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Functional Reactive Programming 

 Functional programming that can react to change. 

 Time is a built-in aspect of the design. 

 One programs with continuous values and streams of 

events. 

 Values themselves are time-dependent. 

 The computation is time-independent. 

 FRP is required to be … 

 Causal by default. 

 Synchronous by default. 

 Already in major use. 

 



Functional Reactive Programming 



GUI Example 

 We would like a graphical user interface: 

 One textbox displays a temperature in Celsius. 

 Another displays the temperature in Fahrenheit. 

 Updating one value should automatically update 

the other. 



GUI Example 

 We would like a graphical user interface: 

 One textbox displays a temperature in Celsius. 

 Another displays the temperature in Fahrenheit. 

 Updating one value should automatically update 

the other. 

 -Demo- 

 We will explore this with and without FRP. 

 



Java 7 with Swing 

public class TemperatureConverter extends JFrame { 
  JTextField celsiusField; 
  JTextField fahrenheitField; 
   
  public TemperatureConverter(String name) { 
    super(name); 
    initGUI(); 
    initListeners(); 
  } 
   
  private void initGUI() { 
    celsiusField = new JTextField(5); 
    fahrenheitField = new JTextField(5); 
    
    Container pane = this.getContentPane(); 
    pane.setLayout(new FlowLayout()); 
    pane.add(celsiusField); 
    pane.add(new JLabel("Celsius")); 
    pane.add(new JLabel("=")); 
    pane.add(fahrenheitField); 
    pane.add(new JLabel("Fahrenheit")); 
  } 
 
  public static void main(String[] args) { 
    javax.swing.SwingUtilities.invokeLater(new Runnable() { 
      public void run() { 
        TemperatureConverter frame =  
          new TemperatureConverter("Temperature Converter"); 
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
        frame.pack(); 
        frame.setVisible(true); 
      } 
    }); 
  } 

 private void initListeners() { 
    celsiusField.getDocument().addDocumentListener( 
     new DocumentListener() { 
      public void insertUpdate(DocumentEvent e) { update(); } 
      public void removeUpdate(DocumentEvent e) { update(); } 
      public void changedUpdate(DocumentEvent e) { update(); } 
       
      private void update() { 
        if (!celsiusField.isFocusOwner() || 
                !isNumeric(celsiusField.getText())) return; 
        double celsius =  
          Double.parseDouble(celsiusField.getText().trim()); 
        double fahrenheit = cToF(celsius); 
        fahrenheitField.setText( 
               String.valueOf(Math.round(fahrenheit))); 
      } 
    }); 
    fahrenheitField.getDocument().addDocumentListener( 
     new DocumentListener() { 
      public void insertUpdate(DocumentEvent e) { update(); } 
      public void removeUpdate(DocumentEvent e) { update(); } 
      public void changedUpdate(DocumentEvent e) { update(); } 
       
      private void update() { 
        if (!fahrenheitField.isFocusOwner() || 
                !isNumeric(fahrenheitField.getText())) return; 
        double fahrenheit =  
          Double.parseDouble(fahrenheitField.getText().trim()); 
        double celsius = fToC(fahrenheit); 
        celsiusField.setText( 
               String.valueOf(Math.round(celsius))); 
      } 
    }); 
  } 
} 

* Code from https://github.com/eugenkiss/7guis 
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Java 8 with ReactFX (FRP) 

public class TemperatureConverterReactFX extends Application { 
 
    public void start(Stage stage) { 
        TextField celsius = new TextField(); 
        TextField fahrenheit = new TextField(); 
 
        EventStream<String> celsiusStream = 
                EventStreams.valuesOf(celsius.textProperty()).filter(Util::isNumeric); 
        celsiusStream.map(Util::cToF).subscribe(fahrenheit::setText); 
        EventStream<String> fahrenheitStream = 
                EventStreams.valuesOf(fahrenheit.textProperty()).filter(Util::isNumeric); 
        fahrenheitStream.map(Util::fToC).subscribe(celsius::setText); 
 
        HBox root =  
          new HBox(10, celsius, new Label("Celsius ="), fahrenheit, new Label("Fahrenheit")); 
        root.setPadding(new Insets(10)); 
 
        stage.setScene(new Scene(root)); 
        stage.setTitle("Temperature Converter"); 
        stage.show(); 
    } 
 
    public static void main(String[] args) { 
        launch(args); 
    } 
} 

* Code from https://github.com/eugenkiss/7guis 



Arrows … 

 Are a well-founded concept inspired by category 
theory. 

 Create a tighter semantic connection between data. 

 Enforce the appropriate abstraction of time. 

 By removing direct access to streams, we eliminate certain 
memory leaks and non-causal behaviors. 

 Have a static structure, which makes them … 

 More suitable for resource constrained systems. 

 Highly amenable to optimizations (e.g. CCA). 

 Have been used in Yampa, Nettle, Euterpea, etc. 

 Look like signal processing diagrams. 

 



AFRP (as a Diagram) 

tempConvertSF 

labeledTextbox “Celsius =” 

delay labeledTextbox “Fahrenheit” 

delay … c2f … 

… f2c … 



Haskell with UISF (AFRP) 

tempConvertSF = leftRight $ proc () -> do 

  rec c <- labeledTextbox "Celsius = " -< updateC 

      f <- labeledTextbox "Fahrenheit" -< updateF 

      updateF <- delay Nothing -< fmap (show . c2f) (c >>= readMaybe) 

      updateC <- delay Nothing -< fmap (show . f2c) (f >>= readMaybe) 

  returnA -< () 

 

main = runUI (defaultUIParams  

                   {uiSize=(400, 24), uiTitle="Temp Converter"}) 

             tempConvertSF 

* http://hackage.haskell.org/package/UISF 



Drawbacks of (Arrowized) FRP 

 Data varies over time, but arrows cannot. 

 This lack of dynamic behavior limits expressivity. 

 I/O Bottleneck 

 Pure FRP cannot perform effects. 

 All inputs and outputs must be routed manually. 

 This is a potential security leak. 

 Synchrony can be restrictive. 



My Contributions 

 Extend arrows to allow “predictably dynamic” 

behavior [ICFP ‘14]. 

 Non-interfering choice adds expressivity to arrows. 

 Add concurrency and asynchrony [submitted ‘15]. 

 Wormholes allow communication for concurrency. 

 https://github.com/dwincort/CFRP 

 Safe effects such as physical resource interaction 

memory access [PADL ‘12, HS ‘12]. 

 Resource types address safety. 

 



My Contributions 

 Extend arrows to allow “predictably dynamic” 

behavior [ICFP ‘14]. 
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How arrows work and what we need to express 

interesting computations 

Expressing Arrows 



Standard Arrow Operators 

arr f 

f 

loop sf 

sf 

sf1 >>> sf2 

sf1 sf2 

first sf 

sf 



Stateful Arrows 

 

 

 

 

 With continuous semantics, the length of the delay 

approaches zero. 

 When used in conjunction with loop, delay allows 

one to create stateful signal functions. 

delay i 

i 



Dynamic Behavior 

 Can we get more dynamic power for arrows? 

 Why would we want that? 



Exploring predictably dynamic behavior 

Example: Mind Map 



Example 

 We would like a GUI to help a user build and 

navigate a “mind map.” 

 A mind map is a mapping from keywords to values. 

 A user can look up a key to see its values, and then add 

new values. 

 The GUI’s appearance should dynamically update 

based on how many values the given key has. 



Example 

 We would like a GUI to help a user build and 

navigate a “mind map.” 

 A mind map is a mapping from keywords to values. 

 A user can look up a key to see its values, and then add 

new values. 

 The GUI’s appearance should dynamically update 

based on how many values the given key has. 

 -Demo- 

 



Mindmap in code 

mindmap :: MindMap -> UISF () () 

mindmap iMap = proc () -> do 

    l <- textEntryField "Lookup" -< () 

    a <- textEntryField "Add"    -< () 

    key <- accum ""   -< fmap const l 

    m   <- accum iMap -< fmap (\v -> insertWith (++) key [v]) a 

    title "Key = " displayStr -< key 

    runDynamic displayStr -< Map.findWithDefault [] key m 

    returnA -< () 

 

 

 

 

 

 

 How do we write runDynamic? 



Higher Order Arrows 

 

 

 

 

 The control signal determines the overall behavior. 

 This allows highly dynamic programs. 

 Switched out signal functions are permanently off. 

 Switching can be used to increase performance. 

rSwitch sf 

sf 



Implementing runDynamic 

 We can create a new compound-widget when 

necessary and then switch into it: 

 

 

 

 

 But this approach voids our static guarantees! 

 Arrows with switch are equivalent to Monads. 

 It seems unnecessary – we are not running unknown 

functions. 

runDynamic sf 

rSwitch 

length runNTimes sf 



Arrow Choice 

 

 

 

 

 With choice, running the signal function is a dynamic 

decision. 

 This seems to help, but it’s not enough. 

 We get fixed branching, but not true recursion. 

 

 

left sf 

Left 

Right 

sf 



Arrow Choice Laws 

Extension 

Functor 

Exchange 

Unit 

Assoc 

left (arr f) = arr (left f) 

left (f >>> g) = left f >>> left g 

left f >>> arr (right g) =  
arr (right g) >>> left f 

f >>> arr Left = arr Left >>> left f 

left (left f) >>> arr assoc+ =  
arr assoc+ >>> left f 



Arrow Choice Laws 

Extension 

Functor 

Exchange 

Unit 

Assoc 

 

left (arr f) = arr (left f) 

left (f >>> g) = left f >>> left g 

left f >>> arr (right g) =  
arr (right g) >>> left f 

f >>> arr Left = arr Left >>> left f 

left (left f) >>> arr assoc+ =  
arr assoc+ >>> left f 



Exchange 

 

 

 
 

 Why isn’t this commutative? 

 Some arrows have effects. 

 For instance, UISF uses arrow order to determine 
widget layout. 

 These effects make recursion impossible. 

 In general, arrows are not commutative, but for 
choice in FRP, they can be. 

= 
Left 

Right 

f 

g 

Left 

Right g 

f 



Non-Interference 

 We strengthen exchange into non-interference 

 

 

 

 If the input value is Right, then the program will 

behave the same whether there is a left function 

after it or not. 

 The unused branch is now guaranteed to not run. 

 Now we can use Arrow Choice for recursion! 

= 
f 

Right 

Left 

Right 

Right 



 Arrowized recursion allows us to write this without 

using switch. 

 

runDynamic Revisited 

runDynamic :: (a ~> b) -> ([a] ~> [b]) 
runDynamic sf = 

[] 

head 

tail 

sf 

runDynamic  sf 

cons 

const [] 
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 Arrowized recursion allows us to write this without 

using switch. 
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sf 
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 Arrowized recursion allows us to write this without 

using switch. 

 

 

 

 

 

 

 The arrow structure is not technically static, but it is 

predictably dynamic. 

 

runDynamic Revisited 

runDynamic :: (a ~> b) -> ([a] ~> [b]) 
runDynamic sf = 

[] 

head 

tail 

sf 

runDynamic  sf 

cons 

const [] 



Non-Interfering Choice Wrap-Up 

 Like switch, non-interfering choice (and thus 

arrowized recursion) only computes when needed. 

 The predictable nature of non-interfering choice 

does not interfere with optimizations. 

 The CCA transformation is still applicable. 

 Time complexity can now be variable, but resource 

allocation is still static (arrow dependent). 



My Contributions 

 Extend arrows to allow “predictably dynamic” 

behavior [ICFP ‘14]. 

 Non-interfering choice adds expressivity to arrows. 

 Add concurrency and asynchrony [submitted ‘15]. 

 Wormholes allow communication for concurrency. 

 https://github.com/dwincort/CFRP 

 Safe effects such as physical resource interaction 

memory access [PADL ‘12, HS ‘12]. 

 Resource types address safety. 

 



Allowing local asynchronous concurrency 

Example: Connect Four 



Example 

 We would like a GUI to play a game of Connect 4. 

 It should follow the rules of the game. 

 After the user makes a play, an AI should play. 



Example 

 We would like a GUI to play a game of Connect 4. 

 It should follow the rules of the game. 

 After the user makes a play, an AI should play. 

 -Demo- 

 



Connect Four GUI 

connectFour = proc () -> do 

  rec aiLevel <- title "AI Level" (hiSlider 1 (0, 5) 2) -< () 

      select  <- displayBoard numCols 10 -< board 

      board   <- hold initBoard -< fmap (makeMove board) $  

        case (turn board) of 

          X -> fmap (,X) select 

          O -> findBestMove O aiLevel board 

  case (isWin board) of 

    Nothing -> label "" -< () 

    Just X  -> label "You win!" -< () 

    Just O  -> label "You lose!" -< () 



Connect Four GUI 

 

 

 

 

 

 
 When we ramp up the AI level, we find a problem. 

 -Demo- 

connectFour = proc () -> do 

  rec aiLevel <- title "AI Level" (hiSlider 1 (0, 5) 2) -< () 

      select  <- displayBoard numCols 10 -< board 

      board   <- hold initBoard -< fmap (makeMove board) $  

        case (turn board) of 

          X -> fmap (,X) select 

          O -> findBestMove O aiLevel board 

  case (isWin board) of 

    Nothing -> label "" -< () 

    Just X  -> label "You win!" -< () 

    Just O  -> label "You lose!" -< () 



Synchrony Can Be a Burden 

 The two parts would like to run at different rates. 

 The GUI should continue running at ~60FPS. 

 The AI should be allowed to run as slow as it needs to. 

 The synchronous assumption of FRP is too strong. 

 Other examples include … 

 Memory reads together with hard drive seeks. 

 Packet routing together with network map updating. 

 Sound synthesis together with a GUI interface. 

 



Asynchrony 

 Let us allow multiple processes, each with its own 

notion of time. 

 Each will individually remain synchronous and causal. 

 However, they will no longer synchronize. 



 

 

 

 

 

 

 

 

 But what are those dashed lines? 

 

Connect Four GUI Diagram 

connectFour 

“AI” slider 

displayBoard 

findBestMove hold 



Inter-Process Communication 

 We need a way to communicate data from one time 

stream to another. 

 Data needs to get time dilated – either stretched or 

compressed. 

 A special form of channel: Wormholes 

 Wormholes have a blackhole for writing to and a 

whitehole for reading from. 

 Wormholes automatically dilate their data. 



New Operators 

letW w b sf 

w 

b 

fork sf 

  sf 

sf 



Connect Four GUI Diagram 2 

 

 

 

 

 

 

 

 Now, findBestMove can run with its own clock. 

 The data is communicated clearly via wormholes. 

connectFour 

“AI” slider 

displayBoard 

hold findBestMove 



Maintaining Modular Consistency 

 How can we control forked processes? 

sf 

Left 

Right 

sf 



Asynchronous Choice 

 Remember that data is time-dependent. 

 When a signal function has no incoming data, it must 

freeze. 

 Likewise, if a fork has no incoming data, it freezes its 

forked process. 

 We achieve this while guaranteeing consistency. 

 Treat every moment in time as a transaction. 

 Freezing may occur between transactions. 



Asynchrony Wrap-Up 

 We can create multiple time streams for different 

FRP components. 

 Each time stream is internally synchronous and 

deterministic. 

 We can communicate between time streams in a 

clear way with wormholes. 

 Data is automatically time dilated. 

 We can govern time streams using non-interfering 

choice. 



My Contributions 

 Extend arrows to allow “predictably dynamic” 

behavior [ICFP ‘14]. 

 Non-interfering choice adds expressivity to arrows. 

 Add concurrency and asynchrony [submitted ‘15]. 

 Wormholes allow communication for concurrency. 

 https://github.com/dwincort/CFRP 

 Safe effects such as physical resource interaction 

memory access [PADL ‘12, HS ‘12]. 

 Resource types address safety. 

 



Allowing effects in a meaningful yet safe manner 

Example: MIDI Echo Player 



Example 

 We would like a GUI to control the parameters of 

an echo effect that we can add to a MIDI stream. 

 MIDI stands for Musical Instrument Digital Interface. 

 An echo decays and loops the sound. 

 The program should read from and write to a MIDI 

port. 



Example 

 We would like a GUI to control the parameters of 

an echo effect that we can add to a MIDI stream. 

 MIDI stands for Musical Instrument Digital Interface. 

 An echo decays and loops the sound. 

 The program should read from and write to a MIDI 

port. 

 -Demo- 

 



Echo GUI 

 

 

 

 

 

 

 Let’s also add a metronome tick to this. 

echo :: UISF () () 

echo = proc () -> do 

  m <- midiIn -< () 

  r <- title "Decay rate"        (hSlider (0, 0.9) 0.6) -< () 

  f <- title "Echoing frequency" (hSlider (1, 10)  3)   -< () 

  rec let m' = m <> s 

      s <- vdelay -< (1.0 / f, decay 0.1 r m') 

  midiOut -< m' 



Echo GUI 

echo :: UISF () () 

echo = proc () -> do 

  m <- midiIn -< () 

  r <- title "Decay rate"        (hSlider (0, 0.9) 0.6) -< () 

  f <- title "Echoing frequency" (hSlider (1, 10)  3)   -< () 

  rec let m' = m <> s 

      s <- vdelay -< (1.0 / f, decay 0.1 r m') 

  midiOut -< m' 

 

metronomeTick :: UISF () () 

metronomeTick = proc () -> do 

  bpm <- title "Metronome BPM" (hSlider (40, 200) 100) -< () 

  e <- timer -< 60 / bpm 

  midiOut -< makeTick e 



Echo GUI 

echo :: UISF () () 

echo = proc () -> do 

  m <- midiIn -< () 

  r <- title "Decay rate"        (hSlider (0, 0.9) 0.6) -< () 

  f <- title "Echoing frequency" (hSlider (1, 10)  3)   -< () 

  rec let m' = m <> s 

      s <- vdelay -< (1.0 / f, decay 0.1 r m') 

  midiOut -< m' 

 

metronomeTick :: UISF () () 

metronomeTick = proc () -> do 

  bpm <- title "Metronome BPM" (hSlider (40, 200) 100) -< () 

  e <- timer -< 60 / bpm 

  midiOut -< makeTick e 

 

runUI defaultUIParams (echo >>> metronomeTick) 



Multiple midiOut Effects 

 What happens when we send MIDI output twice in 

one program? 

 The two input streams merge in some way? 

 The top input stream processes first? 

 This may break our functional guarantee. 

 Blocks of code are no longer modular. 

 The UISF layout is determined by program structure. 

 Layout is determined statically (“predictably dynamic”). 

 Computation and layout are totally separate. 



Adding Effects 

 To make effects safe, we must limit how we use 

effectful signal functions. 

 If an effect is used, it can only be used in one place. 

 We achieve this by tagging signal functions at the 

type level with resource types and restricting their 

composition. 



Resource Typed Arrow Operators 

Ty-Arr  
Γ⊢𝑒 ∶ 𝛼→𝛽

Γ;Ψ⊢𝑎𝑟𝑟 𝑒 ∶ 𝛼⇝
∅

𝛽
 

Ty-First  
Γ;Ψ⊢𝑒 ∶ 𝛼⇝

𝑅
𝛽

Γ;Ψ⊢𝑓𝑖𝑟𝑠𝑡 𝑒 ∶ (𝛼×𝛾)⇝
𝑅

(𝛽×𝛾)
 

Ty-Comp  

Γ;Ψ⊢𝑒1 ∶ 𝛼⇝
𝑅1

𝛽    Γ;Ψ⊢𝑒2  : 𝛽⇝
𝑅2

𝛾
𝑅1⊎𝑅2=𝑅

Γ;Ψ⊢𝑒1>>>𝑒2 ∶ 𝛼⇝
𝑅

𝛾
 

Ty-Chc  

Γ;Ψ⊢𝑒1 ∶ 𝛼⇝
𝑅1

𝛾    Γ;Ψ⊢𝑒2 ∶ 𝛽⇝
𝑅2

𝛾
𝑅1∪𝑅2=𝑅

Γ;Ψ⊢𝑒1|||𝑒2 ∶ (𝛼+𝛽)⇝
𝑅

𝛾
 



Resource Typed Arrow Operators 

arr f 

f 

first sf 

  sf 

sf1 >>> sf2 

 sf1  sf2 

sf1 ||| sf2 

Left 

Right 

 sf1 

 sf2 

∅ R 
R 

R1 R2 

R3 

𝑅1 ∪ 𝑅2 = 𝑅3 

𝑅1 ∩ 𝑅2 = ∅ 

R1 

R2 

R3 

𝑅1 ∪ 𝑅2 = 𝑅3 



Resource Typed Arrow Operators 

Ty-Fork  
Γ;Ψ⊢𝑒 ∶ ()⇝

𝑅
()

Γ;Ψ⊢𝑓𝑜𝑟𝑘 𝑒 ∶ 𝛼⇝
𝑅

𝛼
 

Ty-LetW  

Γ;Ψ,𝑟𝑤 ∶ (),𝐿𝑖𝑠𝑡 𝜏 ,𝑟𝑏∶ 𝜏,() ⊢𝑒 ∶𝛼⇝
𝑅′

𝛽

Γ;Ψ⊢𝑒𝑖∶𝐿𝑖𝑠𝑡 𝜏   𝑅=𝑅′∖ 𝑟𝑤,𝑟𝑏

Γ;Ψ⊢letW 𝑟𝑤 𝑟𝑏 𝑒𝑖 in 𝑒 ∶ 𝛼⇝
𝑅

𝛽
 



Resource Typed Arrow Operators 

letW w b sf 

w 

b 

R 
 𝑅′ 

𝑅 = 𝑅′ ∖ 𝑟𝑏 , 𝑟𝑤  

 𝑟𝑏 

 𝑟𝑤 

fork sf 

  sf 

R R 

sf 



Resource Signal Function 

 

 

 
 

 All physical devices have an associated virtual 

resource. 

 

Ty-RSF  
𝑟: 𝜏𝑖𝑛,𝜏𝑜𝑢𝑡 ∈Ψ

Γ;Ψ⊢𝑟𝑠𝑓 𝑟 ∶ 𝜏𝑖𝑛 ⇝
𝑟

𝜏𝑜𝑢𝑡

 



Resource Signal Function 

 

 

 
 

 All physical devices have an associated virtual 

resource. 

 

rsf r 
𝑟  



 Back to our example: 

 We can send MIDI data by using the MidiOut resource: 

 

 

 We are assured that the input stream is unique. 

 The type of a program shows its resource usage: 

 Our poorly-defined metronome/echo program will no 

longer type check. 

 

FRP I/O Effects 

rsf MidiOut 
MidiMessage 

𝑀𝑖𝑑𝑖𝑂𝑢𝑡  

echo          :: UISF {MidiIn, MidiOut} () () 

metronomeTick :: UISF {MidiOut}         () () 

echo >>> metronomeTick :: TYPE ERROR 



Formalism 

 Operational semantics describe the behavior of 

fork and wormholes with arrows. 

 The semantics proceed in a 3-phase set of 

transitions: 

 

 

 

 The evaluation transition is a classic, non-strict, 

functional semantics. 



Formalism – Functional Transition 



Formalism – Functional Transition 

 Choice is specially designed to handle freezing: 



Formalism – Executive Transition 

 The executive transition runs the program. 

 

 

 It chooses a process p non-deterministically and 

fairly and runs it. 

Program execution is the application of the reflexive transitive 

closure over the EXEC transition ⇓ starting with initial 

parameters 𝑇 = 𝑝, 𝜀 ⊳ 𝑒, (), 𝜀 , ℛ = ℛ0, and 𝑊 = ∅ 

where 𝑝 is a fresh process ID, 𝑒 is a process, and ℛ0 is an 

initial mapping of resources representing those of the real 

world. 



Theorem: Safety 

 

 

 

 

 

 The type reveals which resources a program can 

interact with when run. 

 Forked processes will respect each others’ resources. 

 All resource streams are guaranteed unique. 

For a program 𝑃:                 , we know: 

- No program states will ever interact with a resource 𝑟 ∉ 𝑅. 

- No two processes in 𝑃 can interact with the same resource. 

- No moment of time in 𝑃 will ever interact with a resource 

more than once. 

    sf 
R 



Theorem: Resource Commutativity 

 

 

 

 

 

 Resource types enforce data commutativity. 

 Programs stay functional and modular. 

 Reasoning about behavior through diagrams remains 

clear. 

For any 𝑆 and 𝑟, if 𝑆, ℛ, 𝒲 ↪𝑝 𝑆′, ℛ′, 𝒲′  is the set of 

states 𝑆0 … 𝑆𝑛 and there exists 𝑖 < 𝑛 such that 𝑆𝑖 =

𝐾 ⊳ 𝑟𝑠𝑓 𝑟, _, 𝑈𝑖  and 𝑆𝑖+1 = 𝐾 ⊲ 𝑟𝑠𝑓 𝑟, 𝑥, 𝑈𝑖+1 , then 

𝑥 will be the same for all 𝑆 regardless of 𝑖. 



Effects Wrap-Up 

 Effects can be inserted directly into FRP programs. 

 Resource types assure safety and data commutativity. 

 Invalid effect interactions are eliminated statically. 

 Formal semantics demonstrate features. 

 Proofs are in the dissertation. 



Other FRP Enhancing Efforts 



More uses for Wormholes 

 Wormholes provide communication between 

processes, but what if both ends are in the same 

process? 

 What kind of time dilation occurs? 



 Wormholes provide communication between 

processes, but what if both ends are in the same 

process? 

 What kind of time dilation occurs? 

 A blackhole into a whitehole: 

 

 
 

 We create delay. 

 

More uses for Wormholes 

blackhole whitehole 



 Wormholes provide communication between 

processes, but what if both ends are in the same 

process? 

 What kind of time dilation occurs? 

 A whitehole into a blackhole: 

 

 
 

 We create a strictly causal form of loop. 

 

More uses for Wormholes 

blackhole whitehole 

sf 



More uses for Wormholes 

 Wormholes provide communication between 

processes, but what if both ends are in the same 

process? 

 What kind of time dilation occurs? 

 In arbitrary locations: 

 We achieve non-local memory mutation. 

 



Other Results 

 Settability – A transformation applicable to AFRP 

that creates access to internal state. 
 https://github.com/dwincort/SettableArrow 

 A non-interfering choice extension to CCA with 

comparable performance. 
 https://github.com/dwincort/CCA 

 An alternate back-end for rec-delay syntax that 

uses wormholes to statically prevent infinite loops. 



Conclusions 



Contributions 

 Safer FRP 

 Resource types track and limit effects. 

 More Efficient FRP 

 Static arrows can be greatly optimized. 

 Concurrent processing can leverage multiple cores. 

 More Expressive FRP 

 Non-interfering choice provides predictably dynamic 

behavior. 

 Effects can be used within the computation. 

 Concurrency allows multiple simultaneous clock rates. 



Future Work 

 Dynamic Resource Types 

 Wormhole resources cannot be fully implemented in 

GHC without a significant extension. 

 Deterministic Parallelism 

 Can we make deterministic guarantees about 

predictable concurrent programs? 

 Optimization 

 CCA transformation with Non-Interfering Choice needs 

to be more robust. 



Thank you! 

Questions? 



Contributions 

 Safer FRP 

 Resource types track and limit effects. 

 More Efficient FRP 

 Static arrows can be greatly optimized. 

 Concurrent processing can leverage multiple cores. 

 More Expressive FRP 

 Non-interfering choice provides predictably dynamic 

behavior. 

 Effects can be used within the computation. 

 Concurrency allows multiple simultaneous clock rates. 



EXTRA SLIDES 



Saving, loading, and resetting signal functions 

Settability 



Example: IntegralReset 

 A signal function that calculates an integral but can 

be reset with an event. 

 

 
 

 
 Can we even do this without switch? 

f _ = integral 

integral 

integralReset 

fmap  f 



 Without switch, we can simulate a reset, but we 

can’t modify integral itself. 

 

 

 

 

 
 

 This solution is inelegant and does not scale. 

 

Example: IntegralReset 

f v e k = if isEvent e then v else k 

integral 

delay 0 

− 

f 

integralReset 



Resetting State 

 We want to access the state inside a signal function. 

 

 
 But what’s inside of an arbitrary signal function? 

 All state is saved with loop and delay. 

integral 



Resetting State 

 We want to access the state inside a signal function. 

 

 
 If we could reach in and restart the delay, then 

integral would behave as if it just started. 

+ ∗ 𝑑𝑡 delay 0 

integral 



Resettable Delay 

 Let’s consider a new delay that can be reset directly. 

 

 

 
 

 When the event is given, resettableDelay reverts to 

its starting state. 

 Does this scale? YES 

resettableDelay i 

NoEvent 

Event const i 

delay i 



 We can take any signal function and transform it 

into a settable signal function: 

 
 

 The top wires are the standard signals. 

 The bottom wires are State signals. 

 The input Event State can be used to change sf ’s 
internal state. 

 The output State is used to capture the current internal 

state. 

General Settability 

sf 



Settable Laws 

≈ sf const  
NoEvent 

sf 

Identity 

≈ sf 
delay NoEvent arr Event 

sf 

Uniformity 

const i ≈ const  
(Event reset) 

delay i 

Default 



 Settability makes our original problem trivial: 

 

 

 

 

 

 We no longer need the overkill of lifting a signal 

function to the signal level. 

 

Example: IntegralReset 

f _ = reset 

fmap  f 

integral 



The benefit of static arrows over dynamic arrows 

Optimization 



Causal Commutative Arrows 

 Liu, Cheng, Hudak [JFP ‘11] introduced CCA 

 CCAs can be heavily optimized. 

 Performance increases 10-40 times. 

 CCAs do not allow switch but do allow choice. 

 CCAs can allow Non-Interfering choice. 

 Arrowized recursion is not supported by default, but it 

can be added. 

 



How CCA Works 

 The CCA optimization reduces arrows to one of two 

forms: 

 

 

 

 We extend this with the ability to handle arrowized 

recursion and call it CCA*. 

 f 
f 

delay i 



 

 

 

 

 3 sample programs using arrowized recursion. 

 The 10x performance increase is comparable to Liu 

et al’s results. 

 The Chained Adder is stateless, and thus more 

optimized by GHC. 

Performance Results 

GHC CCA* + Stream 

Chained Adder 1.0 4.06 

Chained Integral 1.0 13.27 

Dynamic Counters 1.0 10.91 


