bidirectional text input widget. The input stream can be used to set the current text value,
and the output stream provides that value. ThetextboxEkeeps its state internally.

There is a more primitive version:

textbox:: UISF String String

which does not keep track of its current state but rather requires the manual use of a delay and a loop.

• radio, button, checkbox: These are three kinds of “push-buttons,” suitable for retrieving inputfrom
the user in the form of choices between static options.

• *slider: There are four different kinds of “sliders”—graphical widgets thatlooks like a slider control as
might be found on a hardware device. The first two yield floating-point numbers in a given range, and
are oriented horizontally and vertically, respectively, whereas the latter two return integral numbers.
For the integral sliders, the first argument is the size of the step taken whenthe slider is clicked at any
point on either side of the slider “handle.” In each of the four cases, theother two arguments are the
range and initial setting of the slider, respectively.

6.1.2 Widget Positioning

In addition to just creating widgets, we must determine where they will appear on the screen. UISF uses
two mechanics to do this:layoutandflow. A widget’s layout determines its size, and its flow determines its
relative position to its sister widgets.

All pre-built widgets (i.e. the ones presented in the previous subsection) have an already defined layout,
but this can be altered with:

setLayout:: Layout→ UISF a b→ UISF a b

and new layouts can be built using the following function:

makeLayout:: LayoutType→ LayoutType→ Layout
data LayoutType=Stretchy{minSize :: Int}

| Fixed {fixedSize:: Int}

89

unique:: Eq a⇒ UISF a(Event a)
edge :: UISF Bool(Event())
hold :: a→ UISF (Event a) a
accum :: a→ UISF (Event(a→ a)) a

Figure 6.2: UISF Mediators between continuous and discrete

The makeLayoutfunction takes information for first the horizontal dimension and then the vertical. A
dimension can be either stretchy (with a minimum size in pixels but that will expand tofill the space it is
given) or fixed (measured in pixels).

The default flow for widgets is in a top-down format, where each widget willbe placed from the top of
the window sequentially. However, this can be changed by the following functions:

topDown, bottomUp, leftRight, rightLeft:: UISF a b→ UISF a b

whose names make clear their behavior.
One should note that this flow component means that the UISF arrows arenot commutative. Indeed,

reordering composition of widgets will likely cause their visual appearanceto change. However, due to
the rec keyword within arrow syntax (which uses arrow loop), this is rarely an issue: the widgets can be
coded in whatever order makes them appear properly on screen, and the streams between them will connect
properly.

Lastly, widget transformers can be nested, meaning that one part of a GUI can be in one flow while
another portion is in another.

6.1.3 Non-Widget Signal Functions

Unlike the signal functions from Subsection6.1.1, the signal functions presented in this subsection have
no graphical effects. They are not pure—for pure signal functions, we could simply lift a pure function
with arr—but their effects are all achieved with state rather than being visual. For this reason, many of the
signal functions we will present here are not specific toUISF and can actually be used in other arrowized
domains; however, for simplicity, we will express their types as specific toUISF. This also means that they
can all be written manually using arrowized recursion, state via loop and delay, and other concepts discussed
previously.

Mediators

Mediators are functions thatmediatebetween discrete and continuous signals. A selection of UISF’s medi-
ators that we will use in our examples are shown in Figure6.2and described below:

• unique: Converts a continuous stream to a discrete one by providing an event containing the value of
the stream whenever it changes.

• edge: Generates an event whenever the input changes fromFalseto True.2

• hold: This signal function converts a discrete stream to a continuous one by “holding” the last value
it was given.

• accum: Starting with the statically given value, applies the functions attached to the streaming input
events to that value returning the result as a continuous stream.

2In signal processing this is called an “edge detector,” giving rise to the name chosen here.

90

Folds

In regular functional programming, a folding, or reducing, operation is one that joins together a set of data.
The typical case would be an operation that operates over a list of data, such as a function that sums all
elements of a list of numbers.

The two primary folds in UISF are based on the ideas of structural or arrowized recursion as described
in Section3.1.5. For structural recursion, we have:

concatA:: [UISF b c]→ UISF [b] [c]

and for arrowized recursion, we have:

runDynamic:: UISF b c→ UISF [b] [c]

which is the very same function from Section3.1.5.
The concatAfold takes a list of signal functions and converts them to a single signal function whose

streaming values are themselves lists. For example, perhaps we want to display a bunch of buttons to a
user in a single window. Rather than coding them in one at a time, we can useconcatAto fold them into
one operation that will return their results altogether in a list. In essence, weareconcatenating the signal
functions together.

As described earlier, therunDynamicsignal function is similar except that it takes a single signal func-
tion as an argument rather than a list. Then, instead of folding over the static signal function list, it folds
over the[b] list that it accepts as its input streaming argument.

Timers

UISF has an implicit notion of elapsed time, but it can be made explicit by the following signal source:

getTime:: UISF () Time

whereTimeis a type synonym forDouble.
Although the explicit time may be desired, some UISF widgets depend on the time implicitly. For

example, the following signal function creates atimer:

timer :: UISF DeltaT(Event())

In practice,timer takes a stream that represents the timer interval (in seconds), and generates an event stream,
where each pair of consecutive events is separated by the timer interval. Note that the timer interval is itself
a stream, so the timer output can have varying frequency.

Because UISF is a pull-based AFRP system, this concept of time and timers is not perfectly precise
or accurate. For instance, if the clock rate (e.g. the length of the unit time interval) is one hundredth of a
second, then a timer may be triggered up to a hundredth of a second late.

Delays

Another way in which time can be used implicitly in UISF is in adelay. UISF comes with five different
delaying widgets, which each serve a specific role depending on whetherthe streams are continuous or
event-based and if the delay is a fixed length or can be variable. They areshown in Figure6.3and described
below:

To start, we will examine the most straightforward one. Thedelayfunction creates what is called a “unit
delay”, which can be thought of as a delay by the shortest amount of time possible. This delay should be
treated in the same way that one may treat aδ t in calculus; that is, although one can assume that a delay

91

delay :: a→ UISF a a
fcdelay:: a→ DeltaT→ UISF a a
fdelay :: DeltaT→ UISF (Event a) (Event a)
vdelay :: UISF (DeltaT,Event a) (Event a)
vcdelay:: DeltaT→ b→ UISF (DeltaT,b) a

Figure 6.3: UISF Delays

takes place, the amount of time delayed approaches zero. Thus, in practice, this should be used only in
continuous cases and should only be used as a means to initialize arrow feedback.

The rest of the delay operators delay by some amount of actual time, and wewill look at each in turn.
fcdelay b twill emit the constant valueb for the firstt seconds of the output stream and will from then on
emit its input stream delayed byt seconds. The name comes from “fixed continuous delay.”

One potential problem withfcdelayis that it makes no guarantees that every instantaneous value on the
input stream will be seen in the output stream. This should not be a problem for continuous signals, but
for an event stream, it could mean that entire events are accidentally skipped over. Therefore, there is a
specialized delay for event streams:fdelay tguarantees that every input event will be emitted, but in order
to achieve this, it is not as strict about timing—that is, some events may end up being over delayed. Due to
the nature of events, we no longer need an initial value for output: for the first t second, there will simply be
no events emitted.

We can make both of the above delay widgets a little more complicated by introducingthe idea of a
variable delay. For instance, we can expand the capabilities offdelay into vdelay. Now, the delay time is
part of the signal, and it can change dynamically. Regardless, this event-based version will still guarantee
that every input event will be emitted. “vdelay” can be read “variable delay.”

For the variable continuous version, we must add one extra input parameter to prevent a possible space
leak. Thus, the first argument tovcdelayis the maximum amount that the widget can delay. Due to the
variable nature ofvcdelay, some portions of the input signal may be omitted entirely from the output signal
while others may even be outputted more than once. Thus, once again, it is highly advised to usevdelay
rather thanvcdelaywhen dealing with event-based signals.

6.1.4 Asynchrony

Without resource types, wormholes are particularly dangerous, but UISF does allow certain forms of asyn-
chronous, concurrent processing. Operationally, this is important dueto system constraints on computational
power. That is, there are two primary ways in which the illusion of continuity fails:

• Computations can be sensitive to the sampling rate itself such that a low enough rate will cause poor
behavior.

• Computations can be sensitive to the variability of the sampling rate such that drastic differences in
the rate can cause poor behavior.

These are two subtly different problems, and we address both with subtly different asynchronous operators:

asyncUISFE :: NFData b⇒ Automaton(→) a b→ UISF (Event a) (Event b)
asyncUISFV :: NFData b⇒ Double→ Automaton(→) a b→ UISF a[(b,Time)]

In fact, UISF has a few more asynchronizing operators, but we omit themin order to keep our discussion
concise.

92

• asyncUISFE: This takes an Automaton built over regular functions and makes it asynchronous, gen-
erally for the case where the given signal function is a slow running operation. This slow computation
may have deleterious effects on the GUI, causing it to become unresponsive and slow, so we allow
it to run asynchronously. The computation is lifted into the discrete, event realm, and for each input
event given to it, a corresponding output event will be created eventually. Of course, the output event
will likely not be generated immediately, but it will be generated eventually, andthe ordering of output
events will match the ordering of input events.

• asyncUISFV : This function can convert a signal function with a fixed, virtual clockrate to a realtime
UISF. The first input parameter is a buffer size in seconds that indicateshow far ahead of real time
the signal function is allowed to get, but the goal is to allow it to run at a fixed clockrate as close to
realtime as possible. Thus, the output stream is a list of pairs providing the output values along with
the timestamp for when they were generated. This should contain the right number of samples to
approach real time, but on slow computers or when the virtual clockrate is exceptionally high, it will
lag behind. This can be checked and monitored by checking the length of theoutput list and the time
associated with the final element of the list on each time step.

In both cases, we require that the output types be instances ofNFData, which is the Haskell way of
declaring that they can be strictly evaluated. We do this to assure that the computations are actually per-
formed asynchronously and not lazily returned to the main process and computed there.

UISF’s asynchronous functions, although inspired by wormholes with fork, do not actually follow the
design pattern from Chapter5 very closely. Rather than use non-interfering choice to govern when forked
processes are active or not, we use blocking, but because we have such rigid patterns for forking and com-
munication between the forked processes (that is, one can only do this by using one of the async functions),
this blocking cannot cause any sort of deadlock. Thus, we can use blocking without causing a perceivable
violation to the Fundamental Abstraction of FRP.

This means that in their implementation, the async functions can use Haskell’sMVars, and indeed, they
do. For instance, in the definition ofasyncUISFV , we fork a new thread and then communicate with it via
MVars in the data-sending direction and anIORef to retrieve computed values. If there is no data being
sent to the forked thread in theMVar, then it will block, effectively stopping computation until it is asked to
resume.

It is worth noting that the when using asynchrony in UISF, one is advised tocompile the program
with GHC’s -threaded flag to allow for multi-core processor utilization. This is not strictly necessaryas
multi-threaded operations can be interleaved into a single-threaded computation, but it will often improve
performance. Internally, we are using theforkIO operation to create new threads, which creates a lightweight
Haskell thread for each asynchronous component. Because these threads stay alive for the length of the
program, GHC can often schedule them effectively. However, in certaincases, a user may want better
control over which cores are performing which operations, and thus wealso provide “On” versions of the
async operators. These “On” versions instead use GHC’sforkOnoperation, which allows the user to specify
exactly on which core each forked thread should be run.

6.1.5 Settability

The UISF library has the concepts of non-interfering choice and settabilitybuilt right into the design. Thus,
UISF signal functions can also support thesettablefunction established in Section3.2:

settable:: UISF a b→ UISF (a,Event State) (b,State)

Any UISFsignal function that is declared settable can have its state saved, loaded, or reset.

93

Because settability comes with a performance overhead, one has to make an active design decision to
turn it on when it is required. In the future, we plan to improve the settability transformation by making it
automatically apply when desired but incur no overhead when unused.

6.1.6 Putting It All Together

A Haskell program must eventually be a value of typeIO () in order to run, and thus we need a function to
turn aUISF value into anIO value—i.e. theUISF needs to be “run.” We can do this using the following
function3:

runUI :: UISF () ()→ IO ()

Just like in the model langauges we described in previous sections, a full program is forced to do all of its
effects internally, so its input and output streams must both be of type().

ExecutingrunUI ui will create a single UI window whose behavior is governed by the argumentui ::
UISF () ().

6.2 Example: Time

For our first example, we will examine how easy it is to use time within the UISF framework. We will build
a simple timer GUI that ticks forward for a user-specified amount of time (via a slider widget), displaying
the elapsed time both graphically and textually. If the target time is greater than theelapsed time, the timer
will continue, and if it is less than or equal to the elapsed time, then the timer will stop. A reset button at the
bottom will reset the elapsed time to zero. The inspiration for this example comes from the 7GUIs project
[Kiss, 2014], which in turn took the idea fromIgnatoff et al.[2006].

Although we discussed atimer widget in the previous section, it is not useful for our current purposes,
so the first thing we do is to create an alternative widget to help us keep trackof time:

getDeltaTime:: UISF () DeltaT
getDeltaTime= proc ()→ do

t← getTime−≺ ()
tprev← delay0−≺ t
returnA−≺ t− tprev

This function uses thegetTimewidget along with a unit delay to return the change in time on each tick of
the underlying clock.

Next, although UISF has built-in widgets for displaying text, clickable buttons,and interactive sliders,
there is no widget for displaying a “gauge” to graphically indicate the passing time. Although we did not
discuss UISF’s suite for manual widget construction, one still exists, andwe will use it to create this gauge:

gauge:: Layout→ UISF (DeltaT,DeltaT) ()
gauge= unique>>>canvas′ l draw where

draw (x, t) (w,h) = block((0,padding),
(min w′ round x∗ (fromIntegral w′)/t,h−2∗padding))

wherew′ = w−2∗padding

This widget takes a pair of (elapsed time, total duration) and draws a black block on the screen of the
appropriate size. Considering we have not discussed functions likecanvas′ or block, the point of showing
this code is to demonstrate that creating a new widget like this can be done simply and concisely.

3 Technically, this function is calledrunUI′ in the UISF library as the actualrunUI function takes an additional parameters
argument that can be adjusted for special case fine-tuning. We will notuse this argument in this report, so we drop it.

94

timerGUI :: UISF () ()
timerGUI= proc ()→ do

rec leftRight(label “Elapsed Time:”>>>gauge)−≺ (e,d)
display−≺e
leftRight(label “Duration:”>>>display)−≺d
d← hSlider(0,30) 4−≺ ()
reset← button“Reset”−≺ ()
δ t← getDeltaTime−≺ ()
e← delay0−≺case(reset,e>= d) of

(True,)→ 0
(False,True)→ e
→ e+δ t

returnA−≺ ()

Figure 6.4: The Timer GUI.

Figure 6.5: A screenshot of the Timer GUI.

With these widgets written, constructing the timer GUI itself is straightforward. The GUI is shown in
Figure6.4and a screenshot of it running can be seen in Figure6.5.

6.3 Example: Bidirectional Data Flow

For our next example, we will consider the concept ofbidirectionaldata flow. In many GUI systems, it is
easy to link one widget’s output to another’s input, but it is not always as easy to link the second widget’s
outputbackto the first’s input. However, this is a straightforward feature of arrows with loop, and the UISF
library handles it easily.

Thus, for this example, we will build a lightweight utility to convert between temperatures in Celsius
and temperatures in Fahrenheit. Once again, the idea for this example comes from the 7GUIs project [Kiss,
2014]. The complete code for this example can be seen in Figure6.6and a screenshot of it running can be
seen in Figure6.7.

The most complicated part of this GUI is actually the text parsing and conversion operations, which is
all in pure Haskell. The part that actually presents the GUI is all found in thefirst four lines of arrow syntax.
After that, we use thelet construct to use pure Haskell for the parsing and conversions. Because the results
of the conversions are used in the widgets themselves, the whole block is putthrough a loop with therec
keyword and the looping values are held back from infinitely looping withdelays.

95

tempConverter:: UISF () ()
tempConverter= leftRight$ proc ()→ do

rec c← unique<<< textboxE<<<delay Nothing−≺cupdate

label “degrees Celsius = ”−≺ ()
f ← unique<<< textboxE<<<delay Nothing−≺ fupdate

label “degrees Fahrenheit”−≺ ()
let cnum = join $ fmap(readMaybe:: String→Maybe Double) c

fnum= join $ fmap(readMaybe:: String→Maybe Double) f
cupdate= fmap(λ f → show$ round$ (f −32)∗ (5/9)) fnum

fupdate= fmap(λc→ show$ round$ c∗ (9/5)+32) cnum

returnA−≺ ()

Figure 6.6: The Temperature Converter GUI. Note that<<< is the same as>>> but with its arguments
flipped.

Figure 6.7: A screenshot of the Temperature Converter GUI.

6.4 Example: Dynamically Active Widgets

In the previous two examples, we demonstrated primarily UISF features that are inherited from the arrowized
design. For this example, we will make use of UISF’s adherence to non-interfering choice to use arrowized
recursion to create a GUI that has widgets that can activate dynamically. Wewill build a text-basedmind
map, a structure to organize data.

Mind maps are typically used to help a person organize thoughts. They startwith a single element
(usually) that has connections to other elements, which in turn can have connections to others. We will
represent our mind map data with a map from strings to lists of strings:

type MindMap= Map String[String]

Thus, elements are keys and the elements they connect to are their values.
Our GUI will allow a user to lookup keys or add elements to the mind map, and as themapping grows,

so too will the number of label widgets we display. In order to provide easy text entry, we will create a
compound widget out of a textbox and a button:

textEntryField:: String→ UISF () (Event String)
textEntryField txt= rightLeft$ proc ()→ do

b← edge<<<button txt−≺ ()
t← textboxE“” <<<delay Nothing−≺ fmap(const“”) b
returnA−≺ fmap(const t) b

The textEntryFieldis given a label for the button it displays. When that button is pressed, this compound
widget will produce an event of the current text in the textbox and then clear the textbox to prepare for the
next entry.

We use two of thesetextEntryFields in the full program: one for looking up keys and the other for adding
values. We store the map in an accumulator that updates every time we have an “add” event. Finally, we

96

mindmap:: UISF () ()
mindmap mapinitial = proc ()→ do

e← textEntryField“Lookup”−≺ ()
a← textEntryField“Add” −≺ ()
key← hold “” −≺e
m← accum mapinitial −≺ fmap(λv→ insertWith(++) key[v]) a
leftRight(label “Key = ” >>>displayStr)−≺key
runDynamic displayStr−≺findWithDefault[] key m
returnA−≺ ()

Figure 6.8: The Mind Map GUI. Note that it requires the Haskell Map package to function, as that package
provides theinsertWithandfindWithDefaultfunctions that operate on Maps.

Figure 6.9: A screenshot of the Mind Map GUI.

display a dynamic number ofdisplayStrwidgets depending on how long the list is in the currently viewed
key of the map.

The complete code can be seen in Figure6.8and a screenshot of it running can be seen in Figure6.9.

6.5 Example: Asynchronous Computation

As we introduced in Section6.1.4, UISF supports asynchronous operations, and here, we will build an
example that makes use of the feature. Specifically, we will present a GUI for performing a complex and
lengthy calculation, but when the calculation is requested, it will be performed asynchronously. Thus, the
GUI will still continue to respond and behave normally.

The lengthy computation will be the calculation of potential meld in the card game Pinochle. In this
game, players first get a hand of cards and then bid to receive a further 4 card “kitty”. With the kitty added
to the winner’s hand, he plays his meld, which are specific combinations of cards. For instance, having one
of each of the aces is worth 10 points, and having a King-Queen of the samesuit is worth 2 points. Pinochle
is played with a special deck of playing cards that has two of each card but only includes the cards from
Nine to Ace in each suit.

The GUI will present a set of buttons for the user to enter his hand and willthen calculate the average
expected meld the user can expect if he wins the kitty. The calculation is performed asynchronously, and
when it produces a result, the GUI displays it both plots it and displays it textually.

97

handSelector:: [Suit]→ [Number]→ UISF () Hand
handSelector[] = constA EmptyHand
handSelector(s : ss) ns= proc ()→ do

bs← leftRight$ slabel(show s)>>>concatA(map cardSelector ns)−≺ repeat()
hand← handSelector ss ns−≺ ()
returnA−≺addToHand hand(map(s,) (concat$ zipWith replicate bs ns))
whereslabel str= setLayout(Fixed75) (Fixed30) $ label str

Figure 6.10: The compound widget for building a Pinochle hand.

pinochle:: UISF () ()
pinochle= proc ()→ do

hand← handSelector allSuits allNums−≺ ()
eventupdate← unique−≺hand
meld← hold “” −≺ fmap calcMeld eventupdate

leftRight$ label “Total meld = ”>>>display−≺meld
b← edge>>>button“Calculate meld from kitty”−≺ ()
eventkitty← (asyncUISFE $ arr calcKitty)−≺ fmap(const hand) b
let (meldkitty,d) = case(eventkitty,b) of

(Event(k,d),)→ (Event k, Event d)
(, Event)→ (Event“Calculating ...”, Event NoHistogram)
→ (Nothing, Nothing)

runDynamic display<<<hold []−≺meldkitty

histogram(makeLayout(Stretchy10) (Fixed15))−≺d
returnA−≺ ()

Figure 6.11: The Pinochle GUI.

Before we can begin building this GUI, we must have some logic about Pinochle itself. Thus, we assume
Number, Suit, andHanddata types that behave as expected as well as two functions for calculatinga hand’s
meld and possible results from winning the kitty:

data Meld= String
calcMeld:: Hand→Meld
calcKitty :: Hand→ ([Meld],HistogramData)

We will also make use of the following two custom UISF widgets:

cardSelector:: Number→ UISF () Int
histogram:: Layout→ UISF (Event HistogramData) ()

ThecardSelectorwidget looks similar to abuttonwidget but has some extra internal machinery to allow for
selecting two of the same card. ThehistogramWithSaclewidget displays a graphical histogram on screen.4

The first step in building this GUI is to provide an interface to allow the user to enter his hand. We do this
by adding acardSelectorfor each possible card. Because the Pinochle deck is totally static, we can achieve
this with simple structural recursion. Thus, thehandSelectorcompound widget is shown in Figure6.10.

4Technically, thehistogramwidget is a built-in widget in UISF, but for brevity, we did not include a detailed discussion of it
when we introduced the main UISF features earlier in this chapter, and we are using a simplified version of it here.

98

Figure 6.12: A screenshot of the Pinochle GUI.

In the Pinochle UISF itself, shown in Figure6.11, we use the hand selector at the very beginning. We
then display the meld just from the hand so far, and provide a button to calculate the potential meld from the
kitty. When this button is pressed, an event is sent to the asynchronizedcalcKitty function, and the results
are gathered, displayed, and plotted in the histogram. A screenshot of theprogram running can be seen in
Figure6.12.

6.6 Differences From Theory

Although UISF is inspired by CFRP and the theory contained in this report, it isdifferent from that theory
in a number of ways.

Resource Types

First and foremost, there are no resource types. This may seem like a critical omission considering that
resource types are core to CFRP’s safety guarantees, but it is a necessary evil. As mentioned in previous
chapters, arrows with resource types are still not fully supported in GHC, and wormholes themselves cannot
be implemented.

Of course, the biggest cost of omitting resource types is that we can no longer guarantee safe usage of
arbitrary effects. One way to address this would be to remove effects altogether, but we find this to be too
restrictive. Thus, we settle for allowing effects with a warning to the user to take care when using them.

The most common resources used in CFRP programs are actually those of wormholes. Mostly, this is
because CFRP uses wormholes as its built-in concept of looping and state (recall from Section4.4.1that
we remove the need forloop anddelay in the presence of wormholes), but they are also central for any
asynchronous operations.

To prevent UISF users from accidentally misusing wormholes (which becomes easy to do now that we
have no resource types), we remove them entirely from the interface of the language. We revert to using
the classicloopanddelayoperators for state, and we force all asynchronous communication to follow a few

99

specific patterns (i.e. it must be able to be expressed using one of the various “async” functions).
Removing wormholes is unfortunate for a few reasons. First, reverting to the classicloop anddelay

operators reintroduces the potential for unbounded looping, which is only detectable at runtime. Second, it
restricts the forms that asynchrony can take (wormholes allow arbitrary communication channels between
multiple processes, but the async functions enforce a sense of “parent” and “child” processes). Lastly, where
once we had a singleletW command for creating a wormhole, now we must have many different async
functions. This bloating of the language is reminiscent of the many varieties ofswitch necessary before
our concept of non-interfering choice. In some sense, though, UISFis better for not having wormholes.
Although restrictive, the various async functions are optimized to run efficiently at their given tasks, and the
specific options available may help users identify appropriate ways to write theprograms they are trying to
write.

Limitations

Another significant difference between UISF and CFRP has to do with the behavior of these async functions
themselves. UISF is built atop the GLFW OpenGL library, and the current interface that it uses has little
support for concurrent operations. Specifically, the GUI itself must beentirely single-threaded. That is, we
can run multiple signal functions at multiple time rates, but all of the GUI behaviormust be running in the
same thread at the same rate. To prevent UISF from causing its GLFW back-end to throw errors, we restrict
the async functions to forkAutomatons rather than otherUISFs.

6.7 Conclusions and Discussion of Similar Libraries

UISF is a fully functioning, viable GUI library. The examples shown in this chapter are a sampling of what
can be done with it, but perhaps an even better example is its integration with Euterpea. Within Euterpea,
UISF itself has been extended to handle various sorts of MIDI input and output, and additional graphical
widgets (a piano and guitar frets) are available for users.

Other GUI Libraries

GUI libraries come in many flavors and varieties. On one end of the spectrum,designs employ a callback
structure, in which widgets register themselves as awaiting certain events, and when those events occur, the
widgets are “called back.” This design is typical of object-oriented languages, and there are far too many
examples to cite.

In fact, many functional GUI libraries are simply built atop one of these imperative designs. For instance,
FranTkSage[2000], although built on top of the FRP system FranElliott and Hudak[1997], provides a
fundamentally imperative design (with itsGUI monad) for designing applications.Ignatoff et al.[2006]
explore this interface between imperative GUI toolkits and functional languages by combining an object-
oriented GUI toolkit into the FRP language FrTime in a principled way.

UISF shares many similarities with Fudgets [Carlsson and Hallgren, 1998], which uses stream process-
ing as a central concept of design. Indeed, AFRP in general is clearlyinspired by the Fudgets design.
However, while AFRP is synchronous by default, Fudgets are instead asynchronous. UISF, built atop the
AFRP framework, is obviously naturally synchronous, but it also has strong asynchronous support in the
form of its async operators. Thus, we feel that it finds a good middle ground between these two approaches.

There are many other GUI libraries even in the category of FRP-based ones in Haskell [Apfelmus,
2012, Czaplicki, 2012, Giorgidze and Nilsson, 2008]. Grapefruit [Jeltsch, 2009] is a push-based FRP system
that provides direct access to signals. Fruit [Courtney and Elliott, 2001b] introduced the first arrowized
switch function and in general has a principled design to arrowized FRP that UISF models in many ways.
Elm [Czaplicki and Chong, 2013] is an asynchronous FRP language for creating GUIs that uses both a

100

“traditional” and arrowized FRP design allowing the user to handle signals directly in basic cases or use
signal functions for reactive or stateful computation.

101

Bibliography

H. Apfelmus. Reactive-banana, May 2012. URLhttp://www.haskell.org/haskellwiki/Reactive-banana.

A. Benveniste, B. Caillaud, and P. L. Guernic. From Synchrony to Asynchrony. InProceedings of the 10th
International Conference on Concurrency Theory, CONCUR 1999, pages 162–177, London, UK, 1999.
Springer-Verlag.

G. Berry and L. Cosserat. The Esterel synchronous programming language and its mathematical semantics.
In Seminar on Concurrency, volume 197 ofLecture Notes in Computer Science, pages 389–448. Springer-
Verlag, July 1984.

G. Berry and E. Sentovich. Multiclock Esterel. InCorrect Hardware Design and Verification Methods,
pages 110–125. Springer, 2001.

T. Brus, M. van Eekelen, M. van Leer, M. Plasmeijer, and H. Barendregt. CLEAN – A language for
functional graph rewriting. InFunctional Programming Languages and Computer Architecture, volume
274 ofLecture Notes in Computer Science, pages 364–384. Springer-Verlag, September 1987.

M. Carlsson and T. Hallgren.Fudgets — Purely Functional Processes with applications to Graphical User
Interfaces. PhD thesis, Department of Computing Science, Chalmers University of Technology, S-412 96
Gteborg, Sweden, March 1998.

P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declarative language for programming
synchronous systems. In14th Symposium on Principles of Programming Languages, pages 178–188.
ACM, January 1987.

D. M. Chapiro.Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford University, CA,
1984.

G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a call-by-value language. InPro-
gramming Languages and Systems, volume 3924 ofLecture Notes in Computer Science, pages 294–308.
Springer-Verlag, March 2006.

A. Courtney. Modelling User Interfaces in a Functional Language. PhD thesis, Department of Computer
Science, Yale University, May 2004.

A. Courtney and C. Elliott. Genuinely functional user interfaces. In2001 Haskell Workshop, September
2001a.

A. Courtney and C. Elliott. Genuinely Functional User Interfaces. In2001 Haskell Workshop, September
2001b.

A. Courtney, H. Nilsson, and J. Peterson. The Yampa arcade. InHaskell Workshop, Haskell ’03, pages
7–18. ACM, August 2003.

102

http://www.haskell.org/haskellwiki/Reactive-banana

E. Czaplicki. Elm: Concurrent FRP for functional GUIs, 2012.

E. Czaplicki and S. Chong. Asynchronous functional reactive programming for GUIs. InPLDI, pages
411–422, 2013.

O. Danvy and L. R. Nielsen. Defunctionalization at work. InProceedings of the 3rd ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming, PPDP ’01, pages 162–
174, New York, NY, USA, 2001. ACM.

C. Elliott and P. Hudak. Functional reactive animation. InInternational Conference on Functional Pro-
gramming, pages 263–273. ACM, June 1997.

C. Elliott, G. Schechter, R. Yeung, and S. Abi-Ezzi. TBAG: A high level framework for interactive, animated
3D graphics applications. In21st Conference on Computer Graphics and Interactive Techniques, pages
421–434. ACM, July 1994.

C. M. Elliott. Push-pull functional reactive programming. InProceedings of the 2Nd ACM SIGPLAN
Symposium on Haskell, Haskell ’09, pages 25–36, New York, NY, USA, September 2009. ACM.

T. Gautier, P. L. Guernic, and L. Besnard. Signal: A declarative language for synchronous programming of
real-time systems. InFunctional Programming Languages and Computer Architecture, volume 274 of
Lecture Notes in Computer Science, pages 257–277. Springer-Verlag, November 1987.

G. Giorgidze and H. Nilsson. Switched-on yampa. InProc. Practical Aspects of Declarative Languages,
pages 282–298. Springer Verlag LNCS, 2008.

J.-Y. Girard. Linear logic.Theoretical Computer Science, 50(1):1–102, 1987.

C. Hawblitzel. Linear types for aliased resources (extended version).Technical Report MSR-TR-2005-141,
Microsoft Research, Redmond, WA, October 2005.

M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.ACM Trans.
Program. Lang. Syst., 12(3):463–492, 1990.

C. A. R. Hoare. Communicating sequential processes.Communications of the ACM, 21(8):666–677, August
1978.

P. Hudak. The Haskell School of Expression – Learning Functional Programming through Multimedia.
Cambridge University Press, New York, NY, 2000.

P. Hudak.The Haskell School of Music – From Signals to Symphonies. (Version 2.6), January 2014.

P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report on the Programming Language Haskell, A
Non-strict Purely Functional Language (Version 1.2).ACM SIGPLAN Notices, 27(5), May 1992.

P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots, and functional reactive programming. In
Summer School on Advanced Functional Programming 2002, Oxford University, volume 2638 ofLecture
Notes in Computer Science, pages 159–187. Springer-Verlag, August 2003.

J. Hughes. Generalising monads to arrows.Science of Computer Programming, 37(1–3):67–111, May 2000.

D. Ignatoff, G. Cooper, and S. Krishnamurthi. Crossing state lines: Adapting object-oriented frameworks to
functional reactive languages. InFunctional and Logic Programming, volume 3945 ofLecture Notes in
Computer Science, pages 259–276. Springer Berlin Heidelberg, 2006.

103

A. Jeffrey. LTL types FRP: Linear-time temporal logic propositions as types, proofs as functional reactive
programs. InSixth Workshop on Programming Languages meets Program Verification, pages 49–60.
ACM, January 2012.

W. Jeltsch. Signals, not generators!Trends in Functional Programming, 10:145–160, 2009.

W. Jeltsch. Towards a common categorical semantics for linear-time temporal logic and functional reactive
programming. In28th Conference on the Mathematical Foundations of Programming Semantics, pages
215–228. Elsevier, June 2012.

M. P. Jones and P. Hudak. Implicit and explicit parallel programming in haskell. Technical report, Yale
University, 1993.

S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. InPrinciples of Programming Languages, pages
295–308. ACM, 1996.

O. Kiselyov, R. L̈ammel, and K. Schupke. Strongly typed heterogeneous collections. InHaskell 2004:
Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 96–107. ACM Press, 2004.

E. Kiss. 7guis, 2014. URLhttps://github.com/eugenkiss/7guis/wiki.

N. R. Krishnaswami and N. Benton. Ultrametric semantics of reactive programs. InProceedings of the 2011
IEEE 26th Annual Symposium on Logic in Computer Science, LICS ’11, pages 257–266. IEEE Computer
Society, 2011.

N. R. Krishnaswami, N. Benton, and J. Hoffmann. Higher-Order Functional Reactive Programming in
Bounded Space. In39th Symposium on Principles of Programming Languages, pages 45–58. ACM,
January 2012.

J. Launchbury and S. Peyton Jones. Lazy functional state threads. In Conference on Programming Language
Design and Implementation, pages 24–35. ACM, June 1994.

P. Li and S. Zdancewic. A language-based approach to unifying events and threads. Technical report,
University of Pennsylvania, 2006.

S. Lindley, P. Wadler, and J. Yallop. The arrow calculus.Journal of Functional Programming, 20(1):51–69,
January 2010.

H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows.Journal of Functional Programming, 21(4–5):
467–496, September 2011.

P. Liu and P. Hudak. Plugging a space leak with an arrow.Electronic Notes in Theoretical Computer Science,
193(1):29–45, November 2007.

R. Milner. A calculus of communicating systems. Springer-Verlag New York, Inc., 1982.

R. Milner. The polyadic p-calculus: a tutorial. In F. L. Bauer, W. Brauer, and H. Schwichtenberg, editors,
Logic and Algebra of Specification, volume 94 ofNATO ASI Series, pages 203–246. Springer Berlin
Heidelberg, 1993.

R. Milner. Communicating and mobile systems: the pi calculus. Cambridge University Press, 1999.

E. Moggi. Computational lambda-calculus and monads. InSymposium on Logic in Computer Science, pages
14–23. IEEE, June 1989.

104

https://github.com/eugenkiss/7guis/wiki

H. Nilsson, A. Courtney, and J. Peterson. Functional Reactive Programming, Continued. InProceedings of
the 2002 ACM SIGPLAN Haskell Workshop (Haskell’02), pages 51–64. ACM Press, 2002.

C. H. Papadimitriou. The serializability of concurrent database updates.J. ACM, 26(4):631–653, 1979.

G. Patai. Efficient and compositional higher-order streams. InProceedings of the 19th International Confer-
ence on Functional and Constraint Logic Programming, WFLP’10, pages 137–154, Berlin, Heidelberg,
2011. Springer-Verlag.

R. Paterson. A new notation for arrows. InSixth International Conference on Functional Programming,
pages 229–240. ACM, September 2001.

J. Peterson, V. Trifonov, and A. Serjantov. Parallel functional reactive programming. InPractical Aspects
of Declarative Languages, pages 16–31. Springer, 2000.

S. Peyton Jones and P. Wadler. Imperative functional programming. In20th Symposium on Principles of
Programming Languages. ACM, January 1993. 71–84.

R. Plasmeijer and M. van Eekelen. Clean – version 2.1 language report. Technical report, Department of
Software Technology, University of Nijmegen, November 2002.

M. Pouzet. Lucid synchrone, version 3.Tutorial and reference manual. Université Paris-Sud, LRI, 2006.

J. H. Reppy. Concurrent ML: Design, application and semantics. InFunctional Programming, Concurrency,
Simulation and Automated Reasoning, volume 693, pages 165–198. Springer Berlin Heidelberg, 1993.

J. C. Reynolds. Definitional interpreters for higher-order programminglanguages. InProceedings of the
ACM Annual Conference - Volume 2, ACM ’72, pages 717–740, New York, NY, USA, 1972. ACM.

M. Sage. Frantk - a declarative gui language for haskell. InProceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’00, pages 106–117, New York, NY, USA,
2000. ACM. ISBN 1-58113-202-6.

A. Sangiovanni-Vincentelli, M. Sgroi, and L. Lavagno. Formal Models for Communication-Based Design.
In Proceedings of the 11th International Conference on Concurrency Theory, CONCUR 2000, pages
29–47. Springer Berlin Heidelberg, 2000.

W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Amarasinghe. Teleport messaging for distributed
stream programs. InProceedings of the tenth ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 224–235. ACM, 2005.

J. A. Tov and R. Pucella. Practical affine types. In38th Symposium on Principles of Programming Lan-
guages, pages 447–458. ACM, January 2011.

R. Virding, C. Wikstr̈om, and M. Williams.Concurrent programming in ERLANG (2nd ed.). Prentice Hall
International (UK) Ltd., Hertfordshire, UK, UK, 1996.

A. Voellmy and P. Hudak. Nettle: Taking the sting out of programming network routers. InPractical
Aspects of Declarative Languages, volume 6539 ofLecture Notes in Computer Science. Springer-Verlag,
January 2011.

P. Wadler. Linear types can change the world! InWorking Conference on Programming Concepts and
Methods, pages 347–359. IFIP TC 2, April 1990.

105

P. Wadler. Is there a use for linear logic? InSymposium on Partial Evaluation and Semantics Based Program
Manipulation, pages 255–273. ACM, September 1991.

P. Wadler. The essence of functional programming. In19th Symposium on Principles of Programming
languages, pages 1–14. ACM, January 1992.

106

Appendix

A.1 Proof That Non-Interference Implies Commutativity (and Exchange)

Theorem 5(Commutativity).
right f >>> left g= left g>>> right f

Proof. This proof is straightforward. We will begin by assumingRight inputs only, and thus we can modify
our assertion to:

arr Right>>> right f >>> left g= arr Right>>> left g>>> right f

Starting with the left hand side,

arr Right>>> right f >>> left g

= { Unit backwards}

f >>>arr Right>>> left g

= { Non-Interference}

f >>>arr Right

= { Unit }

arr Right>>> right f

= { Non-Interference backwards}

arr Right>>> left g>>> right f

ForLeft input values, the proof works in exactly the same way except that we must use non-interference’s
mirror:

arr Left>>> right f = arr Left

which follows directly from non-interference and the definition ofright.

A.2 Choice-Based Implementations of First-Order Switch

Although using non-interfering choice and settability allows for a differentparadigm for designing FRP
programs, we can also use these tools to implement operators that are similar to the classic switchers. We
show two such implementations in this appendix.

107

A.2.1 Standard Switch

The standardswitchfunction can be implemented with non-interfering choice in a straightforward manner:

switchchoice:: (α (β ,Eventγ))→ ((Eventγ ,α) β)
→ (α β)

switchchoicesf1 sf2 = proc a→ do
onOne← delay True−≺not onTwo
(b,et)← if onOnethen sf1−≺ a

else returnA−≺ (undefined,NoEvent)
let onTwo= (isEvent et) || (not onOne)
if onTwothen sf2−≺ (et,a)

else returnA−≺ b

Here, we keep track of two internal state variables calledonOneandonTwothat indicate whether we should
be running the first or the second signal function. When the first produces an event, we setonOneto False
so that we stop running it, and we setonTwoto True. Then, we pass the impulse generated from the first
signal function to the second one, and for the future, the impulse stream contains onlyNoEventvalues.

A.2.2 Parallel Switch

ThepChoicefunction is somewhat more complicated and is shown in FigureA.1. pChoicetakes a mapping
of keys to signal functions (implemented here as a list for simplicity) as its static argument. For each element
of this static list, we keep a dynamic list of states (thestatesvariable in the figure). We check the input events
for any that are keyed to the signal function we are currently processing and update the state list accordingly
(by either adding or removing elements), and then we run the signal functionfor each state and recur. Note
that the static signal functions are all impulse driven; thus, when new statesare first added to the state list
(which is done in theupdatehelper function), they are given an impulse event, but otherwise, they are given
NoEvent(i.e. in the definition ofstatesnew). This restriction to strictly impulse driven signal functions is not
fundamental – indeed, we could write a version ofpChoicethat accepts signal functions that also take a
streaming input – but making it more generic would needlessly complicate this already dense definition.

It is also worth noting that there is a subtle difference in performance between pChoiceandpSwitch.
When the finite data type is large but rarely used,pSwitchmay outperformpChoicebecausepChoicestill
has to iterate through its entire static list on each step whilepSwitch’s dynamic list will be just the relevant
signal functions. That said, their performance should be comparable when the finite data type is small
compared to the number of currently running signal functions.

A.3 Proofs of Preservation and Progress for Synchronous Semantics

In order to prove preservation and progress for our semantics, we must show these properties for each of the
transitions we have defined. Here we state and prove the relevant theorems.

A.3.1 Evaluation Transition

The evaluation transition is mostly lifted from a standard lazy semantics forL {→×+}. The additions
presented in Figure4.4simply explain that the new expressions are all values. Therefore, preservation and
progress follow trivially.

108

pChoice:: Eq key⇒ [(key,Eventα β)]→
([(key,(UID,Eventα))] [β])

pChoice[] = constA[]
pChoice((key,sf) : rst) = proc es→ do

rec states← delay[]−≺statesnew

let esthis = map snd$ filter ((== key) . fst) es
statesinp = update states esthis

output← runDynamic(first (settable sf))−≺ statesinp

let statesnew= map(λ ((,s),uid)→
((NoEvent,Event s),uid)) output

rs← pChoice rst−≺es
returnA−≺ (map(fst . fst) output)++ rs

whereupdate:: [((Eventα ,Event State),UID)]
→ [(UID,Eventα)]
→ [((Eventα ,Event State),UID)]

update s[] = s
update s((uid,NoEvent) : rst) =

update(filter ((6= uid) . snd) s) rst
update s((uid, i) : rst) =

update(((i,Event) ,uid) : s) rst

Figure A.1: The implementation ofpChoice.

A.3.2 Functional Transition

Preservation for the functional transition proceeds in a straightforwardmanner making sure that the stream-
ing input is appropriately transitioned into a streaming output.

Theorem 6 (Preservation during functional transition). If e : α R
 β , x : α , and (,x,e)⇛ (,y, ,), then

y : β .

Proof. The proof of preservation proceeds by induction on the derivation of the transition judgment along
with the knowledge of preservation for the evaluation transition. Each of thejudgments can be proved
trivially with a brief examination of the typing rules, so we omit the details.

Progress for the functional transition is a somewhat more interesting concept. Because of the complexity
of the transition, we are forced to make a few assumptions about the input data:

Theorem 7 (Progress during functional transition). If e : α R
 β , x : α , andV contains elements such that

∀r ∈ R,(r,a, ·) ∈ V where r : 〈τin,τout〉 and a: τin, then∃y : β ,e′ : α R′
 β ,V ′,W such that(V ,x,e)⇛

(V ′,y,e′,W).

We require that in addition to the expressione being well-formed and the streaming argumentx being
of the right type, the setV must also be “well-formed”. That is, for every resource thate might interact
with (all resources inR), there is a triple inV corresponding to that resource that contains values of the
appropriate types. Notably, they must all be resources that have not seen any interaction. This is not an
unreasonable requirement as we proved in Theorem3 that at any point during the functional execution, no
resources see more than one interaction.

109

Proof. The proof of progress proceeds by induction on the derivation of the functional transition judgment.
Based on the Canonical Forms Lemma (Lemma1), we know that the functional transition need only apply
to the five forms of a signal function, and we see by inspection that it does.We examine each judgment in
turn:

• SF constructor(FT-ARR): Whene is of the formarr(e′), typing rule TY-ARR tells us thate′ : α→ β .
As x : α , the streaming outpute x is of typeβ as necessary. The other outputs exist regardless of the
form of e′.

• SF partial application(FT-FIRST): If e is of the formfirst(e′), then the typing rule TY-FIRST tells
us thate′ has resource type setR just ase does. Our inductive hypothesis tells us that outputs are
available for our recursive transition. The streaming output(y,z) has the appropriate type, and the
expression output, formed by applyingfirst to the expression output of the recursive transition has the
same type ase.

• SF composition(FT-COMP): e may be of the forme1>>>e2. By typing rule TY-COMP, we know

thate : α R
 γ, e1 : α R1

 β , ande2 : β R2
 γ. The evaluation transitions progress, and by our inductive

hypothesis, the functional transitions in the precondition progress as well.The output is formed from
the results of the precondition with the streaming valuez being of typeγ as required. The expression
output, made by composing the two expressionse′′1 ande′′2 has the same type ase.

• SF choice(FT-CHC1 and FT-CHC2): Whene is of the forme1 ||| e2, typing rule TY-CHC tells us

that e : α + β R
 γ, e1 : α R1

 γ, ande2 : β R2
 γ. For either form ofx, there is a judgment, and in

either judgment the inductive hypothesis gives us output values wherey : γ as expected. The returned
expression is also of the appropriate form considering thate′′1 from FT-CHC1 ande′′2 from FT-CHC2
have the same types ase1 ande2 respectively.

• SF resource interaction(FT-RSF): If e is of the formrsf r, then the typing rule TY-RSF tells us

that its type must beα
{r}
 β and r : 〈α ,β 〉. By the conditions of our theorem,V must contain an

element(r,y, ·) such thaty : β . Therefore, the streaming outputy is of the right type. Lastly, the output
expression is identical to the input expression.

• Wormhole introduction(FT-WH): We use typing rule TY-WH whene is of the formletW rw rb ei in ebody;

it tells us thatebody has typeα R′
 β whereR= R′ \ {rw, rb}. Before using our inductive hypothe-

sis, we must prove that the value set for the recursive call meets our requirements. We know that
(R∪{rw, rb})⊇R′, soV ∪{(rw,ei , ·),(rb,(), ·)} clearly satisfies the condition. Therefore, the stream-
ing outputy will be of typeβ . Furthermore, the output expressione′′ must have the same type asebody

which satisfies our output requirement.

A.3.3 Temporal Transition

By the definition of the overall operational semantics (Definition2), we know that the trace of any program
P is infinite. As long as we can prove progress, preservation is irrelevant.We make use of the preservation
and progress theorems for the evaluation and functional transitions shown earlier to prove the following:

Theorem 8(Progress of overall semantics). If P is a program with typeα R
 β and R⊆Ro then the trace

of P will always be able to progress via the temporal transition
t
7→ when starting from(Ro, /0,P).

110

Proof. The judgment for the temporal transition allows the input to progress so long as the preconditions are
met. The first condition definesVin to contain elements for each resource inR as well as for each whitehole
and blackhole pair inW . This is used in the second condition, which will progress only if we can prove that
(Vin,(),P) will progress through the functional transition.P may access resources inRas well as any virtual
resources introduced through wormholes. In the base case, the functional transition has never been run, and
R does not contain any virtual resources. Then, becauseR⊆Ro, Vin contains elements for every resource
in R, so we meet the conditions of the functional progress theorem (Theorem7). In the inductive case, we
are dealing with a potentially further evaluated programP′ with resourcesR′, which may contain virtual
resources. Then, all virtual resources will have been generated from previous passes through the functional
transition, and all of the virtual resources will be represented byW . Once again,Vin will contain elements
for each resource inR′, and the functional transition can progress.

The last two preconditions are simply definitions ofR ′ andW ′ such thatR′ contains the same number
of elements keyed by the same resource names asR and thatW ′ contains the same whitehole and blackhole
resource names asW as well as any new wormhole data entries fromWnew.

The output programP′ is not the same asP. Notably, its type may have changed to()
R′
 (). From

Theorem2, we know thatR′ is the setR with up to two new virtual resources for each element ofWnew

corresponding to the whiteholes and blackholes of the elements ofWnew. This is fine for exactly the reason
that these new resources are “documented” inWnew and Wnew is unioned withW for the output of the
transition. Therefore, whenV is being generated in the next iteration, all of the resources ofR′ will be
represented, both the original ones inR and any virtual ones created and documented inW .

Finally, we must consider the overall base case. On the first iteration through the temporal transition,
there can be no virtual resources because no wormhole expressions have been executed by the functional
transition yet. Therefore, the initial wormhole setW can be the empty set.

A.4 CFRP Properties

In order to express the ideas of resource safety and commutativity, we first need a way to discuss a given
process’s execution at a given moment in time.

In order to do this, we need a bit more access to the executive transition thanwe have. Specifically, we
define the following slightly modified executive transition:⇓p. The behavior of⇓p is identical to that of⇓
except that when the transition internally invokes the functional transition⇛ on a process with process ID
p, it must do so in a restricted form such that the FT-TIME judgment is not permitted. Furthermore, we use
⇓∗p to refer to the reflexive transitive closure over this transition .

This modified executive transition allows us to rigorously define the term “moment in time”.

Definition 7 (Moment in Time). We say(S,R,W) →֒p (S′,R ′,W ′) represents the sequence of unique pro-
gram states S= S0,S1 . . .Sn = S′ if and only if∃T,T ′ such that(T,R,W) ⇓∗p (T

′,R ′,W ′) where T(p) =
S0,T ′(p) = Sn, and for all intermediate T ,∃i such that T(p) = Si . We call this sequence of states part of the
samemoment in time.

Essentially, the idea of a moment in time fits with the fundamental FRP abstraction, where we assume
that the program executes infinitely fast. Thus, one “moment” is the sequence of steps on one process that
occurs between any abstract passage of time.

Lemma 3. The program states representing one moment in time cannot cause an update to a resource.

This lemma is trivially provable due to the fact that resources can only be updated in the FT-TIME

judgment, which is definitionally restricted from being one of the states of a moment in time. Furthermore,

111

it provides us with the knowledge that any process that is terminated while it is mid-execution will not affect
any resources.

We will go on to show that no resource can be interacted with more than once ina given moment and
that any data observed in a given moment will be the same regardless of the process’s structure or what other
processes are running asynchronously.

A.4.1 Resource Safety

In order to state that CFRP interacts with resources in a safe and predictable manner, we first must define
what it means to interact with a resource.

Definition 8 (Resource interaction). Every program state S of the form(K⊲ (rsf r,x,U)) for any control
stack K, value x, and update set U is aresource interaction of resource r.

With this, we can state the following trivial lemma regarding resource interactionover a sequence of
states:

Lemma 4. A sequence of program states S0 . . .Sn will interact with a resource r exactly j times where j is
the number of states in the sequence S0 . . .Sn−1 that interact with resource r.

Together, we can use this definition and lemma to define resource safety:

Theorem 9(Resource Safety). For a program P:: α R
 β , we know:

• No program states will ever interact with a resource r6∈ R.

• No two processes in P can interact with the same resource.

• No moment of time in P will ever interact with a resource more than once.

This theorem has three components. The first statement asserts that a welltyped program will not
interact with resources not noted in its type. The next statement asserts that even with the asynchrony of
multiple processes running simultaneously, resource access remains unique across the entire program. The
last statement asserts that for any given process, within one moment in time, no resource will be accessed
more than once.

Proof. The first two statements of this theorem follow from the typing rules. First, ifP is well formed and
has resource typesR, then there can be norsf construct inP for a resourcer 6∈R. the second follows naturally
from the typing rules for fork and composition.

To prove the third statement we show that for all states of(S,R,W) →֒p (S′,R ′,W ′), no two can
interact with the same resource. LetSk be a state in the sequence that interacts with resourcer. Then,
Sk = (K⊲ (rsf r, ,Uk)), andSk+1 must be(K⊳ (rsf r, ,Uk+1)). The only way to move from areturn state
like this to anevaluationstate is through either the FT-TIME judgment or the FT-COMP2 judgment. No state
can move through the FT-TIME judgment by definition of amoment in time, and the FT-COMP2 judgment
will not allow code that has already been executed to run again, which we can be sure of due to Theorem4
(Structural Preservation). Therefore, no stateSj>k can repeat the same state asSk.

Furthermore, due to the typing rules and the fact that every stateSi unwinds to a well typed expression
e and that a moment contains no FT-TIME judgments that would allow the expression to begin again, there
can be no more than onersf command forr in this moment. Therefore, no resource can be interacted with
more than once in this sequence.

112

A.4.2 Resource Commutativity

The resource safety theorem tells us that a process will never perceive more than one resource interaction
with the same resource in a given moment in time. We use this to make the following claim:

Theorem 10(Commutativity). For any S and r, if(S,R,W) →֒p (S′,R ′,W ′) is the set of states S0 . . .Sn

and there exists i< n such that Si = (K⊲ (rsf r, ,Ui)) and Si+1 = (K⊳ (rsf r,x,Ui+1)), then x will be the
same for all S regardless of i.

This theorem states that within a given moment in time for a given initialR andW , regardless of where
a resource is read or what comes before or after it within that moment, it will produce the same value. Thus,
if two sequences of code both use the same resources and can execute inthe same moment in time, they can
be substituted and the values produced by their resources will not alter because of that change.

Thus, we state that the order of execution of the components of a signal function running at the same
moment in time does not change the result of the program. This fits the model of our abstraction exception-
ally well because it implies that we can really think of a moment in time as happening all at once—no one
component needs to happen before another to produce the result.

Proof. We will prove this theorem by proving that it holds for any resource type.
First, if r is a blackhole, the theorem holds trivially. The FT-RSFw judgment applies, and due to the

definition ofread for blackholes and regardless of anything else, the valuex will be ().
If r is a whitehole resource, then the transition fromSi to Si+1 must once again be FT-RSFw, in which

case the valuex is determined uniquely by the elementw of the wormhole’s internal resource data, and it
suffices to show that regardless ofS and i, w will be the same. Resource data can only be changed by a
resource update (update), and the only functional transition judgment that updates resources is FT-TIME.
Furthermore, the FT-TIME judgment will only update if an element(r,) is in the update data passed into it.
However,(r,) will only be inU for sets of update data in a process that has already processed the FT-RSFw

judgment with the resource in question. By Theorem9 (Resource Safety), we know that no other process
can interact withr, so that element can only be inU for states inS0 . . .Sn. Lastly, because no statesS0 . . .Sn

use the FT-TIME transition, we know thatw cannot be changed during the moment.
Lastly, if r is a physical resource, then the transition fromSi to Si+1 is FT-RSFr , and the valuex is

determined uniquely by the state of the resourcer. This conclusion follows similarly to that for whiteholes.

113

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	To Switch or Not To Switch
	Including Effects
	To Asynchrony and Beyond
	More Uses for Wormholes

	Background
	Arrows
	Basic Language

	Choice and Settability
	A Case for Non-Interfering Choice
	A Case for Settability
	An Alternative to pSwitch
	Implementing Settability
	Optimizations
	Other effects of switching from switch

	General Effects in FRP
	Resource Types
	A Resource Typed Language
	Examples
	Delay and Loop
	Semantics
	Safety
	Haskell Implementation

	Asynchronous Functional Reactive Processes
	Considering Asynchrony
	Motivating Examples
	The Language
	Concurrency Operators
	Language Properties
	Blocking
	Haskell Implementation

	UISF – A Case Study
	Arrowized User Interface
	Example: Time
	Example: Bidirectional Data Flow
	Example: Dynamically Active Widgets
	Example: Asynchronous Computation
	Differences From Theory
	Conclusions and Discussion of Similar Libraries

	Bibliography
	Appendix
	Proof That Non-Interference Implies Commutativity (and Exchange)
	Choice-Based Implementations of First-Order Switch
	Proofs of Preservation and Progress for Synchronous Semantics
	CFRP Properties

