EFFECTS, ASYNCHRONY, AND CHOICE
IN ARROWIZED FUNCTIONAL REACTIVE
PROGRAMMING

Daniel Winograd-Cort

Department of Computer Science
Yale University
Dissertation Defense

New Haven, CT
Thursday, June 11, 2015

I

Functional Reactive Programming
N

0 Functional programming that can react to change.

o Time is a built-in aspect of the design.

0 One programs with continuous values and streams of
events.
O Values themselves are time-dependent.
0 The computation is time-independent.
0 FRP is required to be ...
o0 Causal by default.
O Synchronous by default.

0 Already in major use.

Functional Reactive Programming

GUI Example

N
0 We would like a graphical user interface:
o0 One textbox displays a temperature in Celsius.

O Another displays the temperature in Fahrenheit.

0 Updating one value should automatically update
the other.

GUI Example

N
0 We would like a graphical user interface:
o0 One textbox displays a temperature in Celsius.

O Another displays the temperature in Fahrenheit.

0 Updating one value should automatically update
the other.

0 -Demo-

0 We will explore this with and without FRP.

Java 7 with Swing
N

public class TemperatureConverter extends JFrame { private void initListeners() {
JTextField celsiusField; celsiusField.getbocument() .addDocumentListener(
JTextField fahrenheitField; new DocumentListener() {
public void insertUpdate(DocumentEvent e) { update(); }
public TemperatureConverter(String name) { public void removeuUpdate(DocumentEvent e) { update(); }
super(name) ; public void changedupdate(DocumentEvent e) { update(); }
initGuIi(Q);
initListeners(); private void update() {
} if (lcelsiusField.isFocusowner() ||
IisNumeric(celsiusField.getText())) return;
private void initGUI() { double celsius =
celsiusField = new JTextField(5); Double.parsebouble(celsiusField.getText().trimQ));
fahrenheitField = new JTextField(5); doubTle fahrenheit = cToF(celsius);
fahrenheitField.setText(
container pane = this.getContentPane(); String.valueof(Math.round(fahrenheit)));
pane.setLayout(new FlowLayout()); }
pane.add(celsiusField); H;
pane.add(new JLabel("Celsius")); fahrenheitField.getbocument () .addDocumentListener(
pane.add(new JLabel("=")); new DocumentListener() {
pane.add(fahrenheitField); public void insertUpdate(DocumentEvent e) { update(); }
pane.add(new JLabel("Fahrenheit")); public void removeUpdate(DocumentEvent e) { update(); }
} public void changedupdate(DocumentEvent e) { update(); }
public static void main(string[] args) { private void update() {
javax.swing.Swingutilities.invokeLater(new Runnable() { if (!fahrenheitField.isFocusowner() ||
public void run(Q { lisNumeric(fahrenheitField.getText())) return;
TemperatureConverter frame = double fahrenheit =
new TemperatureConverter("Temperature Converter"); Double.parsebouble(fahrenheitField.getText().trim());
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); double celsius = fToC(fahrenheit);
frame.pack(Q; celsiusField.setText(
frame.setVvisible(true); String.valueof(Math.round(celsius)));
} }
B b
} }
}

* Code from https://github.com /eugenkiss /7 guis

Java 7 with Swing
N

public class TemperatureConverter extends JFrame { private void initListeners() {
JTextField celsiusField; celsiusField.getbocument() .addDocumentListener(
JTextField fahrenheitField; new DocumentListener() {
public void insertUpdate(DocumentEvent e) { update(); }
public TemperatureConverter(String name) { public void removeuUpdate(DocumentEvent e) { update(); }
super(name) ; public void changedupdate(DocumentEvent e) { update(); }
initGuIi(Q);
initListeners(); private void update() {
} if (lcelsiusField.isFocusowner() ||
lisNumeric(celsiusField.getText())) return;
private void initGUI() { double celsius =
celsiusField = new JTextField(5); Double.parsebouble(celsiusField.getText().trim());
fahrenheitField = new JTextField(5); doubTe fahrenheit = cToF(celsius);
fahrenheitField.setText(
container pane = this.getContentPane(); String.valueof(Math.round(fahrenheit)));
pane.setLayout(new FlowLayout()); }
pane.add(celsiusField); H;
pane.add(new JLabel("Celsius")); fahrenheitField.getbocument () .addDocumentListener(
pane.add(new JLabel("=")); new DocumentListener() {
pane.add(fahrenheitField); public void insertUpdate(DocumentEvent e) { update(); }
pane.add(new JLabel("Fahrenheit")); public void removeUpdate(DocumentEvent e) { update(); }
} public void changedupdate(DocumentEvent e) { update(); }
public static void main(string[] args) { private void update() {
javax.swing.Swingutilities.invokeLater(new Runnable() { if (!fahrenheitField.isFocusowner() ||
public void run(Q { lisNumeric(fahrenheitField.getText())) return;
TemperatureConverter frame = double fahrenheit =
new TemperatureConverter("Temperature Converter"); Double.parsebouble(fahrenheitField.getText().trim());
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); double celsius = fToC(fahrenheit);
frame.pack(Q; celsiusField.setText(
frame.setVvisible(true); String.valueof(Math.round(celsius)));
} }
B b
} }
}

* Code from https://github.com /eugenkiss /7 guis

Java 8 with ReactFX (FRP)

public class TemperatureConverterReactFX extends Application {

public void start(Stage stage) {
TextField celsius = new TextField();
TextField fahrenheit = new TextField();

EventStream<String> celsiusStream =
EventStreams.valuesOf(celsius.textProperty()).filter(Util::isNumeric);

celsiusStream.map(Util: :cToF).subscribe(fahrenheit::setText);

EventStream<String> fahrenheitStream =
EventStreams.valuesOof(fahrenheit.textProperty()).filter(Uutil::isNumeric);

fahrenheitStream.map(Util::fToC).subscribe(celsius::setText);

HBox root =
new HBox(10, celsius, new Label("Celsius ="), fahrenheit, new Label("Fahrenheit"));
root.setPadding(new Insets(10));

stage.setScene(new Scene(root));
stage.setTitle("Temperature Converter");
stage.show();

}

public static void main(string[] args) {
Taunch(args);
}

}
* Code from https://github.com /eugenkiss /7 guis

Arrows ...

0 Are a well-founded concept inspired by category
theory.

0 Create a tighter semantic connection between data.

0 Enforce the appropriate abstraction of time.

O By removing direct access to streams, we eliminate certain
memory leaks and non-causal behaviors.

0 Have a static structure, which makes them ...
0 More suitable for resource constrained systems.
o Highly amenable to optimizations (e.g. CCA).

0 Have been used in Yampa, Nettle, Euterpea, etc.

0 Look like signal processing diagrams.

AFRP (as a Diagram)

<

tempConvertSF

Haskell with UISF (AFRP)

tempConvertSF = leftRight $ proc () -> do
rec ¢ <- labeledTextbox "Celsius = " -< updateC
f <- TabeledTextbox "Fahrenheit" -< updateF
updateF <- delay Nothing -< fmap (show . c2f) (c >>= readvaybe)

updateC <- delay Nothing -< fmap (show . f2c) (f >>= readvaybe)
returnA -< ()

main = runUI (defaultuUIParams

{uiSi1ze=(400, 24), uiTitle="Temp Converter"})
tempConvertSF

* http:/ /hackage.haskell.org /package /UISF

Drawbacks of (Arrowized) FRP

I
0 Data varies over time, but arrows cannot.
o This lack of dynamic behavior limits expressivity.
0 1/O Bottleneck

0 Pure FRP cannot perform effects.
O All inputs and outputs must be routed manually.

O This is a potential security leak.

0 Synchrony can be restrictive.

My Contributions
—r

0 Extend arrows to allow “predictably dynamic”
behavior [ICFP ‘14].

o0 Non-interfering choice adds expressivity to arrows.

0 Add concurrency and asynchrony [submitted ‘15].

0 Wormholes allow communication for concurrency.
m https://github.com/dwincort /CFRP

0 Safe effects such as physical resource interaction
memory access [PADL ‘12, HS “12].

00 Resource types address safety.

My Contributions
—r

0 Extend arrows to allow “predictably dynamic”
behavior [ICFP ‘14].

O Non-interfering choice adds expressivity to arrows.

- Expressing Arrows

How arrows work and what we need to express
interesting computations

Standard Arrow Operators
—

)a)
>
>

arr f first sf

— - - .

sfl >>> sf?2 lToop sf

Stateful Arrows
_

delay 1

0 With continuous semantics, the length of the delay
approaches zero.

0 When used in conjunction with loop, delay allows
one to create stateful signal functions.

Dynamic Behavior
N

0 Can we get more dynamic power for arrows?

0 Why would we want that?

- Example: Mind Map

Exploring predictably dynamic behavior

Example

N
0 We would like a GUI to help a user build and
navigate a “mind map.”
O A mind map is a mapping from keywords to values.

O A user can look up a key to see its values, and then add
new values.

0 The GUI's appearance should dynamically update
based on how many values the given key has.

Example

0 We would like a GUI to help a user build and
navigate a “mind map.”
0 A mind map is a mapping from keywords to values.

O A user can look up a key to see its values, and then add
new values.

0 The GUI's appearance should dynamically update
based on how many values the given key has.

0 -Demo-

Mindmap in code
—

mindmap :: MindMap -> UISF () O
mindmap iMap = proc () -> do
1 <- textEntryField "Lookup" -< ()
a <- textEntryField "Add" -< O
key <- accum "" -< fmap const 1
m <- accum iMap -< fmap (\v -> insertwith (++) key [v]) a

; me = @ displayStr -< key
'sp1ayStr -< Map.findwithpefault [] key m
- O

0 How do we write runDynamic?

Higher Order Arrows

rswitch sf

0 The control signal determines the overall behavior.

o This allows highly dynamic programs.

0 Switched out signal functions are permanently off.

o Switching can be used to increase performance.

Implementing runDynamic
N

0 We can create a new compound-widget when
necessary and then switch into it:

rSwitch

runNTimes sf

runDynamic sf

00 But this approach voids our static guarantees!

O Arrows with switch are equivalent to Monads.

0 It seems unnecessary — we are not running unknown
functions.

Arrow Choice

_
__< > >
Right
left st

0 With choice, running the signal function is a dynamic
decision.

0 This seems to help, but it’s not enough.

0 We get fixed branching, but not true recursion.

Arrow Choice Laws
N

Extension left (arr f) = arr (left f)

Functor left (f >>> g) = left f >>> Teft g

left £ >>> arr (right g) =

Exchange arr (right g) >>> left f
Unit f >>> arr Left = arr Left >>> left f
Assoc left (Teft f) >>> arr assoc, =

arr assoc, >>> left f

Arrow Choice Laws
N

Extension left (arr f) = arr (left f)

Functor left (f >>> g) = left f >>> Teft g

left £ >>> arr (right g) =

Exchange arr (right g) >>> left f
Unit f >>> arr Left = arr Left >>> left f
Assoc left (Teft f) >>> arr assoc, =

arr assoc, >>> left f

Exchange

Left

> = —

)e

Right —)e— Right

0 Why isn’t this commutative?

1 Some arrows have effects.

O For instance, UISF uses arrow order to determine
widget layout.

0 These effects make recursion impossible.

0 In general, arrows are not commutative, but for
choice in FRP, they can be.

Non-Interference
_—

0 We strengthen exchange into non-interference

Left
= D
Right

0 If the input value is Right, then the program will

behave the same whether there is a left function
after it or not.

00 The unused branch is now guaranteed to not run.

0 Now we can use Arrow Choice for recursion!

runDynamic Revisited
N

0 Arrowized recursion allows us to write this without
using switch.

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

0 — D
<>
-

runDynamic Revisited
N

0 Arrowized recursion allows us to write this without
using switch.

runDynamic ::| [l
runDynamic sf
[] head
&
head tail

runDynamic Revisited
N

0 Arrowized recursion allows us to write this without

runDynamic Revisited
N

0 Arrowized recursion allows us to write this without
using switch.

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

0 — D
<>
-

0 The arrow structure is not technically static, but it is

predictably dynamic.

Non-Interfering Choice Wrap-Up

S
0 Like switch, non-interfering choice (and thus
arrowized recursion) only computes when needed.
0 The predictable nature of non-interfering choice
does not interfere with optimizations.

o0 The CCA transformation is still applicable.

0 Time complexity can now be variable, but resource
allocation is still static (arrow dependent).

My Contributions
—r

0 Add concurrency and asynchrony [submitted ‘15].

0 Wormholes allow communication for concurrency.
m https://github.com/dwincort /CFRP

- Example: Connect Four

Allowing local asynchronous concurrency

Example

!
0 We would like a GUI to play a game of Connect 4.
o It should follow the rules of the game.

O After the user makes a play, an Al should play.

Example

!
0 We would like a GUI to play a game of Connect 4.
o It should follow the rules of the game.

O After the user makes a play, an Al should play.

0 -Demo-

Connect Four GUI
N

connectFour = proc () -> do
rec aiLevel <- title "AI Level" (hiSlider 1 (0, 5) 2) -< O
select <- displayBoard numCols 10 -< board
board <- hold 1initBoard -< fmap (makeMove board) $
case (turn board) of
X -> fmap (,X) select
O -> findBestMove O aiLevel board
case (iswin board) of
Nothing -> Tlabel "" -< QO
Just X -> Tlabel "You win!" -< QO
Just 0 -> Tlabel "You Tlose!" -< O

Connect Four GUI
N

connectFour = proc () -> do
rec aiLevel <- title "AI Level" (hiSlider 1 (0, 5) 2) -< O
select <- displayBoard numCols 10 -< board
board <- hold 1initBoard -< fmap (makeMove board) $
case (turn board) of
X -> fmap (,X) select
O -> findBestMove O aiLevel board
case (iswin board) of

Nothing -> Tlabel "" -< QO
Just X -> Tlabel "You win!" -< QO
Just 0 -> Tlabel "You Tlose!" -< O

0 When we ramp up the Al level, we find a problem.

0 -Demo-

Synchrony Can Be a Burden
—

0 The two parts would like to run at different rates.
o The GUI should continue running at ~60FPS.
O The Al should be allowed to run as slow as it needs to.

0 The synchronous assumption of FRP is too strong.

0 Other examples include ...
0 Memory reads together with hard drive seeks.
O Packet routing together with network map updating.

0 Sound synthesis together with a GUI interface.

Asynchrony
N

0 Let us allow multiple processes, each with its own
notion of time.

O Each will individually remain synchronous and causal.

o0 However, they will no longer synchronize.

Connect Four GUI Diagram

“Al” slider

findBestMove

displayBoard

connectFour

0 But what are those dashed lines?

Inter-Process Communication
N

0 We need a way to communicate data from one time
stream to another.

0 Data needs to get time dilated — either stretched or
compressed.

0 A special form of channel: Wormholes

0 Wormholes have a blackhole for writing to and o
whitehole for reading from.

0 Wormholes automatically dilate their data.

New Operators
=

letw w b sf

Connect Four GUI Diagram 2
—

findBestMove

displayBoard

connectFour

0 Now, findBestMove can run with its own clock.

0 The data is communicated clearly via wormholes.

Maintaining Modular Consistency
—

0 How can we control forked processes?

Asynchronous Choice
N

0 Remember that data is time-dependent.

0 When a signal function has no incoming data, it must
freeze.

O Likewise, if a fork has no incoming datq, it freezes its
forked process.

0 We achieve this while guaranteeing consistency.
O Treat every moment in time as a transaction.

O Freezing may occur between transactions.

Asynchrony Wrap-Up
N

0 We can create multiple time streams for different
FRP components.

O Each time stream is internally synchronous and
deterministic.

0 We can communicate between time streams in @
clear way with wormholes.
O Data is automatically time dilated.

0 We can govern time streams using non-interfering
choice.

My Contributions
—r

0 Safe effects such as physical resource interaction
memory access [PADL ‘12, HS “12].

00 Resource types address safety.

- Example: MIDI Echo Player

Allowing effects in a meaningful yet safe manner

Example
N

0 We would like a GUI to control the parameters of
an echo effect that we can add to a MIDI stream.

o0 MIDI stands for Musical Instrument Digital Interface.
O An echo decays and loops the sound.

00 The program should read from and write to a MIDI
port.

Example
N

0 We would like a GUI to control the parameters of
an echo effect that we can add to a MIDI stream.

o0 MIDI stands for Musical Instrument Digital Interface.

O An echo decays and loops the sound.

00 The program should read from and write to a MIDI
port.

0 -Demo-

Echo GUI
N

echo :: UISF O O
echo = proc () -> do
m <- midiIn -< ()

r <- title "Decay rate" (hs1lider (0, 0.9) 0.6) -< O
f <- title "Echoing frequency" (hslider (1, 10) 3) -< 0O
rec Tletm'" =m <> s

s <- vdelay -< (1.0 / f, decay 0.1 r m")
midiout -< m'

1 Let’s also add a metronome tick to this.

Echo GUI
N

echo :: UISF O O
echo = proc () -> do
m <- midiIn -< ()

r <- title "Decay rate" (hs1lider (0, 0.9) 0.6) -< O
f <- title "Echoing frequency" (hslider (1, 10) 3) -< 0O
rec Tletm'" =m <> s

s <- vdelay -< (1.0 / f, decay 0.1 r m")
midiout -< m'

metronomeTick :: UISF O O

metronomeTick = proc () -> do
bpm <- title "Metronome BPM" (hSlider (40, 200) 100) -< O
e <- timer -< 60 / bpm
midiout -< makeTick e

Echo GUI
N

echo :: UISF O O
echo = proc () -> do
m <- midiIn -< ()

r <- title "Decay rate" (hs1lider (0, 0.9) 0.6) -< O
f <- title "Echoing frequency" (hslider (1, 10) 3) -< 0O
rec Tletm'" =m <> s

s <- vdelay -< (1.0 / f, decay 0.1 r m")
midiout -< m'

metronomeTick :: UISF O O

metronomeTick = proc () -> do
bpm <- title "Metronome BPM" (hSlider (40, 200) 100) -< O
e <- timer -< 60 / bpm
midiout -< makeTick e

runUI defaultUIParams (echo >>> metronomeTick)

Multiple midiOut Effects

I
0 What happens when we send MIDI output twice in
one program?
O The two input streams merge in some way?

O The top input stream processes first?

0 This may break our functional guarantee.
0 Blocks of code are no longer modular.

O The UISF layout is determined by program structure.
B Layout is determined statically (“predictably dynamic”).

m Computation and layout are totally separate.

Adding Effects

0 To make effects safe, we must limit how we use
effectful signal functions.

O If an effect is used, it can only be used in one place.
0 We achieve this by tagging signal functions at the

type level with resource types and restricting their
composition.

Resource Typed Arrow Operators

S =
I’ T a—
Ty-Arr e'e 'Bq)

CWharr e: awf

Ty-First

R
[Whe : awf

WrHfirst e: (axy)w%(ﬁxy)

R4 Ry
Wreq:awf T;WlRe, : [y
R{UYR>,=R
Ty-Comp == =
IWPhe >>>e, : awy

Rq Ry
[Wreq:awy TTWPlkey: fwy
R{UR,=R

Ty-Chc B
IWreq|llez : (atf)wy

Resource Typed Arrow Operators
—

=

first sf

Left

sfl >>> sf2 Right

R, UR, = R, sfl [[] sf2
RlﬂR2=(Z)

R1UR2=R3

Resource Typed Arrow Operators
N

R
IWre : O()

Ty-Fork B
WHforke: awa

W,y (O,List T),rp: (T,0))Fe :aﬁv:ﬁ

IWhe;:List T R=R'\{ry,7p}

Ty-LetW B
WHIetWry, rp ejine: awf

Resource Typed Arrow Operators
—

letw w b sf

R = R’ \ {rbirw}

Resource Signal Function
N

(r«(Tin,Tout) EY
Ty-RSF =

DWHrSf r:Ti«Tout

0 All physical devices have an associated virtual
resource.

Resource Signal Function
N

U}

0 All physical devices have an associated virtual
resource.

FRP | /O Effects

0 Back to our example:
0 We can send MIDI data by using the MidiOut resource:

o {MidiOut}
MidiMessage

0 We are assured that the input stream is unique.

0 The type of a program shows its resource usage:

0 Our poorly-defined metronome /echo program will no
longer type check.

echo :: UISF {MidiIn, Mmidiout} O O
metronomeTick :: UISF {Midiout} O O

echo >>> metronomeTick :: TYPE ERROR

Formalism
N

0 Operational semantics describe the behavior of
fork and wormholes with arrows.

0 The semantics proceed in a 3-phase set of
transitions:

e — ¢ Evaluation transition
(S, 1,2,%) = (8,7, %',#") Functional transition
(1.2, %) | (T"%"»" Executive transition

0 The evaluation transition is a classic, non-strict,
functional semantics.

Formalism — Functional Transition
N

pfresh, T'=T[p— e (e ().0)]

FT-F
[PORR (K> (fork e,x,U),T) = (K< (fork e p,x,U),T")

" =if p € Dom(T) then I else T'[p s 1> (e,(),0)]
(K> (fork e p,x,U), T)= (K< (forke p,x,U),1")

FT—FORKP

re# U =(rx):U y=readr Z(r)

F1-RSF,
(K> (rsfrx.U). 2. W)= (K< (rsfr.y.U) R W)

rc U =(rx):U y=readr R (fst W (r))
FI-RSE, (K> (rsfrx,U)Z. W)= (K2 (rsf r,y.U)RZ. W)
rfresh Z'=Zr—(ee;)] W' =W[rp— (rnB),rw— (nW)]

FT-LETW
(K> (1etW 7y 1 €; in e,x,U), Z, W) = (K> (e,x,U), %, W)

X\ =X |resupdater Z(r) x| (nx) €U.reZ|

Ry =X |r— updatery, Z1(r)x| (rp,x) €U, # (rp) = (,B)

Ky = K> |r— update ry, Z1(r) x| (ryp,x) € U, W (ry) = (W)
V)=

(e<(e,()U).2.7) = (e (().0),%3. %)

F1-TimME

Formalism — Functional Transition
N

0 Choice is specially designed to handle freezing:

X x

FT-CHC
“ (K> (er]|||er,x,U),T)= (K> (eg ||| er.x'.U), T)

T" =T\ (getChildrenOf T e,)

Fr-CHc
K> (e[| ea, Lefi x,U),T) = (K (-]| e2) > (e1,x,U), T')

FT-CHC)y

(Ka(|||6’2)<](€1,Z,U),T) = (K<](€1 |||62323U)3T)

T" =T\ (getChildrenOf T ¢y)

FT-CHC,
(Ko (e1 |[[ea. Right v.U).T) = (K: (e1 [|[-) > (e2.0.U). T")

F1-CHC,»

(K;(el |||')<](62323(])3T) = (K<](€1 |||62323U)3T)

Formalism — Executive Transition
N

0 The executive transition runs the program.

(p,S)eT
Exec (S, T\{(p.S}.Z.w)= (S.T".%" W)
(.2, 7)) (1T"U{(p,S)}, %" ")

0 It chooses a process p non-deterministically and
fairly and runs it.

Program execution is the application of the reflexive transitive
closure over the EXEC transition U starting with initial
parameters T = {(p, s (e, (),8))}, R =Ry and W =0
where p is a fresh process ID, e is a process, and R is an
initial mapping of resources representing those of the real

world.

Theorem: Safety

For a program P: _)ﬂ' we know:

- No program states will ever interact with a resource r € R.
- No two processes in P can interact with the same resource.
- No moment of time in P will ever interact with a resource
more than once.

0 The type reveals which resources a program can
interact with when run.

O Forked processes will respect each others’ resources.

o0 All resource streams are guaranteed unique.

Theorem: Resource Commutativity
—

For any S and 1, if (S,R, W) <, (§', R, W') is the set of
states S ...S;, and there exists i < n such that §; =
(K > (rsfr,_ Ul-)) and S;;1 = (K < (rsfr,x, Ul-+1)), then

x will be the same for all S regardless of i.

O Resource types enforce data commutativity.
O Programs stay functional and modular.

O Reasoning about behavior through diagrams remains

clear.

Effects Wrap-Up

N
0 Effects can be inserted directly into FRP programs.
O Resource types assure safety and data commutativity.
O Invalid effect interactions are eliminated statically.
0 Formal semantics demonstrate features.

1 Proofs are in the dissertation.

- Other FRP Enhancing Efforts

More uses for Wormholes
N

0 Wormholes provide communication between
processes, but what if both ends are in the same
process?

1 What kind of time dilation occurs?

More uses for Wormholes
—

0 Wormholes provide communication between
processes, but what if both ends are in the same
process?

1 What kind of time dilation occurs?

1 A blackhole into a whitehole:

0 We create delay.

More uses for Wormholes
N

0 Wormholes provide communication between
processes, but what if both ends are in the same
process?

1 What kind of time dilation occurs?

1 A whitehole into a blackhole:

____——————————-___-
—— -~
- —
- ~

\ v/
" whitehole blackhole
sf
>

0 We create a strictly causal form of loop.

More uses for Wormholes
N

0 Wormholes provide communication between
processes, but what if both ends are in the same
process?

1 What kind of time dilation occurs?

0 In arbitrary locations:

0 We achieve non-local memory mutation.

Other Results

0 Settability — A transformation applicable to AFRP

that creates access to internal state.
m https://github.com/dwincort /SettableArrow

0 A non-interfering choice extension to CCA with

comparable performance.
® https://github.com/dwincort/CCA

0 An alternate back-end for rec-delay syntax that
uses wormholes to statically prevent infinite loops.

- Conclusions

Contributions

e
1 Safer FRP

O Resource types track and limit effects.

0 More Efficient FRP

O Static arrows can be greatly optimized.

o Concurrent processing can leverage multiple cores.

00 More Expressive FRP

o0 Non-interfering choice provides predictably dynamic
behavior.

0 Effects can be used within the computation.

o Concurrency allows multiple simultaneous clock rates.

Future Work

I
0 Dynamic Resource Types

0 Wormhole resources cannot be fully implemented in
GHC without a significant extension.

0 Deterministic Parallelism

0 Can we make deterministic guarantees about
predictable concurrent programs?

0 Optimization

o CCA transformation with Non-Interfering Choice needs
to be more robust.

Thank youl!
N

Questions?

Contributions

e
1 Safer FRP

O Resource types track and limit effects.

0 More Efficient FRP

O Static arrows can be greatly optimized.

o Concurrent processing can leverage multiple cores.

00 More Expressive FRP

o0 Non-interfering choice provides predictably dynamic
behavior.

0 Effects can be used within the computation.

o Concurrency allows multiple simultaneous clock rates.

EXTRA SLIDES

I

- Settability

Saving, loading, and resetting signal functions

Example: IntegralReset
N

0 A signal function that calculates an integral but can
be reset with an event.

integral

integralReset

f_ - —

0 Can we even do this without switch?

Example: IntegralReset
—

0 Without switch, we can simulate a reset, but we
can’t modify integral itself.

. -

L f delay 0

integralReset

f vek=1f isevent e then v else k

0 This solution is inelegant and does not scale.

Resetting State
—

0 We want to access the state inside a signal function.

0 But what’s inside of an arbitrary signal function?

0 All state is saved with loop and delay.

Resetting State
N

0 We want to access the state inside a signal function.

— integral

0 If we could reach in and restart the delay, then
integral would behave as if it just started.

Resettable Delay
—

0 Let’s consider a new delay that can be reset directly.

— -

NoEvent

>

resettableDelay 1

0 When the event is given, resettableDelay reverts to
its starting state.

0 Does this scale? YES

General Settability
—

0 We can take any signal function and transform it
into a settable signal function:

N

0 The top wires are the standard signals.

0 The bottom wires are State signals.

0 The input Event State can be used to change sf’s
internal state.

O The output State is used to capture the current internal
state.

Settable Laws

]
@—OI)
|dentity
’
o

delay NoEvent arr Event

Uniformity

>
const
(Event reset)

Default

Example: IntegralReset
N

0 Settability makes our original problem trivial:

integral >
fmap f

f = reset

0 We no longer need the overkill of lifting a signal
function to the signal level.

- Optimization

The benefit of static arrows over dynamic arrows

Causal Commutative Arrows

N
0 Liv, Cheng, Hudak [JFP ‘11] introduced CCA
0 CCAs can be heavily optimized.
0 Performance increases 10-40 times.

0 CCAs do not allow switch but do allow choice.

0 CCAs can allow Non-Interfering choice.

O Arrowized recursion is not supported by default, but it
can be added.

How CCA Works

0 The CCA optimization reduces arrows to one of two
forms:

—0— O

0 We extend this with the ability to handle arrowized

recursion and call it CCA*.

Performance Results

GHC | CCA* + Stream
Chained Adder 1.0 4.06
Chained Integral 1.0 13.27
Dynamic Counters 1.0 10.91

0 3 sample programs using arrowized recursion.

0 The 10x performance increase is comparable to Liu
et al’s results.

0 The Chained Adder is stateless, and thus more
optimized by GHC.

