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Functional Reactive Programming 

 Functional programming that can react to change. 

 Time is a built-in aspect of the design. 

 One programs with continuous values and streams of 

events. 

 Values themselves are time-dependent. 

 The computation is time-independent. 

 FRP is required to be … 

 Causal by default. 

 Synchronous by default. 

 Already in major use. 

 



Functional Reactive Programming 



GUI Example 

 We would like a graphical user interface: 

 One textbox displays a temperature in Celsius. 

 Another displays the temperature in Fahrenheit. 

 Updating one value should automatically update 

the other. 



GUI Example 

 We would like a graphical user interface: 

 One textbox displays a temperature in Celsius. 

 Another displays the temperature in Fahrenheit. 

 Updating one value should automatically update 

the other. 

 -Demo- 

 We will explore this with and without FRP. 

 



Java 7 with Swing 

public class TemperatureConverter extends JFrame { 
  JTextField celsiusField; 
  JTextField fahrenheitField; 
   
  public TemperatureConverter(String name) { 
    super(name); 
    initGUI(); 
    initListeners(); 
  } 
   
  private void initGUI() { 
    celsiusField = new JTextField(5); 
    fahrenheitField = new JTextField(5); 
    
    Container pane = this.getContentPane(); 
    pane.setLayout(new FlowLayout()); 
    pane.add(celsiusField); 
    pane.add(new JLabel("Celsius")); 
    pane.add(new JLabel("=")); 
    pane.add(fahrenheitField); 
    pane.add(new JLabel("Fahrenheit")); 
  } 
 
  public static void main(String[] args) { 
    javax.swing.SwingUtilities.invokeLater(new Runnable() { 
      public void run() { 
        TemperatureConverter frame =  
          new TemperatureConverter("Temperature Converter"); 
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
        frame.pack(); 
        frame.setVisible(true); 
      } 
    }); 
  } 

 private void initListeners() { 
    celsiusField.getDocument().addDocumentListener( 
     new DocumentListener() { 
      public void insertUpdate(DocumentEvent e) { update(); } 
      public void removeUpdate(DocumentEvent e) { update(); } 
      public void changedUpdate(DocumentEvent e) { update(); } 
       
      private void update() { 
        if (!celsiusField.isFocusOwner() || 
                !isNumeric(celsiusField.getText())) return; 
        double celsius =  
          Double.parseDouble(celsiusField.getText().trim()); 
        double fahrenheit = cToF(celsius); 
        fahrenheitField.setText( 
               String.valueOf(Math.round(fahrenheit))); 
      } 
    }); 
    fahrenheitField.getDocument().addDocumentListener( 
     new DocumentListener() { 
      public void insertUpdate(DocumentEvent e) { update(); } 
      public void removeUpdate(DocumentEvent e) { update(); } 
      public void changedUpdate(DocumentEvent e) { update(); } 
       
      private void update() { 
        if (!fahrenheitField.isFocusOwner() || 
                !isNumeric(fahrenheitField.getText())) return; 
        double fahrenheit =  
          Double.parseDouble(fahrenheitField.getText().trim()); 
        double celsius = fToC(fahrenheit); 
        celsiusField.setText( 
               String.valueOf(Math.round(celsius))); 
      } 
    }); 
  } 
} 

* Code from https://github.com/eugenkiss/7guis 
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Java 8 with ReactFX (FRP) 

public class TemperatureConverterReactFX extends Application { 
 
    public void start(Stage stage) { 
        TextField celsius = new TextField(); 
        TextField fahrenheit = new TextField(); 
 
        EventStream<String> celsiusStream = 
                EventStreams.valuesOf(celsius.textProperty()).filter(Util::isNumeric); 
        celsiusStream.map(Util::cToF).subscribe(fahrenheit::setText); 
        EventStream<String> fahrenheitStream = 
                EventStreams.valuesOf(fahrenheit.textProperty()).filter(Util::isNumeric); 
        fahrenheitStream.map(Util::fToC).subscribe(celsius::setText); 
 
        HBox root =  
          new HBox(10, celsius, new Label("Celsius ="), fahrenheit, new Label("Fahrenheit")); 
        root.setPadding(new Insets(10)); 
 
        stage.setScene(new Scene(root)); 
        stage.setTitle("Temperature Converter"); 
        stage.show(); 
    } 
 
    public static void main(String[] args) { 
        launch(args); 
    } 
} 

* Code from https://github.com/eugenkiss/7guis 



Arrows … 

 Are a well-founded concept inspired by category 
theory. 

 Create a tighter semantic connection between data. 

 Enforce the appropriate abstraction of time. 

 By removing direct access to streams, we eliminate certain 
memory leaks and non-causal behaviors. 

 Have a static structure, which makes them … 

 More suitable for resource constrained systems. 

 Highly amenable to optimizations (e.g. CCA). 

 Have been used in Yampa, Nettle, Euterpea, etc. 

 Look like signal processing diagrams. 

 



AFRP (as a Diagram) 

tempConvertSF 

labeledTextbox “Celsius =” 

delay labeledTextbox “Fahrenheit” 

delay … c2f … 

… f2c … 



Haskell with UISF (AFRP) 

tempConvertSF = leftRight $ proc () -> do 

  rec c <- labeledTextbox "Celsius = " -< updateC 

      f <- labeledTextbox "Fahrenheit" -< updateF 

      updateF <- delay Nothing -< fmap (show . c2f) (c >>= readMaybe) 

      updateC <- delay Nothing -< fmap (show . f2c) (f >>= readMaybe) 

  returnA -< () 

 

main = runUI (defaultUIParams  

                   {uiSize=(400, 24), uiTitle="Temp Converter"}) 

             tempConvertSF 

* http://hackage.haskell.org/package/UISF 



Drawbacks of (Arrowized) FRP 

 Data varies over time, but arrows cannot. 

 This lack of dynamic behavior limits expressivity. 

 I/O Bottleneck 

 Pure FRP cannot perform effects. 

 All inputs and outputs must be routed manually. 

 This is a potential security leak. 

 Synchrony can be restrictive. 



My Contributions 

 Extend arrows to allow “predictably dynamic” 

behavior [ICFP ‘14]. 

 Non-interfering choice adds expressivity to arrows. 

 Add concurrency and asynchrony [submitted ‘15]. 

 Wormholes allow communication for concurrency. 

 https://github.com/dwincort/CFRP 

 Safe effects such as physical resource interaction 

memory access [PADL ‘12, HS ‘12]. 

 Resource types address safety. 
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How arrows work and what we need to express 

interesting computations 

Expressing Arrows 



Standard Arrow Operators 

arr f 

f 

loop sf 

sf 

sf1 >>> sf2 

sf1 sf2 

first sf 

sf 



Stateful Arrows 

 

 

 

 

 With continuous semantics, the length of the delay 

approaches zero. 

 When used in conjunction with loop, delay allows 

one to create stateful signal functions. 

delay i 

i 



Dynamic Behavior 

 Can we get more dynamic power for arrows? 

 Why would we want that? 



Exploring predictably dynamic behavior 

Example: Mind Map 



Example 

 We would like a GUI to help a user build and 

navigate a “mind map.” 

 A mind map is a mapping from keywords to values. 

 A user can look up a key to see its values, and then add 

new values. 

 The GUI’s appearance should dynamically update 

based on how many values the given key has. 



Example 

 We would like a GUI to help a user build and 

navigate a “mind map.” 

 A mind map is a mapping from keywords to values. 

 A user can look up a key to see its values, and then add 

new values. 

 The GUI’s appearance should dynamically update 

based on how many values the given key has. 

 -Demo- 

 



Mindmap in code 

mindmap :: MindMap -> UISF () () 

mindmap iMap = proc () -> do 

    l <- textEntryField "Lookup" -< () 

    a <- textEntryField "Add"    -< () 

    key <- accum ""   -< fmap const l 

    m   <- accum iMap -< fmap (\v -> insertWith (++) key [v]) a 

    title "Key = " displayStr -< key 

    runDynamic displayStr -< Map.findWithDefault [] key m 

    returnA -< () 

 

 

 

 

 

 

 How do we write runDynamic? 



Higher Order Arrows 

 

 

 

 

 The control signal determines the overall behavior. 

 This allows highly dynamic programs. 

 Switched out signal functions are permanently off. 

 Switching can be used to increase performance. 

rSwitch sf 

sf 



Implementing runDynamic 

 We can create a new compound-widget when 

necessary and then switch into it: 

 

 

 

 

 But this approach voids our static guarantees! 

 Arrows with switch are equivalent to Monads. 

 It seems unnecessary – we are not running unknown 

functions. 

runDynamic sf 

rSwitch 

length runNTimes sf 



Arrow Choice 

 

 

 

 

 With choice, running the signal function is a dynamic 

decision. 

 This seems to help, but it’s not enough. 

 We get fixed branching, but not true recursion. 

 

 

left sf 

Left 

Right 

sf 



Arrow Choice Laws 

Extension 

Functor 

Exchange 

Unit 

Assoc 

left (arr f) = arr (left f) 

left (f >>> g) = left f >>> left g 

left f >>> arr (right g) =  
arr (right g) >>> left f 

f >>> arr Left = arr Left >>> left f 

left (left f) >>> arr assoc+ =  
arr assoc+ >>> left f 



Arrow Choice Laws 

Extension 

Functor 

Exchange 

Unit 

Assoc 

 

left (arr f) = arr (left f) 

left (f >>> g) = left f >>> left g 

left f >>> arr (right g) =  
arr (right g) >>> left f 

f >>> arr Left = arr Left >>> left f 

left (left f) >>> arr assoc+ =  
arr assoc+ >>> left f 



Exchange 

 

 

 
 

 Why isn’t this commutative? 

 Some arrows have effects. 

 For instance, UISF uses arrow order to determine 
widget layout. 

 These effects make recursion impossible. 

 In general, arrows are not commutative, but for 
choice in FRP, they can be. 

= 
Left 

Right 

f 

g 

Left 

Right g 

f 



Non-Interference 

 We strengthen exchange into non-interference 

 

 

 

 If the input value is Right, then the program will 

behave the same whether there is a left function 

after it or not. 

 The unused branch is now guaranteed to not run. 

 Now we can use Arrow Choice for recursion! 

= 
f 

Right 

Left 

Right 

Right 



 Arrowized recursion allows us to write this without 

using switch. 

 

runDynamic Revisited 

runDynamic :: (a ~> b) -> ([a] ~> [b]) 
runDynamic sf = 

[] 

head 

tail 

sf 

runDynamic  sf 

cons 

const [] 
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 Arrowized recursion allows us to write this without 

using switch. 

 

 

 

 

 

 

 The arrow structure is not technically static, but it is 

predictably dynamic. 

 

runDynamic Revisited 

runDynamic :: (a ~> b) -> ([a] ~> [b]) 
runDynamic sf = 

[] 

head 

tail 

sf 

runDynamic  sf 

cons 

const [] 



Non-Interfering Choice Wrap-Up 

 Like switch, non-interfering choice (and thus 

arrowized recursion) only computes when needed. 

 The predictable nature of non-interfering choice 

does not interfere with optimizations. 

 The CCA transformation is still applicable. 

 Time complexity can now be variable, but resource 

allocation is still static (arrow dependent). 



My Contributions 

 Extend arrows to allow “predictably dynamic” 

behavior [ICFP ‘14]. 

 Non-interfering choice adds expressivity to arrows. 

 Add concurrency and asynchrony [submitted ‘15]. 

 Wormholes allow communication for concurrency. 

 https://github.com/dwincort/CFRP 

 Safe effects such as physical resource interaction 

memory access [PADL ‘12, HS ‘12]. 

 Resource types address safety. 

 



Allowing local asynchronous concurrency 

Example: Connect Four 



Example 

 We would like a GUI to play a game of Connect 4. 

 It should follow the rules of the game. 

 After the user makes a play, an AI should play. 



Example 

 We would like a GUI to play a game of Connect 4. 

 It should follow the rules of the game. 

 After the user makes a play, an AI should play. 

 -Demo- 

 



Connect Four GUI 

connectFour = proc () -> do 

  rec aiLevel <- title "AI Level" (hiSlider 1 (0, 5) 2) -< () 

      select  <- displayBoard numCols 10 -< board 

      board   <- hold initBoard -< fmap (makeMove board) $  

        case (turn board) of 

          X -> fmap (,X) select 

          O -> findBestMove O aiLevel board 

  case (isWin board) of 

    Nothing -> label "" -< () 

    Just X  -> label "You win!" -< () 

    Just O  -> label "You lose!" -< () 



Connect Four GUI 

 

 

 

 

 

 
 When we ramp up the AI level, we find a problem. 

 -Demo- 

connectFour = proc () -> do 

  rec aiLevel <- title "AI Level" (hiSlider 1 (0, 5) 2) -< () 

      select  <- displayBoard numCols 10 -< board 

      board   <- hold initBoard -< fmap (makeMove board) $  

        case (turn board) of 

          X -> fmap (,X) select 

          O -> findBestMove O aiLevel board 

  case (isWin board) of 

    Nothing -> label "" -< () 

    Just X  -> label "You win!" -< () 

    Just O  -> label "You lose!" -< () 



Synchrony Can Be a Burden 

 The two parts would like to run at different rates. 

 The GUI should continue running at ~60FPS. 

 The AI should be allowed to run as slow as it needs to. 

 The synchronous assumption of FRP is too strong. 

 Other examples include … 

 Memory reads together with hard drive seeks. 

 Packet routing together with network map updating. 

 Sound synthesis together with a GUI interface. 

 



Asynchrony 

 Let us allow multiple processes, each with its own 

notion of time. 

 Each will individually remain synchronous and causal. 

 However, they will no longer synchronize. 



 

 

 

 

 

 

 

 

 But what are those dashed lines? 

 

Connect Four GUI Diagram 

connectFour 

“AI” slider 

displayBoard 

findBestMove hold 



Inter-Process Communication 

 We need a way to communicate data from one time 

stream to another. 

 Data needs to get time dilated – either stretched or 

compressed. 

 A special form of channel: Wormholes 

 Wormholes have a blackhole for writing to and a 

whitehole for reading from. 

 Wormholes automatically dilate their data. 



New Operators 

letW w b sf 

w 

b 

fork sf 

  sf 

sf 



Connect Four GUI Diagram 2 

 

 

 

 

 

 

 

 Now, findBestMove can run with its own clock. 

 The data is communicated clearly via wormholes. 

connectFour 

“AI” slider 

displayBoard 

hold findBestMove 



Maintaining Modular Consistency 

 How can we control forked processes? 

sf 

Left 

Right 

sf 



Asynchronous Choice 

 Remember that data is time-dependent. 

 When a signal function has no incoming data, it must 

freeze. 

 Likewise, if a fork has no incoming data, it freezes its 

forked process. 

 We achieve this while guaranteeing consistency. 

 Treat every moment in time as a transaction. 

 Freezing may occur between transactions. 



Asynchrony Wrap-Up 

 We can create multiple time streams for different 

FRP components. 

 Each time stream is internally synchronous and 

deterministic. 

 We can communicate between time streams in a 

clear way with wormholes. 

 Data is automatically time dilated. 

 We can govern time streams using non-interfering 

choice. 



My Contributions 

 Extend arrows to allow “predictably dynamic” 

behavior [ICFP ‘14]. 

 Non-interfering choice adds expressivity to arrows. 

 Add concurrency and asynchrony [submitted ‘15]. 

 Wormholes allow communication for concurrency. 

 https://github.com/dwincort/CFRP 

 Safe effects such as physical resource interaction 

memory access [PADL ‘12, HS ‘12]. 

 Resource types address safety. 

 



Allowing effects in a meaningful yet safe manner 

Example: MIDI Echo Player 



Example 

 We would like a GUI to control the parameters of 

an echo effect that we can add to a MIDI stream. 

 MIDI stands for Musical Instrument Digital Interface. 

 An echo decays and loops the sound. 

 The program should read from and write to a MIDI 

port. 



Example 

 We would like a GUI to control the parameters of 

an echo effect that we can add to a MIDI stream. 

 MIDI stands for Musical Instrument Digital Interface. 

 An echo decays and loops the sound. 

 The program should read from and write to a MIDI 

port. 

 -Demo- 

 



Echo GUI 

 

 

 

 

 

 

 Let’s also add a metronome tick to this. 

echo :: UISF () () 

echo = proc () -> do 

  m <- midiIn -< () 

  r <- title "Decay rate"        (hSlider (0, 0.9) 0.6) -< () 

  f <- title "Echoing frequency" (hSlider (1, 10)  3)   -< () 

  rec let m' = m <> s 

      s <- vdelay -< (1.0 / f, decay 0.1 r m') 

  midiOut -< m' 



Echo GUI 

echo :: UISF () () 

echo = proc () -> do 

  m <- midiIn -< () 

  r <- title "Decay rate"        (hSlider (0, 0.9) 0.6) -< () 

  f <- title "Echoing frequency" (hSlider (1, 10)  3)   -< () 

  rec let m' = m <> s 

      s <- vdelay -< (1.0 / f, decay 0.1 r m') 

  midiOut -< m' 

 

metronomeTick :: UISF () () 

metronomeTick = proc () -> do 

  bpm <- title "Metronome BPM" (hSlider (40, 200) 100) -< () 

  e <- timer -< 60 / bpm 

  midiOut -< makeTick e 



Echo GUI 

echo :: UISF () () 

echo = proc () -> do 

  m <- midiIn -< () 

  r <- title "Decay rate"        (hSlider (0, 0.9) 0.6) -< () 

  f <- title "Echoing frequency" (hSlider (1, 10)  3)   -< () 

  rec let m' = m <> s 

      s <- vdelay -< (1.0 / f, decay 0.1 r m') 

  midiOut -< m' 

 

metronomeTick :: UISF () () 

metronomeTick = proc () -> do 

  bpm <- title "Metronome BPM" (hSlider (40, 200) 100) -< () 

  e <- timer -< 60 / bpm 

  midiOut -< makeTick e 

 

runUI defaultUIParams (echo >>> metronomeTick) 



Multiple midiOut Effects 

 What happens when we send MIDI output twice in 

one program? 

 The two input streams merge in some way? 

 The top input stream processes first? 

 This may break our functional guarantee. 

 Blocks of code are no longer modular. 

 The UISF layout is determined by program structure. 

 Layout is determined statically (“predictably dynamic”). 

 Computation and layout are totally separate. 



Adding Effects 

 To make effects safe, we must limit how we use 

effectful signal functions. 

 If an effect is used, it can only be used in one place. 

 We achieve this by tagging signal functions at the 

type level with resource types and restricting their 

composition. 



Resource Typed Arrow Operators 

Ty-Arr  
Γ⊢𝑒 ∶ 𝛼→𝛽

Γ;Ψ⊢𝑎𝑟𝑟 𝑒 ∶ 𝛼⇝
∅

𝛽
 

Ty-First  
Γ;Ψ⊢𝑒 ∶ 𝛼⇝

𝑅
𝛽

Γ;Ψ⊢𝑓𝑖𝑟𝑠𝑡 𝑒 ∶ (𝛼×𝛾)⇝
𝑅

(𝛽×𝛾)
 

Ty-Comp  

Γ;Ψ⊢𝑒1 ∶ 𝛼⇝
𝑅1

𝛽    Γ;Ψ⊢𝑒2  : 𝛽⇝
𝑅2

𝛾
𝑅1⊎𝑅2=𝑅

Γ;Ψ⊢𝑒1>>>𝑒2 ∶ 𝛼⇝
𝑅

𝛾
 

Ty-Chc  

Γ;Ψ⊢𝑒1 ∶ 𝛼⇝
𝑅1

𝛾    Γ;Ψ⊢𝑒2 ∶ 𝛽⇝
𝑅2

𝛾
𝑅1∪𝑅2=𝑅

Γ;Ψ⊢𝑒1|||𝑒2 ∶ (𝛼+𝛽)⇝
𝑅

𝛾
 



Resource Typed Arrow Operators 

arr f 

f 

first sf 

  sf 

sf1 >>> sf2 

 sf1  sf2 

sf1 ||| sf2 

Left 

Right 

 sf1 

 sf2 

∅ R 
R 

R1 R2 

R3 

𝑅1 ∪ 𝑅2 = 𝑅3 

𝑅1 ∩ 𝑅2 = ∅ 

R1 

R2 

R3 

𝑅1 ∪ 𝑅2 = 𝑅3 



Resource Typed Arrow Operators 

Ty-Fork  
Γ;Ψ⊢𝑒 ∶ ()⇝

𝑅
()

Γ;Ψ⊢𝑓𝑜𝑟𝑘 𝑒 ∶ 𝛼⇝
𝑅

𝛼
 

Ty-LetW  

Γ;Ψ,𝑟𝑤 ∶ (),𝐿𝑖𝑠𝑡 𝜏 ,𝑟𝑏∶ 𝜏,() ⊢𝑒 ∶𝛼⇝
𝑅′

𝛽

Γ;Ψ⊢𝑒𝑖∶𝐿𝑖𝑠𝑡 𝜏   𝑅=𝑅′∖ 𝑟𝑤,𝑟𝑏

Γ;Ψ⊢letW 𝑟𝑤 𝑟𝑏 𝑒𝑖 in 𝑒 ∶ 𝛼⇝
𝑅

𝛽
 



Resource Typed Arrow Operators 

letW w b sf 

w 

b 

R 
 𝑅′ 

𝑅 = 𝑅′ ∖ 𝑟𝑏 , 𝑟𝑤  

 𝑟𝑏 

 𝑟𝑤 

fork sf 

  sf 

R R 

sf 



Resource Signal Function 

 

 

 
 

 All physical devices have an associated virtual 

resource. 

 

Ty-RSF  
𝑟: 𝜏𝑖𝑛,𝜏𝑜𝑢𝑡 ∈Ψ

Γ;Ψ⊢𝑟𝑠𝑓 𝑟 ∶ 𝜏𝑖𝑛 ⇝
𝑟

𝜏𝑜𝑢𝑡

 



Resource Signal Function 

 

 

 
 

 All physical devices have an associated virtual 

resource. 

 

rsf r 
𝑟  



 Back to our example: 

 We can send MIDI data by using the MidiOut resource: 

 

 

 We are assured that the input stream is unique. 

 The type of a program shows its resource usage: 

 Our poorly-defined metronome/echo program will no 

longer type check. 

 

FRP I/O Effects 

rsf MidiOut 
MidiMessage 

𝑀𝑖𝑑𝑖𝑂𝑢𝑡  

echo          :: UISF {MidiIn, MidiOut} () () 

metronomeTick :: UISF {MidiOut}         () () 

echo >>> metronomeTick :: TYPE ERROR 



Formalism 

 Operational semantics describe the behavior of 

fork and wormholes with arrows. 

 The semantics proceed in a 3-phase set of 

transitions: 

 

 

 

 The evaluation transition is a classic, non-strict, 

functional semantics. 



Formalism – Functional Transition 



Formalism – Functional Transition 

 Choice is specially designed to handle freezing: 



Formalism – Executive Transition 

 The executive transition runs the program. 

 

 

 It chooses a process p non-deterministically and 

fairly and runs it. 

Program execution is the application of the reflexive transitive 

closure over the EXEC transition ⇓ starting with initial 

parameters 𝑇 = 𝑝, 𝜀 ⊳ 𝑒, (), 𝜀 , ℛ = ℛ0, and 𝑊 = ∅ 

where 𝑝 is a fresh process ID, 𝑒 is a process, and ℛ0 is an 

initial mapping of resources representing those of the real 

world. 



Theorem: Safety 

 

 

 

 

 

 The type reveals which resources a program can 

interact with when run. 

 Forked processes will respect each others’ resources. 

 All resource streams are guaranteed unique. 

For a program 𝑃:                 , we know: 

- No program states will ever interact with a resource 𝑟 ∉ 𝑅. 

- No two processes in 𝑃 can interact with the same resource. 

- No moment of time in 𝑃 will ever interact with a resource 

more than once. 

    sf 
R 



Theorem: Resource Commutativity 

 

 

 

 

 

 Resource types enforce data commutativity. 

 Programs stay functional and modular. 

 Reasoning about behavior through diagrams remains 

clear. 

For any 𝑆 and 𝑟, if 𝑆, ℛ, 𝒲 ↪𝑝 𝑆′, ℛ′, 𝒲′  is the set of 

states 𝑆0 … 𝑆𝑛 and there exists 𝑖 < 𝑛 such that 𝑆𝑖 =

𝐾 ⊳ 𝑟𝑠𝑓 𝑟, _, 𝑈𝑖  and 𝑆𝑖+1 = 𝐾 ⊲ 𝑟𝑠𝑓 𝑟, 𝑥, 𝑈𝑖+1 , then 

𝑥 will be the same for all 𝑆 regardless of 𝑖. 



Effects Wrap-Up 

 Effects can be inserted directly into FRP programs. 

 Resource types assure safety and data commutativity. 

 Invalid effect interactions are eliminated statically. 

 Formal semantics demonstrate features. 

 Proofs are in the dissertation. 



Other FRP Enhancing Efforts 



More uses for Wormholes 

 Wormholes provide communication between 

processes, but what if both ends are in the same 

process? 

 What kind of time dilation occurs? 



 Wormholes provide communication between 

processes, but what if both ends are in the same 

process? 

 What kind of time dilation occurs? 

 A blackhole into a whitehole: 

 

 
 

 We create delay. 

 

More uses for Wormholes 

blackhole whitehole 



 Wormholes provide communication between 

processes, but what if both ends are in the same 

process? 

 What kind of time dilation occurs? 

 A whitehole into a blackhole: 

 

 
 

 We create a strictly causal form of loop. 

 

More uses for Wormholes 

blackhole whitehole 

sf 



More uses for Wormholes 

 Wormholes provide communication between 

processes, but what if both ends are in the same 

process? 

 What kind of time dilation occurs? 

 In arbitrary locations: 

 We achieve non-local memory mutation. 

 



Other Results 

 Settability – A transformation applicable to AFRP 

that creates access to internal state. 
 https://github.com/dwincort/SettableArrow 

 A non-interfering choice extension to CCA with 

comparable performance. 
 https://github.com/dwincort/CCA 

 An alternate back-end for rec-delay syntax that 

uses wormholes to statically prevent infinite loops. 



Conclusions 



Contributions 

 Safer FRP 

 Resource types track and limit effects. 

 More Efficient FRP 

 Static arrows can be greatly optimized. 

 Concurrent processing can leverage multiple cores. 

 More Expressive FRP 

 Non-interfering choice provides predictably dynamic 

behavior. 

 Effects can be used within the computation. 

 Concurrency allows multiple simultaneous clock rates. 



Future Work 

 Dynamic Resource Types 

 Wormhole resources cannot be fully implemented in 

GHC without a significant extension. 

 Deterministic Parallelism 

 Can we make deterministic guarantees about 

predictable concurrent programs? 

 Optimization 

 CCA transformation with Non-Interfering Choice needs 

to be more robust. 



Thank you! 

Questions? 



Contributions 

 Safer FRP 

 Resource types track and limit effects. 

 More Efficient FRP 

 Static arrows can be greatly optimized. 

 Concurrent processing can leverage multiple cores. 

 More Expressive FRP 

 Non-interfering choice provides predictably dynamic 

behavior. 

 Effects can be used within the computation. 

 Concurrency allows multiple simultaneous clock rates. 



EXTRA SLIDES 



Saving, loading, and resetting signal functions 

Settability 



Example: IntegralReset 

 A signal function that calculates an integral but can 

be reset with an event. 

 

 
 

 
 Can we even do this without switch? 

f _ = integral 

integral 

integralReset 

fmap  f 



 Without switch, we can simulate a reset, but we 

can’t modify integral itself. 

 

 

 

 

 
 

 This solution is inelegant and does not scale. 

 

Example: IntegralReset 

f v e k = if isEvent e then v else k 

integral 

delay 0 

− 

f 

integralReset 



Resetting State 

 We want to access the state inside a signal function. 

 

 
 But what’s inside of an arbitrary signal function? 

 All state is saved with loop and delay. 

integral 



Resetting State 

 We want to access the state inside a signal function. 

 

 
 If we could reach in and restart the delay, then 

integral would behave as if it just started. 

+ ∗ 𝑑𝑡 delay 0 

integral 



Resettable Delay 

 Let’s consider a new delay that can be reset directly. 

 

 

 
 

 When the event is given, resettableDelay reverts to 

its starting state. 

 Does this scale? YES 

resettableDelay i 

NoEvent 

Event const i 

delay i 



 We can take any signal function and transform it 

into a settable signal function: 

 
 

 The top wires are the standard signals. 

 The bottom wires are State signals. 

 The input Event State can be used to change sf ’s 
internal state. 

 The output State is used to capture the current internal 

state. 

General Settability 

sf 



Settable Laws 

≈ sf const  
NoEvent 

sf 

Identity 

≈ sf 
delay NoEvent arr Event 

sf 

Uniformity 

const i ≈ const  
(Event reset) 

delay i 

Default 



 Settability makes our original problem trivial: 

 

 

 

 

 

 We no longer need the overkill of lifting a signal 

function to the signal level. 

 

Example: IntegralReset 

f _ = reset 

fmap  f 

integral 



The benefit of static arrows over dynamic arrows 

Optimization 



Causal Commutative Arrows 

 Liu, Cheng, Hudak [JFP ‘11] introduced CCA 

 CCAs can be heavily optimized. 

 Performance increases 10-40 times. 

 CCAs do not allow switch but do allow choice. 

 CCAs can allow Non-Interfering choice. 

 Arrowized recursion is not supported by default, but it 

can be added. 

 



How CCA Works 

 The CCA optimization reduces arrows to one of two 

forms: 

 

 

 

 We extend this with the ability to handle arrowized 

recursion and call it CCA*. 

 f 
f 

delay i 



 

 

 

 

 3 sample programs using arrowized recursion. 

 The 10x performance increase is comparable to Liu 

et al’s results. 

 The Chained Adder is stateless, and thus more 

optimized by GHC. 

Performance Results 

GHC CCA* + Stream 

Chained Adder 1.0 4.06 

Chained Integral 1.0 13.27 

Dynamic Counters 1.0 10.91 


