
EFFECTS, ASYNCHRONY, AND CHOICE

IN ARROWIZED FUNCTIONAL REACTIVE

PROGRAMMING

Daniel Winograd-Cort

Department of Computer Science

Yale University

Dissertation Defense

New Haven, CT

Thursday, June 11, 2015

Functional Reactive Programming

 Functional programming that can react to change.

 Time is a built-in aspect of the design.

 One programs with continuous values and streams of

events.

 Values themselves are time-dependent.

 The computation is time-independent.

 FRP is required to be …

 Causal by default.

 Synchronous by default.

 Already in major use.

Functional Reactive Programming

GUI Example

 We would like a graphical user interface:

 One textbox displays a temperature in Celsius.

 Another displays the temperature in Fahrenheit.

 Updating one value should automatically update

the other.

GUI Example

 We would like a graphical user interface:

 One textbox displays a temperature in Celsius.

 Another displays the temperature in Fahrenheit.

 Updating one value should automatically update

the other.

 -Demo-

 We will explore this with and without FRP.

Java 7 with Swing

public class TemperatureConverter extends JFrame {
 JTextField celsiusField;
 JTextField fahrenheitField;

 public TemperatureConverter(String name) {
 super(name);
 initGUI();
 initListeners();
 }

 private void initGUI() {
 celsiusField = new JTextField(5);
 fahrenheitField = new JTextField(5);

 Container pane = this.getContentPane();
 pane.setLayout(new FlowLayout());
 pane.add(celsiusField);
 pane.add(new JLabel("Celsius"));
 pane.add(new JLabel("="));
 pane.add(fahrenheitField);
 pane.add(new JLabel("Fahrenheit"));
 }

 public static void main(String[] args) {
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 TemperatureConverter frame =
 new TemperatureConverter("Temperature Converter");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
 });
 }

 private void initListeners() {
 celsiusField.getDocument().addDocumentListener(
 new DocumentListener() {
 public void insertUpdate(DocumentEvent e) { update(); }
 public void removeUpdate(DocumentEvent e) { update(); }
 public void changedUpdate(DocumentEvent e) { update(); }

 private void update() {
 if (!celsiusField.isFocusOwner() ||
 !isNumeric(celsiusField.getText())) return;
 double celsius =
 Double.parseDouble(celsiusField.getText().trim());
 double fahrenheit = cToF(celsius);
 fahrenheitField.setText(
 String.valueOf(Math.round(fahrenheit)));
 }
 });
 fahrenheitField.getDocument().addDocumentListener(
 new DocumentListener() {
 public void insertUpdate(DocumentEvent e) { update(); }
 public void removeUpdate(DocumentEvent e) { update(); }
 public void changedUpdate(DocumentEvent e) { update(); }

 private void update() {
 if (!fahrenheitField.isFocusOwner() ||
 !isNumeric(fahrenheitField.getText())) return;
 double fahrenheit =
 Double.parseDouble(fahrenheitField.getText().trim());
 double celsius = fToC(fahrenheit);
 celsiusField.setText(
 String.valueOf(Math.round(celsius)));
 }
 });
 }
}

* Code from https://github.com/eugenkiss/7guis

Java 7 with Swing

public class TemperatureConverter extends JFrame {
 JTextField celsiusField;
 JTextField fahrenheitField;

 public TemperatureConverter(String name) {
 super(name);
 initGUI();
 initListeners();
 }

 private void initGUI() {
 celsiusField = new JTextField(5);
 fahrenheitField = new JTextField(5);

 Container pane = this.getContentPane();
 pane.setLayout(new FlowLayout());
 pane.add(celsiusField);
 pane.add(new JLabel("Celsius"));
 pane.add(new JLabel("="));
 pane.add(fahrenheitField);
 pane.add(new JLabel("Fahrenheit"));
 }

 public static void main(String[] args) {
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 TemperatureConverter frame =
 new TemperatureConverter("Temperature Converter");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
 });
 }

 private void initListeners() {
 celsiusField.getDocument().addDocumentListener(
 new DocumentListener() {
 public void insertUpdate(DocumentEvent e) { update(); }
 public void removeUpdate(DocumentEvent e) { update(); }
 public void changedUpdate(DocumentEvent e) { update(); }

 private void update() {
 if (!celsiusField.isFocusOwner() ||
 !isNumeric(celsiusField.getText())) return;
 double celsius =
 Double.parseDouble(celsiusField.getText().trim());
 double fahrenheit = cToF(celsius);
 fahrenheitField.setText(
 String.valueOf(Math.round(fahrenheit)));
 }
 });
 fahrenheitField.getDocument().addDocumentListener(
 new DocumentListener() {
 public void insertUpdate(DocumentEvent e) { update(); }
 public void removeUpdate(DocumentEvent e) { update(); }
 public void changedUpdate(DocumentEvent e) { update(); }

 private void update() {
 if (!fahrenheitField.isFocusOwner() ||
 !isNumeric(fahrenheitField.getText())) return;
 double fahrenheit =
 Double.parseDouble(fahrenheitField.getText().trim());
 double celsius = fToC(fahrenheit);
 celsiusField.setText(
 String.valueOf(Math.round(celsius)));
 }
 });
 }
}

* Code from https://github.com/eugenkiss/7guis

Java 8 with ReactFX (FRP)

public class TemperatureConverterReactFX extends Application {

 public void start(Stage stage) {
 TextField celsius = new TextField();
 TextField fahrenheit = new TextField();

 EventStream<String> celsiusStream =
 EventStreams.valuesOf(celsius.textProperty()).filter(Util::isNumeric);
 celsiusStream.map(Util::cToF).subscribe(fahrenheit::setText);
 EventStream<String> fahrenheitStream =
 EventStreams.valuesOf(fahrenheit.textProperty()).filter(Util::isNumeric);
 fahrenheitStream.map(Util::fToC).subscribe(celsius::setText);

 HBox root =
 new HBox(10, celsius, new Label("Celsius ="), fahrenheit, new Label("Fahrenheit"));
 root.setPadding(new Insets(10));

 stage.setScene(new Scene(root));
 stage.setTitle("Temperature Converter");
 stage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

* Code from https://github.com/eugenkiss/7guis

Arrows …

 Are a well-founded concept inspired by category
theory.

 Create a tighter semantic connection between data.

 Enforce the appropriate abstraction of time.

 By removing direct access to streams, we eliminate certain
memory leaks and non-causal behaviors.

 Have a static structure, which makes them …

 More suitable for resource constrained systems.

 Highly amenable to optimizations (e.g. CCA).

 Have been used in Yampa, Nettle, Euterpea, etc.

 Look like signal processing diagrams.

AFRP (as a Diagram)

tempConvertSF

labeledTextbox “Celsius =”

delay labeledTextbox “Fahrenheit”

delay … c2f …

… f2c …

Haskell with UISF (AFRP)

tempConvertSF = leftRight $ proc () -> do

 rec c <- labeledTextbox "Celsius = " -< updateC

 f <- labeledTextbox "Fahrenheit" -< updateF

 updateF <- delay Nothing -< fmap (show . c2f) (c >>= readMaybe)

 updateC <- delay Nothing -< fmap (show . f2c) (f >>= readMaybe)

 returnA -< ()

main = runUI (defaultUIParams

 {uiSize=(400, 24), uiTitle="Temp Converter"})

 tempConvertSF

* http://hackage.haskell.org/package/UISF

Drawbacks of (Arrowized) FRP

 Data varies over time, but arrows cannot.

 This lack of dynamic behavior limits expressivity.

 I/O Bottleneck

 Pure FRP cannot perform effects.

 All inputs and outputs must be routed manually.

 This is a potential security leak.

 Synchrony can be restrictive.

My Contributions

 Extend arrows to allow “predictably dynamic”

behavior [ICFP ‘14].

 Non-interfering choice adds expressivity to arrows.

 Add concurrency and asynchrony [submitted ‘15].

 Wormholes allow communication for concurrency.

 https://github.com/dwincort/CFRP

 Safe effects such as physical resource interaction

memory access [PADL ‘12, HS ‘12].

 Resource types address safety.

My Contributions

 Extend arrows to allow “predictably dynamic”

behavior [ICFP ‘14].

 Non-interfering choice adds expressivity to arrows.

 Add concurrency and asynchrony [submitted ‘15].

 Wormholes allow communication for concurrency.

 https://github.com/dwincort/CFRP

 Safe effects such as physical resource interaction

memory access [PADL ‘12, HS ‘12].

 Resource types address safety.

How arrows work and what we need to express

interesting computations

Expressing Arrows

Standard Arrow Operators

arr f

f

loop sf

sf

sf1 >>> sf2

sf1 sf2

first sf

sf

Stateful Arrows

 With continuous semantics, the length of the delay

approaches zero.

 When used in conjunction with loop, delay allows

one to create stateful signal functions.

delay i

i

Dynamic Behavior

 Can we get more dynamic power for arrows?

 Why would we want that?

Exploring predictably dynamic behavior

Example: Mind Map

Example

 We would like a GUI to help a user build and

navigate a “mind map.”

 A mind map is a mapping from keywords to values.

 A user can look up a key to see its values, and then add

new values.

 The GUI’s appearance should dynamically update

based on how many values the given key has.

Example

 We would like a GUI to help a user build and

navigate a “mind map.”

 A mind map is a mapping from keywords to values.

 A user can look up a key to see its values, and then add

new values.

 The GUI’s appearance should dynamically update

based on how many values the given key has.

 -Demo-

Mindmap in code

mindmap :: MindMap -> UISF () ()

mindmap iMap = proc () -> do

 l <- textEntryField "Lookup" -< ()

 a <- textEntryField "Add" -< ()

 key <- accum "" -< fmap const l

 m <- accum iMap -< fmap (\v -> insertWith (++) key [v]) a

 title "Key = " displayStr -< key

 runDynamic displayStr -< Map.findWithDefault [] key m

 returnA -< ()

 How do we write runDynamic?

Higher Order Arrows

 The control signal determines the overall behavior.

 This allows highly dynamic programs.

 Switched out signal functions are permanently off.

 Switching can be used to increase performance.

rSwitch sf

sf

Implementing runDynamic

 We can create a new compound-widget when

necessary and then switch into it:

 But this approach voids our static guarantees!

 Arrows with switch are equivalent to Monads.

 It seems unnecessary – we are not running unknown

functions.

runDynamic sf

rSwitch

length runNTimes sf

Arrow Choice

 With choice, running the signal function is a dynamic

decision.

 This seems to help, but it’s not enough.

 We get fixed branching, but not true recursion.

left sf

Left

Right

sf

Arrow Choice Laws

Extension

Functor

Exchange

Unit

Assoc

left (arr f) = arr (left f)

left (f >>> g) = left f >>> left g

left f >>> arr (right g) =
arr (right g) >>> left f

f >>> arr Left = arr Left >>> left f

left (left f) >>> arr assoc+ =
arr assoc+ >>> left f

Arrow Choice Laws

Extension

Functor

Exchange

Unit

Assoc

left (arr f) = arr (left f)

left (f >>> g) = left f >>> left g

left f >>> arr (right g) =
arr (right g) >>> left f

f >>> arr Left = arr Left >>> left f

left (left f) >>> arr assoc+ =
arr assoc+ >>> left f

Exchange

 Why isn’t this commutative?

 Some arrows have effects.

 For instance, UISF uses arrow order to determine
widget layout.

 These effects make recursion impossible.

 In general, arrows are not commutative, but for
choice in FRP, they can be.

=
Left

Right

f

g

Left

Right g

f

Non-Interference

 We strengthen exchange into non-interference

 If the input value is Right, then the program will

behave the same whether there is a left function

after it or not.

 The unused branch is now guaranteed to not run.

 Now we can use Arrow Choice for recursion!

=
f

Right

Left

Right

Right

 Arrowized recursion allows us to write this without

using switch.

runDynamic Revisited

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

runDynamic sf

cons

const []

 Arrowized recursion allows us to write this without

using switch.

runDynamic Revisited

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

cons

const []

[]

head

tail

sf

runDynamic sf

cons

const []

 Arrowized recursion allows us to write this without

using switch.

runDynamic Revisited

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

cons

const []

[]

head

tail

sf

runDynamic sf

cons

const []

[]

head

tail

sf

runDynamic sf

cons

const []

 Arrowized recursion allows us to write this without

using switch.

 The arrow structure is not technically static, but it is

predictably dynamic.

runDynamic Revisited

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

runDynamic sf

cons

const []

Non-Interfering Choice Wrap-Up

 Like switch, non-interfering choice (and thus

arrowized recursion) only computes when needed.

 The predictable nature of non-interfering choice

does not interfere with optimizations.

 The CCA transformation is still applicable.

 Time complexity can now be variable, but resource

allocation is still static (arrow dependent).

My Contributions

 Extend arrows to allow “predictably dynamic”

behavior [ICFP ‘14].

 Non-interfering choice adds expressivity to arrows.

 Add concurrency and asynchrony [submitted ‘15].

 Wormholes allow communication for concurrency.

 https://github.com/dwincort/CFRP

 Safe effects such as physical resource interaction

memory access [PADL ‘12, HS ‘12].

 Resource types address safety.

Allowing local asynchronous concurrency

Example: Connect Four

Example

 We would like a GUI to play a game of Connect 4.

 It should follow the rules of the game.

 After the user makes a play, an AI should play.

Example

 We would like a GUI to play a game of Connect 4.

 It should follow the rules of the game.

 After the user makes a play, an AI should play.

 -Demo-

Connect Four GUI

connectFour = proc () -> do

 rec aiLevel <- title "AI Level" (hiSlider 1 (0, 5) 2) -< ()

 select <- displayBoard numCols 10 -< board

 board <- hold initBoard -< fmap (makeMove board) $

 case (turn board) of

 X -> fmap (,X) select

 O -> findBestMove O aiLevel board

 case (isWin board) of

 Nothing -> label "" -< ()

 Just X -> label "You win!" -< ()

 Just O -> label "You lose!" -< ()

Connect Four GUI

 When we ramp up the AI level, we find a problem.

 -Demo-

connectFour = proc () -> do

 rec aiLevel <- title "AI Level" (hiSlider 1 (0, 5) 2) -< ()

 select <- displayBoard numCols 10 -< board

 board <- hold initBoard -< fmap (makeMove board) $

 case (turn board) of

 X -> fmap (,X) select

 O -> findBestMove O aiLevel board

 case (isWin board) of

 Nothing -> label "" -< ()

 Just X -> label "You win!" -< ()

 Just O -> label "You lose!" -< ()

Synchrony Can Be a Burden

 The two parts would like to run at different rates.

 The GUI should continue running at ~60FPS.

 The AI should be allowed to run as slow as it needs to.

 The synchronous assumption of FRP is too strong.

 Other examples include …

 Memory reads together with hard drive seeks.

 Packet routing together with network map updating.

 Sound synthesis together with a GUI interface.

Asynchrony

 Let us allow multiple processes, each with its own

notion of time.

 Each will individually remain synchronous and causal.

 However, they will no longer synchronize.

 But what are those dashed lines?

Connect Four GUI Diagram

connectFour

“AI” slider

displayBoard

findBestMove hold

Inter-Process Communication

 We need a way to communicate data from one time

stream to another.

 Data needs to get time dilated – either stretched or

compressed.

 A special form of channel: Wormholes

 Wormholes have a blackhole for writing to and a

whitehole for reading from.

 Wormholes automatically dilate their data.

New Operators

letW w b sf

w

b

fork sf

 sf

sf

Connect Four GUI Diagram 2

 Now, findBestMove can run with its own clock.

 The data is communicated clearly via wormholes.

connectFour

“AI” slider

displayBoard

hold findBestMove

Maintaining Modular Consistency

 How can we control forked processes?

sf

Left

Right

sf

Asynchronous Choice

 Remember that data is time-dependent.

 When a signal function has no incoming data, it must

freeze.

 Likewise, if a fork has no incoming data, it freezes its

forked process.

 We achieve this while guaranteeing consistency.

 Treat every moment in time as a transaction.

 Freezing may occur between transactions.

Asynchrony Wrap-Up

 We can create multiple time streams for different

FRP components.

 Each time stream is internally synchronous and

deterministic.

 We can communicate between time streams in a

clear way with wormholes.

 Data is automatically time dilated.

 We can govern time streams using non-interfering

choice.

My Contributions

 Extend arrows to allow “predictably dynamic”

behavior [ICFP ‘14].

 Non-interfering choice adds expressivity to arrows.

 Add concurrency and asynchrony [submitted ‘15].

 Wormholes allow communication for concurrency.

 https://github.com/dwincort/CFRP

 Safe effects such as physical resource interaction

memory access [PADL ‘12, HS ‘12].

 Resource types address safety.

Allowing effects in a meaningful yet safe manner

Example: MIDI Echo Player

Example

 We would like a GUI to control the parameters of

an echo effect that we can add to a MIDI stream.

 MIDI stands for Musical Instrument Digital Interface.

 An echo decays and loops the sound.

 The program should read from and write to a MIDI

port.

Example

 We would like a GUI to control the parameters of

an echo effect that we can add to a MIDI stream.

 MIDI stands for Musical Instrument Digital Interface.

 An echo decays and loops the sound.

 The program should read from and write to a MIDI

port.

 -Demo-

Echo GUI

 Let’s also add a metronome tick to this.

echo :: UISF () ()

echo = proc () -> do

 m <- midiIn -< ()

 r <- title "Decay rate" (hSlider (0, 0.9) 0.6) -< ()

 f <- title "Echoing frequency" (hSlider (1, 10) 3) -< ()

 rec let m' = m <> s

 s <- vdelay -< (1.0 / f, decay 0.1 r m')

 midiOut -< m'

Echo GUI

echo :: UISF () ()

echo = proc () -> do

 m <- midiIn -< ()

 r <- title "Decay rate" (hSlider (0, 0.9) 0.6) -< ()

 f <- title "Echoing frequency" (hSlider (1, 10) 3) -< ()

 rec let m' = m <> s

 s <- vdelay -< (1.0 / f, decay 0.1 r m')

 midiOut -< m'

metronomeTick :: UISF () ()

metronomeTick = proc () -> do

 bpm <- title "Metronome BPM" (hSlider (40, 200) 100) -< ()

 e <- timer -< 60 / bpm

 midiOut -< makeTick e

Echo GUI

echo :: UISF () ()

echo = proc () -> do

 m <- midiIn -< ()

 r <- title "Decay rate" (hSlider (0, 0.9) 0.6) -< ()

 f <- title "Echoing frequency" (hSlider (1, 10) 3) -< ()

 rec let m' = m <> s

 s <- vdelay -< (1.0 / f, decay 0.1 r m')

 midiOut -< m'

metronomeTick :: UISF () ()

metronomeTick = proc () -> do

 bpm <- title "Metronome BPM" (hSlider (40, 200) 100) -< ()

 e <- timer -< 60 / bpm

 midiOut -< makeTick e

runUI defaultUIParams (echo >>> metronomeTick)

Multiple midiOut Effects

 What happens when we send MIDI output twice in

one program?

 The two input streams merge in some way?

 The top input stream processes first?

 This may break our functional guarantee.

 Blocks of code are no longer modular.

 The UISF layout is determined by program structure.

 Layout is determined statically (“predictably dynamic”).

 Computation and layout are totally separate.

Adding Effects

 To make effects safe, we must limit how we use

effectful signal functions.

 If an effect is used, it can only be used in one place.

 We achieve this by tagging signal functions at the

type level with resource types and restricting their

composition.

Resource Typed Arrow Operators

Ty-Arr
Γ⊢𝑒 ∶ 𝛼→𝛽

Γ;Ψ⊢𝑎𝑟𝑟 𝑒 ∶ 𝛼⇝
∅

𝛽

Ty-First
Γ;Ψ⊢𝑒 ∶ 𝛼⇝

𝑅
𝛽

Γ;Ψ⊢𝑓𝑖𝑟𝑠𝑡 𝑒 ∶ (𝛼×𝛾)⇝
𝑅

(𝛽×𝛾)

Ty-Comp

Γ;Ψ⊢𝑒1 ∶ 𝛼⇝
𝑅1

𝛽 Γ;Ψ⊢𝑒2 : 𝛽⇝
𝑅2

𝛾
𝑅1⊎𝑅2=𝑅

Γ;Ψ⊢𝑒1>>>𝑒2 ∶ 𝛼⇝
𝑅

𝛾

Ty-Chc

Γ;Ψ⊢𝑒1 ∶ 𝛼⇝
𝑅1

𝛾 Γ;Ψ⊢𝑒2 ∶ 𝛽⇝
𝑅2

𝛾
𝑅1∪𝑅2=𝑅

Γ;Ψ⊢𝑒1|||𝑒2 ∶ (𝛼+𝛽)⇝
𝑅

𝛾

Resource Typed Arrow Operators

arr f

f

first sf

 sf

sf1 >>> sf2

 sf1 sf2

sf1 ||| sf2

Left

Right

 sf1

 sf2

∅ R
R

R1 R2

R3

𝑅1 ∪ 𝑅2 = 𝑅3

𝑅1 ∩ 𝑅2 = ∅

R1

R2

R3

𝑅1 ∪ 𝑅2 = 𝑅3

Resource Typed Arrow Operators

Ty-Fork
Γ;Ψ⊢𝑒 ∶ ()⇝

𝑅
()

Γ;Ψ⊢𝑓𝑜𝑟𝑘 𝑒 ∶ 𝛼⇝
𝑅

𝛼

Ty-LetW

Γ;Ψ,𝑟𝑤 ∶ (),𝐿𝑖𝑠𝑡 𝜏 ,𝑟𝑏∶ 𝜏,() ⊢𝑒 ∶𝛼⇝
𝑅′

𝛽

Γ;Ψ⊢𝑒𝑖∶𝐿𝑖𝑠𝑡 𝜏 𝑅=𝑅′∖ 𝑟𝑤,𝑟𝑏

Γ;Ψ⊢letW 𝑟𝑤 𝑟𝑏 𝑒𝑖 in 𝑒 ∶ 𝛼⇝
𝑅

𝛽

Resource Typed Arrow Operators

letW w b sf

w

b

R
 𝑅′

𝑅 = 𝑅′ ∖ 𝑟𝑏 , 𝑟𝑤

 𝑟𝑏

 𝑟𝑤

fork sf

 sf

R R

sf

Resource Signal Function

 All physical devices have an associated virtual

resource.

Ty-RSF
𝑟: 𝜏𝑖𝑛,𝜏𝑜𝑢𝑡 ∈Ψ

Γ;Ψ⊢𝑟𝑠𝑓 𝑟 ∶ 𝜏𝑖𝑛 ⇝
𝑟

𝜏𝑜𝑢𝑡

Resource Signal Function

 All physical devices have an associated virtual

resource.

rsf r
𝑟

 Back to our example:

 We can send MIDI data by using the MidiOut resource:

 We are assured that the input stream is unique.

 The type of a program shows its resource usage:

 Our poorly-defined metronome/echo program will no

longer type check.

FRP I/O Effects

rsf MidiOut
MidiMessage

𝑀𝑖𝑑𝑖𝑂𝑢𝑡

echo :: UISF {MidiIn, MidiOut} () ()

metronomeTick :: UISF {MidiOut} () ()

echo >>> metronomeTick :: TYPE ERROR

Formalism

 Operational semantics describe the behavior of

fork and wormholes with arrows.

 The semantics proceed in a 3-phase set of

transitions:

 The evaluation transition is a classic, non-strict,

functional semantics.

Formalism – Functional Transition

Formalism – Functional Transition

 Choice is specially designed to handle freezing:

Formalism – Executive Transition

 The executive transition runs the program.

 It chooses a process p non-deterministically and

fairly and runs it.

Program execution is the application of the reflexive transitive

closure over the EXEC transition ⇓ starting with initial

parameters 𝑇 = 𝑝, 𝜀 ⊳ 𝑒, (), 𝜀 , ℛ = ℛ0, and 𝑊 = ∅

where 𝑝 is a fresh process ID, 𝑒 is a process, and ℛ0 is an

initial mapping of resources representing those of the real

world.

Theorem: Safety

 The type reveals which resources a program can

interact with when run.

 Forked processes will respect each others’ resources.

 All resource streams are guaranteed unique.

For a program 𝑃: , we know:

- No program states will ever interact with a resource 𝑟 ∉ 𝑅.

- No two processes in 𝑃 can interact with the same resource.

- No moment of time in 𝑃 will ever interact with a resource

more than once.

 sf
R

Theorem: Resource Commutativity

 Resource types enforce data commutativity.

 Programs stay functional and modular.

 Reasoning about behavior through diagrams remains

clear.

For any 𝑆 and 𝑟, if 𝑆, ℛ, 𝒲 ↪𝑝 𝑆′, ℛ′, 𝒲′ is the set of

states 𝑆0 … 𝑆𝑛 and there exists 𝑖 < 𝑛 such that 𝑆𝑖 =

𝐾 ⊳ 𝑟𝑠𝑓 𝑟, _, 𝑈𝑖 and 𝑆𝑖+1 = 𝐾 ⊲ 𝑟𝑠𝑓 𝑟, 𝑥, 𝑈𝑖+1 , then

𝑥 will be the same for all 𝑆 regardless of 𝑖.

Effects Wrap-Up

 Effects can be inserted directly into FRP programs.

 Resource types assure safety and data commutativity.

 Invalid effect interactions are eliminated statically.

 Formal semantics demonstrate features.

 Proofs are in the dissertation.

Other FRP Enhancing Efforts

More uses for Wormholes

 Wormholes provide communication between

processes, but what if both ends are in the same

process?

 What kind of time dilation occurs?

 Wormholes provide communication between

processes, but what if both ends are in the same

process?

 What kind of time dilation occurs?

 A blackhole into a whitehole:

 We create delay.

More uses for Wormholes

blackhole whitehole

 Wormholes provide communication between

processes, but what if both ends are in the same

process?

 What kind of time dilation occurs?

 A whitehole into a blackhole:

 We create a strictly causal form of loop.

More uses for Wormholes

blackhole whitehole

sf

More uses for Wormholes

 Wormholes provide communication between

processes, but what if both ends are in the same

process?

 What kind of time dilation occurs?

 In arbitrary locations:

 We achieve non-local memory mutation.

Other Results

 Settability – A transformation applicable to AFRP

that creates access to internal state.
 https://github.com/dwincort/SettableArrow

 A non-interfering choice extension to CCA with

comparable performance.
 https://github.com/dwincort/CCA

 An alternate back-end for rec-delay syntax that

uses wormholes to statically prevent infinite loops.

Conclusions

Contributions

 Safer FRP

 Resource types track and limit effects.

 More Efficient FRP

 Static arrows can be greatly optimized.

 Concurrent processing can leverage multiple cores.

 More Expressive FRP

 Non-interfering choice provides predictably dynamic

behavior.

 Effects can be used within the computation.

 Concurrency allows multiple simultaneous clock rates.

Future Work

 Dynamic Resource Types

 Wormhole resources cannot be fully implemented in

GHC without a significant extension.

 Deterministic Parallelism

 Can we make deterministic guarantees about

predictable concurrent programs?

 Optimization

 CCA transformation with Non-Interfering Choice needs

to be more robust.

Thank you!

Questions?

Contributions

 Safer FRP

 Resource types track and limit effects.

 More Efficient FRP

 Static arrows can be greatly optimized.

 Concurrent processing can leverage multiple cores.

 More Expressive FRP

 Non-interfering choice provides predictably dynamic

behavior.

 Effects can be used within the computation.

 Concurrency allows multiple simultaneous clock rates.

EXTRA SLIDES

Saving, loading, and resetting signal functions

Settability

Example: IntegralReset

 A signal function that calculates an integral but can

be reset with an event.

 Can we even do this without switch?

f _ = integral

integral

integralReset

fmap f

 Without switch, we can simulate a reset, but we

can’t modify integral itself.

 This solution is inelegant and does not scale.

Example: IntegralReset

f v e k = if isEvent e then v else k

integral

delay 0

−

f

integralReset

Resetting State

 We want to access the state inside a signal function.

 But what’s inside of an arbitrary signal function?

 All state is saved with loop and delay.

integral

Resetting State

 We want to access the state inside a signal function.

 If we could reach in and restart the delay, then

integral would behave as if it just started.

+ ∗ 𝑑𝑡 delay 0

integral

Resettable Delay

 Let’s consider a new delay that can be reset directly.

 When the event is given, resettableDelay reverts to

its starting state.

 Does this scale? YES

resettableDelay i

NoEvent

Event const i

delay i

 We can take any signal function and transform it

into a settable signal function:

 The top wires are the standard signals.

 The bottom wires are State signals.

 The input Event State can be used to change sf ’s
internal state.

 The output State is used to capture the current internal

state.

General Settability

sf

Settable Laws

≈ sf const
NoEvent

sf

Identity

≈ sf
delay NoEvent arr Event

sf

Uniformity

const i ≈ const
(Event reset)

delay i

Default

 Settability makes our original problem trivial:

 We no longer need the overkill of lifting a signal

function to the signal level.

Example: IntegralReset

f _ = reset

fmap f

integral

The benefit of static arrows over dynamic arrows

Optimization

Causal Commutative Arrows

 Liu, Cheng, Hudak [JFP ‘11] introduced CCA

 CCAs can be heavily optimized.

 Performance increases 10-40 times.

 CCAs do not allow switch but do allow choice.

 CCAs can allow Non-Interfering choice.

 Arrowized recursion is not supported by default, but it

can be added.

How CCA Works

 The CCA optimization reduces arrows to one of two

forms:

 We extend this with the ability to handle arrowized

recursion and call it CCA*.

 f
f

delay i

 3 sample programs using arrowized recursion.

 The 10x performance increase is comparable to Liu

et al’s results.

 The Chained Adder is stateless, and thus more

optimized by GHC.

Performance Results

GHC CCA* + Stream

Chained Adder 1.0 4.06

Chained Integral 1.0 13.27

Dynamic Counters 1.0 10.91

