
EFFECTS, ASYNCHRONY, AND CHOICE

IN ARROWIZED FUNCTIONAL REACTIVE

PROGRAMMING

Daniel Winograd-Cort

Department of Computer Science

Yale University

Dissertation Defense

New Haven, CT

Thursday, June 11, 2015

Functional Reactive Programming

 Functional programming that can react to change.

 Time is a built-in aspect of the design.

 One programs with continuous values and streams of

events.

 Values themselves are time-dependent.

 The computation is time-independent.

 FRP is required to be …

 Causal by default.

 Synchronous by default.

 Already in major use.

Functional Reactive Programming

GUI Example

 We would like a graphical user interface:

 One textbox displays a temperature in Celsius.

 Another displays the temperature in Fahrenheit.

 Updating one value should automatically update

the other.

GUI Example

 We would like a graphical user interface:

 One textbox displays a temperature in Celsius.

 Another displays the temperature in Fahrenheit.

 Updating one value should automatically update

the other.

 -Demo-

 We will explore this with and without FRP.

Java 7 with Swing

public class TemperatureConverter extends JFrame {
 JTextField celsiusField;
 JTextField fahrenheitField;

 public TemperatureConverter(String name) {
 super(name);
 initGUI();
 initListeners();
 }

 private void initGUI() {
 celsiusField = new JTextField(5);
 fahrenheitField = new JTextField(5);

 Container pane = this.getContentPane();
 pane.setLayout(new FlowLayout());
 pane.add(celsiusField);
 pane.add(new JLabel("Celsius"));
 pane.add(new JLabel("="));
 pane.add(fahrenheitField);
 pane.add(new JLabel("Fahrenheit"));
 }

 public static void main(String[] args) {
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 TemperatureConverter frame =
 new TemperatureConverter("Temperature Converter");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
 });
 }

 private void initListeners() {
 celsiusField.getDocument().addDocumentListener(
 new DocumentListener() {
 public void insertUpdate(DocumentEvent e) { update(); }
 public void removeUpdate(DocumentEvent e) { update(); }
 public void changedUpdate(DocumentEvent e) { update(); }

 private void update() {
 if (!celsiusField.isFocusOwner() ||
 !isNumeric(celsiusField.getText())) return;
 double celsius =
 Double.parseDouble(celsiusField.getText().trim());
 double fahrenheit = cToF(celsius);
 fahrenheitField.setText(
 String.valueOf(Math.round(fahrenheit)));
 }
 });
 fahrenheitField.getDocument().addDocumentListener(
 new DocumentListener() {
 public void insertUpdate(DocumentEvent e) { update(); }
 public void removeUpdate(DocumentEvent e) { update(); }
 public void changedUpdate(DocumentEvent e) { update(); }

 private void update() {
 if (!fahrenheitField.isFocusOwner() ||
 !isNumeric(fahrenheitField.getText())) return;
 double fahrenheit =
 Double.parseDouble(fahrenheitField.getText().trim());
 double celsius = fToC(fahrenheit);
 celsiusField.setText(
 String.valueOf(Math.round(celsius)));
 }
 });
 }
}

* Code from https://github.com/eugenkiss/7guis

Java 7 with Swing

public class TemperatureConverter extends JFrame {
 JTextField celsiusField;
 JTextField fahrenheitField;

 public TemperatureConverter(String name) {
 super(name);
 initGUI();
 initListeners();
 }

 private void initGUI() {
 celsiusField = new JTextField(5);
 fahrenheitField = new JTextField(5);

 Container pane = this.getContentPane();
 pane.setLayout(new FlowLayout());
 pane.add(celsiusField);
 pane.add(new JLabel("Celsius"));
 pane.add(new JLabel("="));
 pane.add(fahrenheitField);
 pane.add(new JLabel("Fahrenheit"));
 }

 public static void main(String[] args) {
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 TemperatureConverter frame =
 new TemperatureConverter("Temperature Converter");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
 });
 }

 private void initListeners() {
 celsiusField.getDocument().addDocumentListener(
 new DocumentListener() {
 public void insertUpdate(DocumentEvent e) { update(); }
 public void removeUpdate(DocumentEvent e) { update(); }
 public void changedUpdate(DocumentEvent e) { update(); }

 private void update() {
 if (!celsiusField.isFocusOwner() ||
 !isNumeric(celsiusField.getText())) return;
 double celsius =
 Double.parseDouble(celsiusField.getText().trim());
 double fahrenheit = cToF(celsius);
 fahrenheitField.setText(
 String.valueOf(Math.round(fahrenheit)));
 }
 });
 fahrenheitField.getDocument().addDocumentListener(
 new DocumentListener() {
 public void insertUpdate(DocumentEvent e) { update(); }
 public void removeUpdate(DocumentEvent e) { update(); }
 public void changedUpdate(DocumentEvent e) { update(); }

 private void update() {
 if (!fahrenheitField.isFocusOwner() ||
 !isNumeric(fahrenheitField.getText())) return;
 double fahrenheit =
 Double.parseDouble(fahrenheitField.getText().trim());
 double celsius = fToC(fahrenheit);
 celsiusField.setText(
 String.valueOf(Math.round(celsius)));
 }
 });
 }
}

* Code from https://github.com/eugenkiss/7guis

Java 8 with ReactFX (FRP)

public class TemperatureConverterReactFX extends Application {

 public void start(Stage stage) {
 TextField celsius = new TextField();
 TextField fahrenheit = new TextField();

 EventStream<String> celsiusStream =
 EventStreams.valuesOf(celsius.textProperty()).filter(Util::isNumeric);
 celsiusStream.map(Util::cToF).subscribe(fahrenheit::setText);
 EventStream<String> fahrenheitStream =
 EventStreams.valuesOf(fahrenheit.textProperty()).filter(Util::isNumeric);
 fahrenheitStream.map(Util::fToC).subscribe(celsius::setText);

 HBox root =
 new HBox(10, celsius, new Label("Celsius ="), fahrenheit, new Label("Fahrenheit"));
 root.setPadding(new Insets(10));

 stage.setScene(new Scene(root));
 stage.setTitle("Temperature Converter");
 stage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

* Code from https://github.com/eugenkiss/7guis

Arrows …

 Are a well-founded concept inspired by category
theory.

 Create a tighter semantic connection between data.

 Enforce the appropriate abstraction of time.

 By removing direct access to streams, we eliminate certain
memory leaks and non-causal behaviors.

 Have a static structure, which makes them …

 More suitable for resource constrained systems.

 Highly amenable to optimizations (e.g. CCA).

 Have been used in Yampa, Nettle, Euterpea, etc.

 Look like signal processing diagrams.

AFRP (as a Diagram)

tempConvertSF

labeledTextbox “Celsius =”

delay labeledTextbox “Fahrenheit”

delay … c2f …

… f2c …

Haskell with UISF (AFRP)

tempConvertSF = leftRight $ proc () -> do

 rec c <- labeledTextbox "Celsius = " -< updateC

 f <- labeledTextbox "Fahrenheit" -< updateF

 updateF <- delay Nothing -< fmap (show . c2f) (c >>= readMaybe)

 updateC <- delay Nothing -< fmap (show . f2c) (f >>= readMaybe)

 returnA -< ()

main = runUI (defaultUIParams

 {uiSize=(400, 24), uiTitle="Temp Converter"})

 tempConvertSF

* http://hackage.haskell.org/package/UISF

Drawbacks of (Arrowized) FRP

 Data varies over time, but arrows cannot.

 This lack of dynamic behavior limits expressivity.

 I/O Bottleneck

 Pure FRP cannot perform effects.

 All inputs and outputs must be routed manually.

 This is a potential security leak.

 Synchrony can be restrictive.

My Contributions

 Extend arrows to allow “predictably dynamic”

behavior [ICFP ‘14].

 Non-interfering choice adds expressivity to arrows.

 Add concurrency and asynchrony [submitted ‘15].

 Wormholes allow communication for concurrency.

 https://github.com/dwincort/CFRP

 Safe effects such as physical resource interaction

memory access [PADL ‘12, HS ‘12].

 Resource types address safety.

My Contributions

 Extend arrows to allow “predictably dynamic”

behavior [ICFP ‘14].

 Non-interfering choice adds expressivity to arrows.

 Add concurrency and asynchrony [submitted ‘15].

 Wormholes allow communication for concurrency.

 https://github.com/dwincort/CFRP

 Safe effects such as physical resource interaction

memory access [PADL ‘12, HS ‘12].

 Resource types address safety.

How arrows work and what we need to express

interesting computations

Expressing Arrows

Standard Arrow Operators

arr f

f

loop sf

sf

sf1 >>> sf2

sf1 sf2

first sf

sf

Stateful Arrows

 With continuous semantics, the length of the delay

approaches zero.

 When used in conjunction with loop, delay allows

one to create stateful signal functions.

delay i

i

Dynamic Behavior

 Can we get more dynamic power for arrows?

 Why would we want that?

Exploring predictably dynamic behavior

Example: Mind Map

Example

 We would like a GUI to help a user build and

navigate a “mind map.”

 A mind map is a mapping from keywords to values.

 A user can look up a key to see its values, and then add

new values.

 The GUI’s appearance should dynamically update

based on how many values the given key has.

Example

 We would like a GUI to help a user build and

navigate a “mind map.”

 A mind map is a mapping from keywords to values.

 A user can look up a key to see its values, and then add

new values.

 The GUI’s appearance should dynamically update

based on how many values the given key has.

 -Demo-

Mindmap in code

mindmap :: MindMap -> UISF () ()

mindmap iMap = proc () -> do

 l <- textEntryField "Lookup" -< ()

 a <- textEntryField "Add" -< ()

 key <- accum "" -< fmap const l

 m <- accum iMap -< fmap (\v -> insertWith (++) key [v]) a

 title "Key = " displayStr -< key

 runDynamic displayStr -< Map.findWithDefault [] key m

 returnA -< ()

 How do we write runDynamic?

Higher Order Arrows

 The control signal determines the overall behavior.

 This allows highly dynamic programs.

 Switched out signal functions are permanently off.

 Switching can be used to increase performance.

rSwitch sf

sf

Implementing runDynamic

 We can create a new compound-widget when

necessary and then switch into it:

 But this approach voids our static guarantees!

 Arrows with switch are equivalent to Monads.

 It seems unnecessary – we are not running unknown

functions.

runDynamic sf

rSwitch

length runNTimes sf

Arrow Choice

 With choice, running the signal function is a dynamic

decision.

 This seems to help, but it’s not enough.

 We get fixed branching, but not true recursion.

left sf

Left

Right

sf

Arrow Choice Laws

Extension

Functor

Exchange

Unit

Assoc

left (arr f) = arr (left f)

left (f >>> g) = left f >>> left g

left f >>> arr (right g) =
arr (right g) >>> left f

f >>> arr Left = arr Left >>> left f

left (left f) >>> arr assoc+ =
arr assoc+ >>> left f

Arrow Choice Laws

Extension

Functor

Exchange

Unit

Assoc

left (arr f) = arr (left f)

left (f >>> g) = left f >>> left g

left f >>> arr (right g) =
arr (right g) >>> left f

f >>> arr Left = arr Left >>> left f

left (left f) >>> arr assoc+ =
arr assoc+ >>> left f

Exchange

 Why isn’t this commutative?

 Some arrows have effects.

 For instance, UISF uses arrow order to determine
widget layout.

 These effects make recursion impossible.

 In general, arrows are not commutative, but for
choice in FRP, they can be.

=
Left

Right

f

g

Left

Right g

f

Non-Interference

 We strengthen exchange into non-interference

 If the input value is Right, then the program will

behave the same whether there is a left function

after it or not.

 The unused branch is now guaranteed to not run.

 Now we can use Arrow Choice for recursion!

=
f

Right

Left

Right

Right

 Arrowized recursion allows us to write this without

using switch.

runDynamic Revisited

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

runDynamic sf

cons

const []

 Arrowized recursion allows us to write this without

using switch.

runDynamic Revisited

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

cons

const []

[]

head

tail

sf

runDynamic sf

cons

const []

 Arrowized recursion allows us to write this without

using switch.

runDynamic Revisited

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

cons

const []

[]

head

tail

sf

runDynamic sf

cons

const []

[]

head

tail

sf

runDynamic sf

cons

const []

 Arrowized recursion allows us to write this without

using switch.

 The arrow structure is not technically static, but it is

predictably dynamic.

runDynamic Revisited

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

runDynamic sf

cons

const []

Non-Interfering Choice Wrap-Up

 Like switch, non-interfering choice (and thus

arrowized recursion) only computes when needed.

 The predictable nature of non-interfering choice

does not interfere with optimizations.

 The CCA transformation is still applicable.

 Time complexity can now be variable, but resource

allocation is still static (arrow dependent).

My Contributions

 Extend arrows to allow “predictably dynamic”

behavior [ICFP ‘14].

 Non-interfering choice adds expressivity to arrows.

 Add concurrency and asynchrony [submitted ‘15].

 Wormholes allow communication for concurrency.

 https://github.com/dwincort/CFRP

 Safe effects such as physical resource interaction

memory access [PADL ‘12, HS ‘12].

 Resource types address safety.

Allowing local asynchronous concurrency

Example: Connect Four

Example

 We would like a GUI to play a game of Connect 4.

 It should follow the rules of the game.

 After the user makes a play, an AI should play.

Example

 We would like a GUI to play a game of Connect 4.

 It should follow the rules of the game.

 After the user makes a play, an AI should play.

 -Demo-

Connect Four GUI

connectFour = proc () -> do

 rec aiLevel <- title "AI Level" (hiSlider 1 (0, 5) 2) -< ()

 select <- displayBoard numCols 10 -< board

 board <- hold initBoard -< fmap (makeMove board) $

 case (turn board) of

 X -> fmap (,X) select

 O -> findBestMove O aiLevel board

 case (isWin board) of

 Nothing -> label "" -< ()

 Just X -> label "You win!" -< ()

 Just O -> label "You lose!" -< ()

Connect Four GUI

 When we ramp up the AI level, we find a problem.

 -Demo-

connectFour = proc () -> do

 rec aiLevel <- title "AI Level" (hiSlider 1 (0, 5) 2) -< ()

 select <- displayBoard numCols 10 -< board

 board <- hold initBoard -< fmap (makeMove board) $

 case (turn board) of

 X -> fmap (,X) select

 O -> findBestMove O aiLevel board

 case (isWin board) of

 Nothing -> label "" -< ()

 Just X -> label "You win!" -< ()

 Just O -> label "You lose!" -< ()

Synchrony Can Be a Burden

 The two parts would like to run at different rates.

 The GUI should continue running at ~60FPS.

 The AI should be allowed to run as slow as it needs to.

 The synchronous assumption of FRP is too strong.

 Other examples include …

 Memory reads together with hard drive seeks.

 Packet routing together with network map updating.

 Sound synthesis together with a GUI interface.

Asynchrony

 Let us allow multiple processes, each with its own

notion of time.

 Each will individually remain synchronous and causal.

 However, they will no longer synchronize.

 But what are those dashed lines?

Connect Four GUI Diagram

connectFour

“AI” slider

displayBoard

findBestMove hold

Inter-Process Communication

 We need a way to communicate data from one time

stream to another.

 Data needs to get time dilated – either stretched or

compressed.

 A special form of channel: Wormholes

 Wormholes have a blackhole for writing to and a

whitehole for reading from.

 Wormholes automatically dilate their data.

New Operators

letW w b sf

w

b

fork sf

 sf

sf

Connect Four GUI Diagram 2

 Now, findBestMove can run with its own clock.

 The data is communicated clearly via wormholes.

connectFour

“AI” slider

displayBoard

hold findBestMove

Maintaining Modular Consistency

 How can we control forked processes?

sf

Left

Right

sf

Asynchronous Choice

 Remember that data is time-dependent.

 When a signal function has no incoming data, it must

freeze.

 Likewise, if a fork has no incoming data, it freezes its

forked process.

 We achieve this while guaranteeing consistency.

 Treat every moment in time as a transaction.

 Freezing may occur between transactions.

Asynchrony Wrap-Up

 We can create multiple time streams for different

FRP components.

 Each time stream is internally synchronous and

deterministic.

 We can communicate between time streams in a

clear way with wormholes.

 Data is automatically time dilated.

 We can govern time streams using non-interfering

choice.

My Contributions

 Extend arrows to allow “predictably dynamic”

behavior [ICFP ‘14].

 Non-interfering choice adds expressivity to arrows.

 Add concurrency and asynchrony [submitted ‘15].

 Wormholes allow communication for concurrency.

 https://github.com/dwincort/CFRP

 Safe effects such as physical resource interaction

memory access [PADL ‘12, HS ‘12].

 Resource types address safety.

Allowing effects in a meaningful yet safe manner

Example: MIDI Echo Player

Example

 We would like a GUI to control the parameters of

an echo effect that we can add to a MIDI stream.

 MIDI stands for Musical Instrument Digital Interface.

 An echo decays and loops the sound.

 The program should read from and write to a MIDI

port.

Example

 We would like a GUI to control the parameters of

an echo effect that we can add to a MIDI stream.

 MIDI stands for Musical Instrument Digital Interface.

 An echo decays and loops the sound.

 The program should read from and write to a MIDI

port.

 -Demo-

Echo GUI

 Let’s also add a metronome tick to this.

echo :: UISF () ()

echo = proc () -> do

 m <- midiIn -< ()

 r <- title "Decay rate" (hSlider (0, 0.9) 0.6) -< ()

 f <- title "Echoing frequency" (hSlider (1, 10) 3) -< ()

 rec let m' = m <> s

 s <- vdelay -< (1.0 / f, decay 0.1 r m')

 midiOut -< m'

Echo GUI

echo :: UISF () ()

echo = proc () -> do

 m <- midiIn -< ()

 r <- title "Decay rate" (hSlider (0, 0.9) 0.6) -< ()

 f <- title "Echoing frequency" (hSlider (1, 10) 3) -< ()

 rec let m' = m <> s

 s <- vdelay -< (1.0 / f, decay 0.1 r m')

 midiOut -< m'

metronomeTick :: UISF () ()

metronomeTick = proc () -> do

 bpm <- title "Metronome BPM" (hSlider (40, 200) 100) -< ()

 e <- timer -< 60 / bpm

 midiOut -< makeTick e

Echo GUI

echo :: UISF () ()

echo = proc () -> do

 m <- midiIn -< ()

 r <- title "Decay rate" (hSlider (0, 0.9) 0.6) -< ()

 f <- title "Echoing frequency" (hSlider (1, 10) 3) -< ()

 rec let m' = m <> s

 s <- vdelay -< (1.0 / f, decay 0.1 r m')

 midiOut -< m'

metronomeTick :: UISF () ()

metronomeTick = proc () -> do

 bpm <- title "Metronome BPM" (hSlider (40, 200) 100) -< ()

 e <- timer -< 60 / bpm

 midiOut -< makeTick e

runUI defaultUIParams (echo >>> metronomeTick)

Multiple midiOut Effects

 What happens when we send MIDI output twice in

one program?

 The two input streams merge in some way?

 The top input stream processes first?

 This may break our functional guarantee.

 Blocks of code are no longer modular.

 The UISF layout is determined by program structure.

 Layout is determined statically (“predictably dynamic”).

 Computation and layout are totally separate.

Adding Effects

 To make effects safe, we must limit how we use

effectful signal functions.

 If an effect is used, it can only be used in one place.

 We achieve this by tagging signal functions at the

type level with resource types and restricting their

composition.

Resource Typed Arrow Operators

Ty-Arr
Γ⊢𝑒 ∶ 𝛼→𝛽

Γ;Ψ⊢𝑎𝑟𝑟 𝑒 ∶ 𝛼⇝
∅

𝛽

Ty-First
Γ;Ψ⊢𝑒 ∶ 𝛼⇝

𝑅
𝛽

Γ;Ψ⊢𝑓𝑖𝑟𝑠𝑡 𝑒 ∶ (𝛼×𝛾)⇝
𝑅

(𝛽×𝛾)

Ty-Comp

Γ;Ψ⊢𝑒1 ∶ 𝛼⇝
𝑅1

𝛽 Γ;Ψ⊢𝑒2 : 𝛽⇝
𝑅2

𝛾
𝑅1⊎𝑅2=𝑅

Γ;Ψ⊢𝑒1>>>𝑒2 ∶ 𝛼⇝
𝑅

𝛾

Ty-Chc

Γ;Ψ⊢𝑒1 ∶ 𝛼⇝
𝑅1

𝛾 Γ;Ψ⊢𝑒2 ∶ 𝛽⇝
𝑅2

𝛾
𝑅1∪𝑅2=𝑅

Γ;Ψ⊢𝑒1|||𝑒2 ∶ (𝛼+𝛽)⇝
𝑅

𝛾

Resource Typed Arrow Operators

arr f

f

first sf

 sf

sf1 >>> sf2

 sf1 sf2

sf1 ||| sf2

Left

Right

 sf1

 sf2

∅ R
R

R1 R2

R3

𝑅1 ∪ 𝑅2 = 𝑅3

𝑅1 ∩ 𝑅2 = ∅

R1

R2

R3

𝑅1 ∪ 𝑅2 = 𝑅3

Resource Typed Arrow Operators

Ty-Fork
Γ;Ψ⊢𝑒 ∶ ()⇝

𝑅
()

Γ;Ψ⊢𝑓𝑜𝑟𝑘 𝑒 ∶ 𝛼⇝
𝑅

𝛼

Ty-LetW

Γ;Ψ,𝑟𝑤 ∶ (),𝐿𝑖𝑠𝑡 𝜏 ,𝑟𝑏∶ 𝜏,() ⊢𝑒 ∶𝛼⇝
𝑅′

𝛽

Γ;Ψ⊢𝑒𝑖∶𝐿𝑖𝑠𝑡 𝜏 𝑅=𝑅′∖ 𝑟𝑤,𝑟𝑏

Γ;Ψ⊢letW 𝑟𝑤 𝑟𝑏 𝑒𝑖 in 𝑒 ∶ 𝛼⇝
𝑅

𝛽

Resource Typed Arrow Operators

letW w b sf

w

b

R
 𝑅′

𝑅 = 𝑅′ ∖ 𝑟𝑏 , 𝑟𝑤

 𝑟𝑏

 𝑟𝑤

fork sf

 sf

R R

sf

Resource Signal Function

 All physical devices have an associated virtual

resource.

Ty-RSF
𝑟: 𝜏𝑖𝑛,𝜏𝑜𝑢𝑡 ∈Ψ

Γ;Ψ⊢𝑟𝑠𝑓 𝑟 ∶ 𝜏𝑖𝑛 ⇝
𝑟

𝜏𝑜𝑢𝑡

Resource Signal Function

 All physical devices have an associated virtual

resource.

rsf r
𝑟

 Back to our example:

 We can send MIDI data by using the MidiOut resource:

 We are assured that the input stream is unique.

 The type of a program shows its resource usage:

 Our poorly-defined metronome/echo program will no

longer type check.

FRP I/O Effects

rsf MidiOut
MidiMessage

𝑀𝑖𝑑𝑖𝑂𝑢𝑡

echo :: UISF {MidiIn, MidiOut} () ()

metronomeTick :: UISF {MidiOut} () ()

echo >>> metronomeTick :: TYPE ERROR

Formalism

 Operational semantics describe the behavior of

fork and wormholes with arrows.

 The semantics proceed in a 3-phase set of

transitions:

 The evaluation transition is a classic, non-strict,

functional semantics.

Formalism – Functional Transition

Formalism – Functional Transition

 Choice is specially designed to handle freezing:

Formalism – Executive Transition

 The executive transition runs the program.

 It chooses a process p non-deterministically and

fairly and runs it.

Program execution is the application of the reflexive transitive

closure over the EXEC transition ⇓ starting with initial

parameters 𝑇 = 𝑝, 𝜀 ⊳ 𝑒, (), 𝜀 , ℛ = ℛ0, and 𝑊 = ∅

where 𝑝 is a fresh process ID, 𝑒 is a process, and ℛ0 is an

initial mapping of resources representing those of the real

world.

Theorem: Safety

 The type reveals which resources a program can

interact with when run.

 Forked processes will respect each others’ resources.

 All resource streams are guaranteed unique.

For a program 𝑃: , we know:

- No program states will ever interact with a resource 𝑟 ∉ 𝑅.

- No two processes in 𝑃 can interact with the same resource.

- No moment of time in 𝑃 will ever interact with a resource

more than once.

 sf
R

Theorem: Resource Commutativity

 Resource types enforce data commutativity.

 Programs stay functional and modular.

 Reasoning about behavior through diagrams remains

clear.

For any 𝑆 and 𝑟, if 𝑆, ℛ, 𝒲 ↪𝑝 𝑆′, ℛ′, 𝒲′ is the set of

states 𝑆0 … 𝑆𝑛 and there exists 𝑖 < 𝑛 such that 𝑆𝑖 =

𝐾 ⊳ 𝑟𝑠𝑓 𝑟, _, 𝑈𝑖 and 𝑆𝑖+1 = 𝐾 ⊲ 𝑟𝑠𝑓 𝑟, 𝑥, 𝑈𝑖+1 , then

𝑥 will be the same for all 𝑆 regardless of 𝑖.

Effects Wrap-Up

 Effects can be inserted directly into FRP programs.

 Resource types assure safety and data commutativity.

 Invalid effect interactions are eliminated statically.

 Formal semantics demonstrate features.

 Proofs are in the dissertation.

Other FRP Enhancing Efforts

More uses for Wormholes

 Wormholes provide communication between

processes, but what if both ends are in the same

process?

 What kind of time dilation occurs?

 Wormholes provide communication between

processes, but what if both ends are in the same

process?

 What kind of time dilation occurs?

 A blackhole into a whitehole:

 We create delay.

More uses for Wormholes

blackhole whitehole

 Wormholes provide communication between

processes, but what if both ends are in the same

process?

 What kind of time dilation occurs?

 A whitehole into a blackhole:

 We create a strictly causal form of loop.

More uses for Wormholes

blackhole whitehole

sf

More uses for Wormholes

 Wormholes provide communication between

processes, but what if both ends are in the same

process?

 What kind of time dilation occurs?

 In arbitrary locations:

 We achieve non-local memory mutation.

Other Results

 Settability – A transformation applicable to AFRP

that creates access to internal state.
 https://github.com/dwincort/SettableArrow

 A non-interfering choice extension to CCA with

comparable performance.
 https://github.com/dwincort/CCA

 An alternate back-end for rec-delay syntax that

uses wormholes to statically prevent infinite loops.

Conclusions

Contributions

 Safer FRP

 Resource types track and limit effects.

 More Efficient FRP

 Static arrows can be greatly optimized.

 Concurrent processing can leverage multiple cores.

 More Expressive FRP

 Non-interfering choice provides predictably dynamic

behavior.

 Effects can be used within the computation.

 Concurrency allows multiple simultaneous clock rates.

Future Work

 Dynamic Resource Types

 Wormhole resources cannot be fully implemented in

GHC without a significant extension.

 Deterministic Parallelism

 Can we make deterministic guarantees about

predictable concurrent programs?

 Optimization

 CCA transformation with Non-Interfering Choice needs

to be more robust.

Thank you!

Questions?

Contributions

 Safer FRP

 Resource types track and limit effects.

 More Efficient FRP

 Static arrows can be greatly optimized.

 Concurrent processing can leverage multiple cores.

 More Expressive FRP

 Non-interfering choice provides predictably dynamic

behavior.

 Effects can be used within the computation.

 Concurrency allows multiple simultaneous clock rates.

EXTRA SLIDES

Saving, loading, and resetting signal functions

Settability

Example: IntegralReset

 A signal function that calculates an integral but can

be reset with an event.

 Can we even do this without switch?

f _ = integral

integral

integralReset

fmap f

 Without switch, we can simulate a reset, but we

can’t modify integral itself.

 This solution is inelegant and does not scale.

Example: IntegralReset

f v e k = if isEvent e then v else k

integral

delay 0

−

f

integralReset

Resetting State

 We want to access the state inside a signal function.

 But what’s inside of an arbitrary signal function?

 All state is saved with loop and delay.

integral

Resetting State

 We want to access the state inside a signal function.

 If we could reach in and restart the delay, then

integral would behave as if it just started.

+ ∗ 𝑑𝑡 delay 0

integral

Resettable Delay

 Let’s consider a new delay that can be reset directly.

 When the event is given, resettableDelay reverts to

its starting state.

 Does this scale? YES

resettableDelay i

NoEvent

Event const i

delay i

 We can take any signal function and transform it

into a settable signal function:

 The top wires are the standard signals.

 The bottom wires are State signals.

 The input Event State can be used to change sf ’s
internal state.

 The output State is used to capture the current internal

state.

General Settability

sf

Settable Laws

≈ sf const
NoEvent

sf

Identity

≈ sf
delay NoEvent arr Event

sf

Uniformity

const i ≈ const
(Event reset)

delay i

Default

 Settability makes our original problem trivial:

 We no longer need the overkill of lifting a signal

function to the signal level.

Example: IntegralReset

f _ = reset

fmap f

integral

The benefit of static arrows over dynamic arrows

Optimization

Causal Commutative Arrows

 Liu, Cheng, Hudak [JFP ‘11] introduced CCA

 CCAs can be heavily optimized.

 Performance increases 10-40 times.

 CCAs do not allow switch but do allow choice.

 CCAs can allow Non-Interfering choice.

 Arrowized recursion is not supported by default, but it

can be added.

How CCA Works

 The CCA optimization reduces arrows to one of two

forms:

 We extend this with the ability to handle arrowized

recursion and call it CCA*.

 f
f

delay i

 3 sample programs using arrowized recursion.

 The 10x performance increase is comparable to Liu

et al’s results.

 The Chained Adder is stateless, and thus more

optimized by GHC.

Performance Results

GHC CCA* + Stream

Chained Adder 1.0 4.06

Chained Integral 1.0 13.27

Dynamic Counters 1.0 10.91

