Abstract

Effects, Asynchrony, and Choice in Arrowized Functional
Reactive Programming

Daniel Winograd-Cort
2015

Functional reactive programming facilitates programmaiti time-varying data that
can be perceived as streams flowing through time. Thus, omdéhtiak of FRP as an
inversion of flow control from the structure of the programthe structure of the data
itself. In a typical (say, imperative) program, the struetaf the program governs how the
program will behave over time; as time moves forward, theg@m sequentially executes
its statements, and at any line of code, one can make a claration between code that
has already been run (the past) and code that has yet to béheufufure). However, in
FRP, the program acts as a signal function, and, as such, vedl@red to assume that the
program executesontinuouslyon its time-varying inputs—essentially, it behaves asif it
running infinitely fast and infinitely often. We considergsho be the core principle of the

design and call it théundamental abstraction of FRP

Design and Performance

This work is specifically rooted irrowized FRP, where these signal functions remain
static as they process the dynamic signals they act upon.etawin practice, it is often
valuable to be able to dynamically alter the way that a sifuattion behaves over time.
Typically, this is achieved with “switching” or other monadeatures, but this significantly
reduces the usefulness of the arrows.

We develop an extension to arrows to allow “predictably agitd behavior along with
a notion ofsettability which together recover the desired dynamic power. We éurth

demonstrate that optimizations designed specifically feoveized FRP and which do not



apply to monadic FRP, such as those for Causal Commutative Arianw applicable to the

system. Thus, it can be powerfully optimized.

Effectful FRP

In its purest form, functional reactive programming pesmio side effects (e.g. mutation,
state, interaction with the physical world), and as sudreféécts must be performed out-
side of the FRP scope. In practice, this means that FRP prograresroute input data
streams to where they are internally used and likewise rautigut streams back out to the
edge of the FRP context. | call this the FR® bottleneck This design inhibits modularity
and also creates a security vulnerability whereby pargniasifunctions have complete ac-
cess to their children’s inputs and outputs. Allowing signactions themselves to perform
effects would alleviate this problem, but it can interfergwhe fundamental abstraction.
We present the notion eésource typeto address this issue and allow the fundamental

abstraction to hold in the presence of effects. Resource gpephantom type parameters
that are added to the type signatures of signal functiorisitikiécate what effects those
signal functions are performing and leverage the typeidareto prevent resource usage
that would break the abstraction. We show type judgment®aedational semantics for a

resource-typed model as well as an implementation of thesys Haskell.

Asynchronous FRP

FRP typically relies on a notion aynchrony or the idea that all streams of data are syn-
chronized across time. In fact, this synchrony is a key campoof maintaining the funda-
mental abstraction as it ensures that two disparate psrobthe program will receive the
same deterministically associated (synchronous) induegaand that their separate results
will coordinate in the same output values. However, in mgmpliaations, this synchrony
iS too strong.

We discuss a notion of treating time not as a global constattdgoverns the entire



program uniformly, but rather a®lative to a given processin one process, time will
appear to progress at one rate, but in another, time canguatiferently. Although we
forfeit the global impact of the fundamental abstractitis &llows us to retain its effects on
a per-process scale. That is, we can assume each processga®ds inputs continuously
despite the whole network having different notions of time.

To allow communication between these asynchronous presgg& introducevorm-
holes which act as specialized connections that apply a sdntnaf dilationto information
passing through them. We additionally show that they cansiee to subsume other com-

mon FRP operations such as looping and causality.

Application

We apply the concepts of all of these ideas into a functioeattive library for graphical
user interfaces called UISF. Thus, this work concludes waitloverview and examples of

practically using our version of FRP.
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Chapter 1

Introduction

Functional Reactive Programming (FRP) is based on the ide@gfgamming withsignals

or time-varying values. Signals can be continuous, in whade they are defined for every
moment in time, or they can be discrete event streams, inhnd@se they are defined only
at particular moments. Indeed, the signal is the fundarhantd primary component of
FRP, and the core purpose of FRP is that it provides a denasd8emantics for signals as
functions defined over time:

Signala = Time— a

Thus, FRP is designed to allow one to easily define behaviorstfieams that react as the
streams change over time.

This idea of using continuous modeling for dynamic, rea&cbehavior (that is, FRP)
is due to Elliott, beginning with early work on TBAG, a C++ bdsmodel for animation
[Elliott et al, 1994. Subsequent work on Fran (“functional reactive animajiembedded
the ideas in HaskelHlliott and Hudak 1997, Hudak 2000, and more recently, there have
been a plethora of FRP models. Because of its inherent sigisgldbdesign, FRP is a
natural choice for real-time and continuous programmingdekd, it has been used in
such realms as animation, robotics, GUI design, networlang audio processing, among

others.



Due to its time-varying nature, one can think of FRP as a sysitatshifts the control
flow from the structure of the program to the structure of tatadtself. In a typical (say,
imperative) program, the structure of the program itselfegns how it will behave over
time; as time moves forward, the program sequentially ebescits statements, and at any
line of code, one can make a clear distinction between caatehts already been run (the
past) and code that has yet to be run (the future). HowevédtRiR, the program acts as
a signal transformer, and, as such, we are allowed to asshehéhe program executes
continuouslyon its time-varying inputs—essentially, it behaves asig itunning infinitely
fast and infinitely often. This design structure allows ooehink of all data in the pro-
gram as beingynchronizedn time, an idea consistent with the family of synchronous
languages such as Lusti@dspi et al. 1987, Esterel Berry and Cosserat984, and Sig-
nal [Gautier et al.1987. We consider this to be the core principle of the design & t

declare:

Key Principle (Fundamental Abstraction of FRPA functional reactive program must be
perceived to run simultaneously and continuously, andii ithe data itself that one can

examine the past, present, and future.

FRP systems that follow this abstraction have a number otipedcadvantageous fea-
tures. First, if the program has no sense of time, then itcbaescribe sequential compu-
tation, which means that any effects that the program pagavill be able to freely com-
mute with each other within a given moment in time. Secondhroon temporal pitfalls
that programmers fall into, such as race conditions andldelesi cannot occur. Lastly,
if the program is deterministic on individual inputs, thes behavior over time will be
deterministic as well.

A problem with classic FRP systems (such as FHlhdtt and Hudak 1997) is their
propensity toward space and time leakai[and Hudak 2007. One method for address-
ing these leaks is by usirggrows[Hughes200Q Lindley et al, 2017 in so calledarrow-
izedFRP (AFRP), which has been usedviampgNilsson et al.2002 Hudak et al.2003



Courtney et al.2003 (for animation, robotics, GUI design, and morlgttle[ Voellmy and Hudak
2017 (for networking), anceuterpegHudak 2014 (for audio processing and sound syn-
thesis). In AFRP, instead of treating the signal as a firssclatue, one treats thggnal

functionas the core component:

a ~ B = Signala — Signalf

The arrow structure then allows the signal functions to bamased quite naturally.
Furthermore, the arrow abstraction lends itself well toraggive optimizations. An
arrow’s structure must be defined statically, and once defiitecannot be altered mid-
computation. Therefore, regardless of what data the Sgr@itain, the arrow’s overall
behavior is fixedLiu et al.[2011]] use this restriction to design an optimization for a certai
class of arrows, namelgausal commutative arron(€CA), which can often improve their

performance in Haskell (using GHC) by an order of magnitude.

1.1 To Switch or Not To Switch

One problem with AFRP is that it does not naturally supportfthlerange of capabilities
that classic FRP provides. As mentioned, an arrow’s straatust be fixed at compile-
time, but classic FRP typically provides behavior-switchinechanisms. Thus, arrows are

often augmented with a higher-ordawitchoperator to recover this ability.

1.1.1 Switch

After the arrow framework was proposed Hugheq200Q, it was quickly adopted for use
in FRP in the GUI language FruiCpurtney and Elliott2001a Courtney 2004, which
also introduced the first switch function (before then, kigbrder signals were dealt with

by a function typically calledintil). The design of Yampd\ilsson et al.2002 Hudak et al.



2003 Courtney et al.2003 built off of this and expanded the idea to a variety of uses,
eventually introducing fourteen different flavors of switosperators.

Switching allows a program to accept and utilize a streamgufas functions, thus al-
lowing for higher-order signal function expression in whtbe program can update its own
structure during execution. Additionally, in the realm ajrsal functions, a higher-order
ability like this provides the only means of starting andogiing signals mid-computation,
which is often necessary for good performance. For instane® signal functions can
be provided at runtime and “switched on” to augment the curbehavior of a program.
Likewise, given an event that a certain signal is no longeded, the program can “switch
off” the portion of itself that is computing values for thagsal, thus preventing unneeded
computations from being performed. This ability to switshvery strong, and in fact, ar-
rows with switch are equivalent #drrowApplyarrows, which themselves are equivalent to
monads Hughes 2004.

Unfortunately, this power comes at a cost: the inherentdriginder nature of switch
that allows it to run arbitrary signal functions from a streanakes certain compile-time
optimizations and static guarantees much more difficulvenempossible. For example,
arrows with switch cannot undergo the CCA optimizations. \uilse, in the realm of
embedded systems, where static code is required due tiatistricand resource constraints,

switch can be an intolerable hole in a static guarantee.

1.1.2 An Alternative to Switch

One motivation of this research is to ask whether switch adlyenecessary. Most FRP
programmers would be reluctant to give it up—indeed, some pRBrams would be
inexpressible with just first-order arrows—but perhapseahg an operator that is powerful

enough to replace switch in most cases while still being vegetkugh to allow for CCA-like

1. These fourteen operators were mostly convenience amxtuilt atop a few primitive switchers, but
they serve as an indication of the widespread use of swigchin



optimizations. In order to consider this, we first must exaamore closely exactly what
switching provides.

Switch allows one to express two fundamental behaviorsatebdtherwise impossible
with just arrows. First, it provides a way for signal funet®to dynamically start and
stop mid-computation, which is useful not just for expregstertain programs but also
for achieving better performance. Second, it allows fothbigorder signal expression,
essentially providing a way to flatten a stream of streant ansingle stream or insert a
dynamic signal function into the arrow structure itself.

The second of these effects is impossible to replicate ssagnon-switchable) arrows,
but there is some hope for the first. The ability to choose betwwvhether to run a signal
function or not is similar to what is provided arrow choice[Hughes 200J. Arrows
extended with choice can make a dynamic decision of how toge®streaming data with
the limitation that the possible choices must be staticddifyned. An additional difference
lies in the fact that every effect from each possible choidebhe executed regardless of
the dynamic decision. This means that arrow choice cannasbéd to entirely suspend a
branch in the way that switch can suspend a “switched outiaifunction because even
effects from inactive branches will happen.

To address this, we can modify arrow choice by adding a newirta@rder to make
it non-interfering Non-interfering choice asserts that effects from only branch of the
choice will happen, and so if one branch is taken, it is asafdtiner does not exist.

Technically, non-interfering choice allows us only to pawsgnal functions and not
actually start or stop them. For this reason, we additignaibvide a method for making
an arrowsettable a settable arrow’s state can be saved, reloaded, and esegn re

Combining settability with non-interfering choice gives the full power of the first
effect of switch. That is, we can “start” a signal functionusing choice and then resetting
its state, and we can “stop” a signal function by indefinijgdysing it.

Interestingly, non-interfering choice allows for anothmforeseen benefit: arrowized



recursion. Because only one branch'’s effects can take placean do a form of recursion
that allows behaviors that were previously only possiblgnswitch. Combining this with

settability allows for some surprising power.

1.1.3 Other Alternatives

Non-interfering choice and settability are not the only Inogls for trying to deal with
the problems with switch.Patai[201] presents an approach of embracing the higher-
order mentality and shows a method for dealing with highrdieo streams directly and
efficiently using a monadic interface. In this way, switdhirecomes a core design prop-
erty. Krishnaswami and Bentd2011] have a similar approach trying to bridge the divide
between a synchronous, imperative style and an FRP-likégrdgige style. Their work has
a strong theoretical basis for handling causality whenidgavith higher-order signals.

Another option is to allow switch in its normal form but thearpue other avenues of
optimization. For instance ReactivEl[iott, 2009 and EIm [Czaplicki and Chong2013
focus on avoiding needless computation by using a “pushédbaesign, which only re-
computes values when changes are detected. Reactive adtijtioses deterministic con-
currency for even better performance.

From a different perspective, one can think of the ideasttds#ity and non-interfering
choice not as a way to recover behavior after removing swmgcfrom an FRP language
but instead as a way to add expressive power to a more traaglitsynchronous dataflow
language. That is, there are plenty of FRP-like languagesdihanot have the reactive
power of switch, and these features can be used to extend them

For instance, EstereBrry and Cosserat984 is an imperative reactive language that
allows programmers to create deterministic, synchronoumsral systems. It allows both
parallel and sequential composition, which makes it sigtér many complex systems,
but it has no concept of switching. Lustr€gspi et al. 1987 and Signal Gautier et al.

1987 are comparable.



Synchronous dataflow languages are often useful for deisgritardware, which it-
self is deterministic and synchronous. Furthermore, hardwannot support higher order
signals for the obvious reason that hardware wires caneatsblves carry hardware oper-
ations. However, settability and non-interfering choice laoth theoretically applicable to

hardware domains.

1.2 Including Effects

An FRP program is still a pure functional program. That is,slgmal-based computations
are performed using pure functions, and the input and owtiptlte program—which may
include 1/0 commands—are handled separately, i.e. outdittee program. In this sense,
there is an/O bottleneckon either end of any signal function that represents a cample
program. All of the input data must be separated from its@®@go that it can be fed purely
into the appropriate signal function, and all of the outpaiiadnust be separately piped to
the proper output devices. We see this as an imperfect systerdeally the sources and

sinks would be directly connected to their data.

1.2.1 General Side Effects

A purely functional language does not admit side effectsdeéd, the original Haskell
Report (Version 1.0) released in 1990, as well as the morelyvmélicized Version 1.2
[Hudak et al. 1999 specified a pure language, and the I/O system was definedms t&f
both streams and continuations, which are equivalent (ande defined straightforwardly
in terms of the other). In 1989 the use of monads to capturgabomputations was
suggested boggi [1989, subsequently introduced into Haskell Wadler[1993, and
further popularized byeyton Jones and Wadlgr993.

Originally conceived as a pure algebraic structure, antucag elegantly using Haskell’'s

type classes, it was soon apparent that monads could beardéd &nd other kinds of side



effects. Indeed, Version 1.3 of Haskell, released in 19pécifies a monadic I/O system.
The inherent data dependencies induced by the operatdrs manad type class provide
a way to sequence I/O actions in a predictable, determetmséinner (often called “single
threaded”). The Haskell I/O monad is simply nam@d and primitive 1/0O operations are
defined with this monadic type to allow essentially any kifd/©@. A monadic action that
returns a value of typa has typdO a.

To make this approach sound, a program engaged in I/O mustiya®lO a, and there
can be no function, sayinlO:: 10 a — a, that allows one to “escape” from the I/O monad.

It's easy to see why this would be unsound. Consider the esiores

runlO my + runlO mp

If both my; andm, produce I/O actions, then it is not clear in which order tl@ &ctions
will occur, since a pure language does not normally expressder of evaluation fof+),
and in general we would liké+) to be commutative.

I/O is, of course, just one form of effect. For example, onghmivant to have mutable
arrays (meaning that updates can be done “in-place” in aohstne). A purely functional
approach cannot provide constant-time performance fdn bedads and writes. Haskell
has two solutions to this problem: First, Haskell defines@#rray that can be allocated
and manipulated in an imperative style. Predefined op&ratim the array are defined in
terms of thdO monad, and thus manipulating a mutable array becomes pme single-
threaded flow of control induced by th® monad, as discussed earlier.

A problem with this approach is that it is common to want torge8ome local compu-
tation using an array and hide the details of how the arrapmgamented. Requiring that
each such local computation inject the array allocationsuimbequent mutations into the
global I/O stream is thus not modular, and seems unnatudalestrictive.

What we would like is a monad within which we can allocate andimalate mutable



arrays (but not perform any 1/0), and then “escape” from thahad with some desired
result. Haskell’sSTmonad [Launchbury and Peyton Jond®994 does just that. Haskell
further defines a type construct8iTArraythat can be used to define arrays that can be
allocated and manipulated just like #DArray. Once the programmer is done with the

local computation, th&Tmonad can be escaped using the function:

runST:: (foralls. STsg — a

The “trick” that makes this sound is the use of the existéifihantom) type variable
within the STmonad and the operations defined on the arrays. For exareplening the
value of an array reference would be unsound—it would meatrttie mutable array could

be further mutated in other contexts, with potentially wgictable results. However, this

is not possible in Haskel’'STmonad, because the type of the array reference contains the

hidden existential type, thus resulting in a type error.

1.2.2 Effects in FRP

Monads can be used for many pure computations as well aslatit of effects, but the
above has focused on two kinds of effects: I/0O and mutabke statictures. It is important
to distinguish these two, since there are inherent conaéplifferences. Mutable data
structures can be created and allocated dynamically age€ldoy the program. Because
they have no external or observable effects, two differatd dtructures can be guaranteed
to be distinct, and we are only limited in their use by the msiof the system’s memory.
In contrast, I/O devices are generally fixed—each printenitor, mouse, database, MIDI
device, and so on, is a unique physical device—and they tdmnareated on the fly.
Although one could allocate multiple virtual instances oy given device, they would all
eventually be mapped to the same physical device.

It is also worth noting that for both 1/O devices and mutabdgadstructures, the se-



guence of actions performed on each of them must generalbydered, as it would be in
an imperative language, but conceptually, at least, diséiotions on a printer, a MIDI de-
vice, or some number of separately allocated mutable datetstes, could be performed
concurrently.

So the question now is, how do we introduce these kinds ottsfiato FRP? Indeed,
do these kinds of effects even make sense in an FRP languadk8ut\éffects, FRP has
limited power and a constrictive design, but so far, work tialy been on either the pro-
grammer interface levelJourtney and Elliott2001H or the system’s underlying connec-
tion to imperative-style effects librarie€poper and Krishnamurtf00g. Can we bridge
the gap between these by providing arbitrary effect usagetly to the front interface in a
clear and safe way?

A normal Haskell variable is time-invariant, meaning thatalue in a particular lexical
context and in a particular invocation of a function thatteams it, is fixed. In a language
based on FRP, variables can be conceptually time-varyingitalues in a particular
lexical context and in a particular invocation of a functibat contains them are not fixed,
but rather depend on time.

A key insight is that the sequencing provided by a monad caachéved in FRP by
using the ordering of events in an event stream. In the caB®panother key insight is
that each of the 1/0O devices can be viewed as a signal funthieinis avirtualizedversion
of that device. We can guarantee the soundness of this aypleeldvel by introducing

resource types

1.2.3 Safely Virtualizing Resources

Virtualizing a real world object or device is simply the cept of viewing that object as a
piece of the program, or in FRP, as a signal function itself.example, the console’s input
produces events with string values, the console’s outastavents of strings as input, and

a MIDI keyboard could take note events as input as well asrgémaote events as output.
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So it would seem natural to simply include these devices asgbahe program in the
form of signal functions—i.e. to program with them directliyd independently rather than
merge everything together as one input and one output favtioée program. In this sense,
the real-world objects are beimytualizedfor use in the program.

The only problem is that one could easily duplicate these@iized objects since after
all, once virtualized, they are just values. This would eatl® semantics of the program
to become unclear. For example, a virtualized object mayumichted such that each
instance is provided with a different input event strean,tba object itself expects only
one input stream—what do we do? We could non-determinltiogerge the streams, but
this seems imprecise and may not be the desired behaviolyRealwant to ensure that
each of these virtualized devices is unique to the programs Jeems difficult to achieve
until we recognize thainiqueness of signal functions can be realized at the tyyed. ln
particular, we introduce the notion ofrasource typdo ensure that there is exactly one
signal function that represents each real-world device.aBge we are using arrows, we
begin by re-typing the arrows themselves to include resotyges, and then we introduce
type families and classes that capture the idea of a digjmiains of these resource types
and update the arrow combinators to use them. For exampl&etiboard could be virtual-
ized into a signal function that produces keystroke eveiMes expect that every keystroke
should produce a unique event, but if this signal functioreniplicated, we can no longer
easily guarantee that claim. Thus, we attach a resourcddytpés signal function that will
propagate throughout the entire program upon compositidrifgen restrict the program to
allow only oneKeyboardresource type. If a programmer attempts to use the signeditum
more than once in the same program, the resource type wilaagpice, and the program
will produce a type error.

Resource types share similarities to other type-and-effetems. For instance, the lan-
guageClean[Brus et al, 1987, Plasmeijer and van Eekeleg2002 has a notion ofinique-

ness typesin Clean, when an I/O operation is performed on a device, @evial returned
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that represents a new instantiation of that device; thiseyah turn, must be threaded as an
argument to the next I/0O operation, and so on. This singlkeatttedness can also be tackled
usinglinear logic[Girard, 1987, and various authors have proposed language extensions to
incorporate linear typesNadler, 1991, Hawblitzel 2005 Tov and Pucella2011 Wadler,
1994. In contrast, resource types are not concerned with sithgesadedness since there
is only one signal function to represent any particular 18ide. Rather, their purpose is
to ensure that resources do not conflict. Additionally, theyspecialized to handle FRP.
Resource types achieve their safety benefits by taking aalyardf the temporal na-
ture of FRP. That is, because of the fundamental abstractiBRB, computations within
single ticks of the clock cannot share the same resourcea lsoimputation that uses a
given resource will monopolize that resource for all clocks. Another way to constrain
the temporal behavior of reactive programs is through rhtieae temporal logic (LTL)
[Jeffrey, 2012 Jeltsch 2017 and the Curry-Howard correspondence between it and FRP.
Indeed Jeffrey[2017 lays out the basis for an implementation of a constructiVe In a
dependently typed language such that reactive programsgavofs of LTL properties.

The advantages of resource types include:

1. Virtualization 1/0O devices can be treated conveniently and independastkignal
functions that are just like any other signal function in agram. I/O is no longer a

special case in the language design.

2. TransparencyFrom the type of a signal function, we can determine imntetjiall
of the resources that it uses. In particular, this meansitbdtnow all the resources
that an entire program uses (as opposed to withGheonad, where all we know is

that some kind of 1/O is being performed).

3. Safety If used properly, a signal function engaged in I/CGséfe—despite the side

effects, equational reasoning is not compromised.

4. Extensibility A user can add new resource types to the system that cagturieimds

12



of effects or that represent new I/O devices.

1.2.4 Wormholes

In the realm of mutable data structures, we seem to come igtdalgldifferent conclusion.
We can start with a similar approach of lifting the interantfrom individual actions to a

signal function; for example, we could define:

sfArray:: Size— (Event Request: Event Response

such thasfArray nis a signal function encapsulating a mutable array of sizEhat signal
function would take as input a streamR&quesevents (such as read or write) and return
a stream oResponsevents (such as the value returned by a read, acknowledgefen
successful write, or an index-out-of-bounds error). Noggimilarity of this approach to
the original stream 1/O design in early Haskeédidak et al. 1992.

This design is also analogous to th€Arraydesign, in that in-place updates of the array
are possible in a sound way, and every invocatiosféfray creates a new mutable array.
The difference between this and both 8iBArraydesign as well as the virtualized resources
of the previous subsection is that no changes to the typersyate required to ensure
soundness (in particular, no hidden existential types asgl@d, nor are resource types).
Using this idea, many kinds of mutable data structures assiple, as well as certain kinds
of duplicable effects, for example, random number genamatiThese types of effects,
being inherently local or duplicable, are readily avaiainl other FRP formulations.

However, although functionally sound, this design is solmwwinsatisfying in that the
requests and responses both need to be co-located. Thhesg signal functions that
represent mutable data structure are inherently comptiday the fact that they have both
inputs and outputs all at once.

Thus, we next ask: What happens when we split the functigniatit two separate
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signal functions, one for providing data and the other fodpicing output? In the simplest
case, the data structure itself could simply be a single bheitdata cell, but by splitting

it into two components, it turns into a method for communiggtdata between otherwise
unconnected parts of a program. We refer to the receivingasignction as thélackhole
the producing signal function as theéhitehole and the two together asveormhole By
analogy, wormholes are a bit lik®Refs in Haskell: one signal function provides the effect
of writing and the other reading, but in the FRP framework, de&ails are considerably
different.

It is notable that because a wormhole is no longer a singliéyente can no longer
clearly distinguish two wormholes merely by them being ke in different places. In
fact, we must even face the question of what it may mean ifafibe sameavhiteholes or
blackholes are used in the same program. However, theséansekead to the same place
they did when we were exploring virtualizing resources, aedesolve them in the same
way as well: by using resource types. Upon constructing ankiote, two fresh, virtual
resources must be created that are then associated withitehale and blackhole of the
wormhole.

At this point, wormholes may seem like something of a novelitydeed, we seem to
have built them solely to see if we can—»but as we shall seg thee a variety of practical

applications.

1.3 To Asynchrony and Beyond

As mentioned, FRP creates a synchronous model of programmirgne in which time
cannot affect any portion of the program (or its data) withaffiecting its entirety. In
this realm then, we can think @Synchronousomputation as another form of effect. For
instance, perhaps we have a computation that runs unpabljidonger or shorter than

others, and we would like to let it run freely. In another case may simply want two
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unrelated tasks to run separately, free of needing to sgncte with each other on any
particular schedule.

This “asynchronous effect” seems fundamentally differtiain the effects discussed
previously. Rather than dealing with how to achieve a cledeng of events in time, we
instead need to consider the nature of time itself, whiclughimmmediately give us pause.
If an FRP program is expected to uphold the fundamental athstnaof FRP, that it is
synchronous and can process instantaneous values infifsige] then what is the point of
asynchrony? If we are using this abstraction so that we caumaes that continuous signals
behave continuously, then what does it mean for one to taigelothan another? Thus, it
appears that even attempting to address asynchrony in FRé&esitoy the main reason to
use FRP at all.

However, we need not lose all hope. Rather than think of timeglebal constant that
governs the entire program uniformly, we borrow an idea frghgsics and think of time
asrelative In one process, time will appear to progress at one ratenlautother, time can
move differently. Although we lose the global impact of tdamental abstraction, this
allows us to retain its effects on a per-process scale. Bhata can assume each process
processes its inputs continuously despite the whole né&tivaving different notions of

time.

1.3.1 Communicating Functional Reactive Processes

All that remains is a way for asynchronous processes to canuaie as necessary. Be-
cause of the time difference between processes, this iafilmmust somehow be trans-
formed as it moves from one “time stream” to another. With@ppr design, a wormhole

can be made to do exactly this

2. The name “wormhole” may make more sense now, as it is aerferto the theoretical astronomical
oddity, the “Einstein-Rosen bridge,” a one-directionaghghirough space-time such that matter can only flow
in through the black hole and out through the white hole aatltihs the capacity to permit certain forms of
time travel.
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The solution is to build the wormhole over a data structuas tian allow for compres-
sion or expansion of the underlying signal, essentiallgveithg for the time dilation that
may occur between two different signal rates. For instaifiGesignal is sent from a fast
process to a slow process, then the signal will appear speat @b a higher frequency on
the receiving end compared to how it was submitted on theisgrmrahd.

These time dilating wormholes allow us to effectively ceeatnew language of com-
municating functional reactive processes (CFRP) that canaagdchrony to FRP while
retaining the fundamental FRP abstraction on a per-process. sThus, CFRP includes an
operator to allow the creation of a new process with its owtionof time®, and it uses the

concept of wormholes to create bridges between those meses

1.3.2 General Parallelism

Although we introduced the asynchronous effect to provie means of expression, it
provides a clear model to allow signal functions to run ingllat, thus opening a new
opportunity for performance optimization. Indeed, theigiesllows us to take advantage
of multi-core architectures, letting each functional teecprocess proceed through time
on its own core.

Thus, along with our future discussion of asynchrony, wépvésent a number of high-
level parallel and concurrency operators that are buitigifie simple ideas of asynchrony

and wormholes.

1.3.3 Other Efforts

While our work considers communicatimignctional reactiveprocesses, the seminal work
on communicatingequentialprocesses isHoare 1978 Milner, 1982 1999. Our ideas

are similar, but obviously different based on the domain.

3. In the physics-based space-time model, one could thittki®as an operator that causes a new big bang
Or spawns a new universe.

16



In presenting CFRP, we will provide a full set of statics andaiwics to describe its
functionality. However, there are other models that attetoplescribe the behaviors of
concurrent or asynchronous programs. For instancertteculus Milner, 1993 provides
a model to describe concurrent programs through the usenoé igeeneration and sharing
via channels. Our asynchronous use of resource types iRsilmit while names can be
sent through channels, resources cannot be sent throughhotas. This restriction allows
us to maintain the fundamental abstraction of FRP by forcihgesources to be race-free.

Concurrency in functional languages has been explored qusly, most notably in
Concurrent ML Reppy 1993, concurrent and parallel Haskellgnes et al1996 Li and Zdancewic
2006 Jones and Hudalk 993, and Erlang Yirding et al, 1994, among others.

The termserializability[Papadimitrioy1979 typically refers to the idea that a parallel
execution of a set of transactions over multiple items igvad@nt tosomeserial execution,
or in other words, that one can find a total ordering of tratisas. The idea ofineariz-
ability [Herlihy and Wing 199Q is that updates to an object can be thought of as acting
instantaneously at some point during the update operaoth of these notions are rele-
vant to CFRP due to the fact that wormholes must be built atagpstaictures that are both
serializable and linearizable.

Although our time dilating wormholes are a novel concepingision-local commu-
nication channels to facilitate data transfer between iplalthreads has been explored
previously, as in teleport messaginbhjes et al. 2005. However, teleport messaging is
designed particularly for parallelized stream program#erM@FRP is designed for asyn-

chronous communication.

Reactive Concurrency

CFRP can be seen as an instance of a Globally Asynchronoudy 8gakchronous (GALS)
system Chapirg 1984. Work on GALS systems tends to be in the realm of de-syndhitog
synchronous programs to work on asynchronous architectuithout sacrificing deter-

minism or synchronous semanticggngiovanni-Vincentelli et 312000 Benveniste et a|.
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1999. The design of CFRP was not led by architecture but rather dyaomg the forms
of computation introduced by asynchrony without allowihgrn to overwhelm the fun-
damental abstraction of FRP. The wormhole communicatiomreélia which dilates data
moving through it rather than being a typical FIFO queuengi{dies this difference.

Arelated idea is that of synchronous programming with miétclocks Berry and Sentovich
2001, which relies on the idea that clocks tick and that thedest@an be used as synchro-
nization points. This idea of ticks forces an inherent ditemess which CFRP does not.
Although CFRP cannot fully resynchronize two asynchronouxgsses, it can express
continuous signals as well as discrete ones.

Another way to handle multiple clock rates is to use a clodkwtas of multiple static
clock rates with sampling between them as necessary, asdestin LustreCaspi et al.
1987. This has more recently been embedded in strongly typectifumal languages (e.g.
Euterpealdudak 2014, Lucid SynchronePouzet2004) by leveraging the type system
and type inference.

Parallel FRP IPeterson et 812004 allows concurrent signal processing by allowing
multiple threads to perform the same function on a streanmmifits. The by-product of
this design is that the ordering of events on that stream roape preserved in the output
stream. Although CFRP preserves the ordering of streams laylktieive can achieve a
similar non-preserving behavior in CFRP with event streamadyychronizing functions
and gathering their results when they are ready. Thus, ifeweat takes a long time to
process, it will not hold up the rest of them.

Although not explicitly concurrenglliott [2009 presents an FRP implementation that
makes use of concurrency “under the hood” withum@mbiguous choiceperator. While
this may enhance performance, it does not actually providesthod for asynchronous
programming.

Elm [Czaplicki and Chong2013 is an asynchronous FRP language for creating GUIs.

It provides built-in asynchronizing capabilities simitarones that can be built in CFRP, but
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it does not provide access to the lower operators (e.g. woleshetc.) that would enable

users to build their own custom concurrency operators.

1.4 More Uses for Wormholes

Wormbholes will be discussed in much more detail later, bistworth pointing out that they
have many uses beyond being a means of non-local commumdagtween asynchronous
processes. To consider this, we will look at how wormholestnibehave when both the
whitehole and blackhole are in the same process.

As mentioned, a wormhole applies a time dilation over itad@he primary use for this
is to allow data to be converted between two time streamsiasdmmunicated between
processes, but the dilation will occur even if both ends efwormhole are in the same
process. In this case, the dilation will appear amé delay In a discrete-time context,
this would be a delay of the smallest unit of time, and in a iowous model, it would
be an infinitesimal delay, or a delay of change in time as thahge approaches 0. This
means that if the whitehole and blackhole are composedteget sequence, the resulting
structure will act as delayoperator. One implication of this is that wormholes arec#iri
causal entities, in which the output of the whitehole is dasginputs to the blackhole that
are strictly from the past.

More interestingly, one can consider the result of compp#ie blackhole to the white-
hole. Of course, this would seemingly be a vacuous signadtiom, but with a suitable
signal function between the two, we create a simple, caesalfack loop. Indeed, with
wormbholes in the language, one can typically forego thesadamrow looping mechanisms
altogether in favor of the strictly causal looping of wornds

In total, this means that we can allow feedback and statemwithr signal functions
while maintaining causalityKrishnaswami et al[2017 also explore causality at the type

level. They describe a language that uses non-arrowized ERS§tif manages to restrict
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space-leaks statically. This language seems somewhaterpressive than ours as it al-
lows a more generic loop operator, but it is not clear whethean be easily adapted to

allow mutation or other side effects.
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Chapter 2

Background

2.1 Arrows

2.1.1 Signal Processing

Programming with AFRP is a lot like expressing signal proecesdiagrams. Where signal
processing diagrams have lines, AFRP sigsals and where diagrams have boxes that act
on those lines, AFRP haggnal functions These signals can represent either continuously-
defined time-varying values or streams of discrete events.

Because AFRP is based on arrows, we can use Pateesanwssyntay Paterson2007]]

to make programming with it easier. For example, we can tussimple signal processing

into just as simple a code snippet:

diagram:

y < sigfun— x
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In this examplesigfunis a signal function that takes the input streamnd produces the
output streany.

We will use Haskell's arrow syntax and operators to expresie @xamples. Thus, the
above code fragment cannot appear alone, but instead mymtrbef aproc construct.
The expression in the middle must be a signal function, whgsewe write agr ~ 3 for
some typesx andf3. The expression on the right may be any well-typed exprassith
type a, and the expression on the left must be a variable or pattaype 3.

The purpose of the arrow notation is to allow the programroanaénipulate the in-
stantaneous values of the signals. For example, the faltpvgi a definition fosigfunthat

integrates a signal and adds one to the output:

sigfun= proc x — do
y < integral < x

returnA—<y+1

The notation proc x — do ...” introduces a signal function, binding the naméo the
instantaneous values of the input. The second line sendsgbesignal into an integrator,
whose output is named Finally, we add one to the value and feed it into the signatfion
returnA that returns the result. The last line of this notation hadinding component—
instead, whatever value is produced in the last line is nefias the output stream.

Of course, one can use arrows without Haskell’'s arrow symasows are made up of
three basic operators: constructi@nr(, partial applicationf{rst), and composition>=>).
Furthermore, we extend our arrows with choigé (Hughes200( to allow dynamic con-
trol flow, looping (oop) [Paterson2007] to allow value-level recursion, and delayglay).
The types of these operators are shown in Figuie

For example, the signal functisgigfundefined earlier can be written without arrow
syntax as follows:

sigfun=integral>=>>arr (Ay. y+1)
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arr (a—=p)—(a~p)

first = (a~ B) = ((a,y) ~ (B,Y))

(=) (@~ B)=(B~y) —(a~y)

() =(a~~y)=(B~y) = (a+B)~Yy)
loop = ((y,a) ~ (v, B)) = (o~ B)

delay :: 8 — (B ~ B)
Figure 2.1: The types of the arrow operators.

Note thatreturnAis defined simply aarr id, which is why it is used for clarity to return
values in the last line of arrow syntax but is omitted from alheve definition okigfun In
later chapters, we will also make use of the functiomstA:: B — (a ~ ), which takes
one static argument and returns a signal function that egibs input stream and returns a

constant stream of the given value.

Events and Event Streams

The classical interpretation of a signal of typeis that it is a function from time ta
defined for all points in time. We call this@ntinuoussignal. However, we frequently
require the ability to define a signal that has values at oidgrdte points in time and is
undefined elsewhere. These so-cakeént streamare represented by encapsulating the

signal’s type with an option type. We will use the following:

data Eventa = Eventa | NoEvent

Note that we are overloading the nafGeentsuch that it is both the general type as well
as the constructor for an event. Thus, any signal that hasBypnta is defined when it
provides areEventand undefined when it provid&oEvent

We will further make use of the fact th&ventis a functor in the obvious way and

freely fmapfunctions oveiEventvalues.

23



2.1.2 Strictly Causal Looping

Functional reactive programming itself does not need todwesal. That is, values along
a signal can, in fact, depend on future values. Of coursegaiitrme systems, causality
is forced to be preserved by the nature of the universe. Fample, a program’s current
output cannot depend on a user’s future input. Thus, in thédved effectful FRP, we limit
ourselves to causal signal functions.

The main impact of this limitation has to do with fixed pointgldooping in the signal
function domain. We restrict signal functions so that thagreot perform limitless recur-
sion without moving forward in time. That is, all loops musintain a delay such that the
input only depends on past outputs. We call gtigctly causal looping

We use thelelayoperator as an abstract form of causal computation

delay::a— (a~ a)

Based solely on the type, the current outpudelay icould depend on the previous, current,
or even future inputs; however, the typical definition (ahd bne that we will use) is as
a unit delay operatér and as such, the current output would depend on only thégqu®v
inputs. Used in tandem with the arrd@op operator from Figur@.1, one can define strictly
causal loops:

dLoop::c— ((cxa) ~ (cx b)) — (a~b)

The dLoopoperator takes an initial value for the looping parametérictv will update in
time but always be slightly delayed. Notice that wh#iroopis given the simple swap-

ping function @ (x,y).(y,X)) as its second argument, it reduces to an instance afelsy

1. Although thedelayoperator has been around for some titrig, et al. [2017]] introduced the concept of
this operator as the basis of causal computation. Thattbeig referred to it amit.

2. As mentioned in the introduction, we use the idea of a uhiinee to refer to the smallest amount of
time when in a discrete-time context and an infinitesimahgéh a continuous one.
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function acting as a unit delay.

2.1.3 State via loop and delay

A key component of FRP systems (AFRP included) is the abilifyeidorm stateful com-
putation. For example, Yampa includes thiegral function that integrates its input signal,
a process impossible without some form of internal state.

Although stateful signal functions can be achieved in aetgrof ways, we follow
Liu et al.[201] in the use of thelelayoperator along witloop (or equivalently, thelLoop
operator defined above). In this model, we use the loop aslhée& mechanism, allowing
an auxiliary output containing the state to be fed back asputj and we use the delay to
prevent an infinite feedback loop. Indeédl et al.[201]] even demonstrate that in a fixed

rate, discrete time systenmtegral can be defined using this method:

integral = proc x — do
rec v« delayO—<v+dtxXx

returnA— v

Note here that theec keyword in arrow syntax invokes tHeop operator and that we

assumalt is a global time step.

2.1.4 Switch

As discussed in the introduction, the ability to dynamigalvitchone signal function for
another during the execution of a program is a staple of mB§t §ystems. Considering
that one of our primary goals is to show an alternative toavinig, here we will describe
switch’s capabilities.

The idea of switching was introduced along with the earhestels of FRPEIlliott and Hudak

1997. These non-arrowized FRP implementations had the abdiseguence periods of
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signal function execution, a process that is inherently adonin nature. However, the
move to the arrow abstraction would not allow this behavéord to prevent any loss in
expressivenessdlilsson et al[2003 introduced theswitchfunction in Yampa.

Actually, Yampa includes some 14 different variations oa $lwvitch function ranging
from the simplest switch to the recurring, parallel, baitgbdt, decoupled switch. We will

briefly examine three of these switchers.

Switch

The most basic switch function has the following type:

switch :: (o ~ (B,Eventy))
— (y— (a~B))

— (a~B)

The first argument is the initial signal function that theulesvill behave as. When that
signal function produces an event, the switch will use tha d@am that event along with
its second argument to produce a new signal function. Frem d¢im, it will behave as that

new signal function.

Recurring Switch

A slightly more advanced version of switching allows for gignal function to be switched

out more than once:
rSwitch :: (a ~ )

— ((a,Event(a ~~ B)) ~ B)
Here, the resulting signal function takes an event streasigofl functions along with the
stream of inputo values. When the event stream contains an event, it switchedhe
signal function contained in the event.
Parallel Switch

The parallel version of switch is significantly more intiratchg from its type signature and
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likewise is also quite powerful:

pSwitch :: Functor col
= col (a ~ B)
— ((a,col B) ~ Eventy)
— (col (a ~ B) - y— (a ~col B))

— (a ~- col B)

The parallel switcher works ooollectionsof signal functions, where a collection must
be aFunctor (perhaps a list). First, it is given an initial collection signal functions
to run and a signal function that produces update events. tfilee argument takes the
current collection of signal functions and the value fromeaent in order to produce a
new collection of signal functions. In totghSwitchwill run every signal function in its
collection and produce as output a collection of their rtssul

Note that any one of these versions of switch is strong entmghplement the others.
The reason for Yampa’'s many varieties of switch is not dueoteqy differences, but rather
due to ease of use. That is, for example, ussagtchto do an operation that requires

rSwitchis tedious, so both varieties are provided.

2.2 Basic Language

In future chapters of this report, we will create new langesatp demonstrate new features
and design paradigms that we introduce. These languagskaak a common basis, or
ancestor language. We present this basic language here.

We specify our language in a similar mannerLiadley et al.[201(J. We start with
the lambda calculus extended with product and sum typesametgl recursion, and when
necessary, we will refer to it a®{— x+}. We show the abstract syntax for this language

in Figure2.2. We letts range over typess over variable namess over expressions, and
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Typ 1 = () unit
| Tix T2 binary product
| T1+12 binary sum
| 1 — 12 function
Var v
Exp e = v variable
| (e1,€2) pair
| fste left-pair projection
| snde right-pair projection
| lefte left-sum injection
| righte right-sum injection
| casde;xj.er;Xe.62) case analysis
| Ave abstraction
| e1e application
Env ' &= wviiTq,...,.Vhii Ty  type environment

Figure 2.2: The abstract syntax.&f{— x+}.

I's over environments. A type judgmehnt- e:: T indicates that that it follows from the
mappings in the environmehtthat expressior has typer. Sums, products, and functions
satisfy3- andn-laws. This is a well established language, so rather thaeatethe typing
rules, it suffices to say that they are as expected. We alsowa@n expected operational
semantics that utilizes lazy evaluation.

Note that theEventdata type we defined earlier is equivalent to the tgpe(), but we

use the event notation for readability.
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Chapter 3

Choice and Settability

3.1 A Case for Non-Interfering Choice

We will begin this section by exploring one of the main useswitchers: as a method to
allow the dynamic starting and stopping of signal functioie will present our first-order

alternative and then demonstrate it in a few practicalrsgsti

3.1.1 Pausable Signal Functions

At a basic level, switch is often used to improve performasf@n AFRP program. Without
switch, signal functions will last forever, and this typiganeans that they will compute
future values indefinitely. Using switch, one can “turn ofignal functions that are not
currently necessary and even turn them back on if they areregtjagain in the future.

For example, consider the scenario where we would like egiite a stream only when

a certain condition holds. Niely, we can write the following program:
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integralWheR,e :: (Double Bool) ~~ Double
integral WheRy,,e = proc (i,b) — do
V < integral < i
Vprev < delay0 —<v
let va = V— Vprey
rec result«+ delayO —if b then result+ vp elseresult

returnA— result

This program will only update the result when the booleafirigg, but it is still unsatis-
fying that the integral is being computed at all when it is being used. If integral were
instead a costly signal function and the boolean were ustalke this could be seriously
problematic to performance.

In cases like this, switch can be employed to prevent thgiatérom running when it

is not needed:

integralWheg,,iich:: (Double Event Boo) ~~ Double
integralWheg,ii..hn= proc (i,e,) — do
rec v < rSwitch(constA0) — (i,
fmap(Ab—if b
then (integral>s>arr (+v))
else (constA V) &)

returnA— v

For this version, we modified the type to make it more amenatdevitching by converting
the streaming boolean value to an event stream that will seadts only when the stream
would change fronTrueto Falseor back. Internally, we use th&witchfunction that we
introduced in Sectio.1.4to switch betweeintegral and a constant function. Each time

we switch intointegral, it is fresh and has no history from the last time we were using
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integral, so we additionally compose it witrr (V) so it can maintain its history.

3.1.2 Non-interfering Choice

Although the above example is a fairly common use for swit@dreful examination of
the problem reveals that switch is far more powerful thaessary. That is, while switch
allows us to dynamically incorporate new signal functiom® ithe running computation,
here, we are simply makinganoiceof whether to run a component signal function based
on a dynamic value. Our solution to this problem will thus ldtaround arrow choice,
so we will begin by examining it more closely.

The general choice operator we usg i Figure 2.1) can actually be built from a

simpler component:

left:: (a~ B) = ((a+y)~ (B+Y))

whereleft f calls f when the input signal containseft values and acts as the identity
function otherwise. With théeft function, we can also define an analogoight function
and then use the two together to defifje

Choice also comes with a set of laws that we show in Figuie For us, the most
notable law is thexchangdaw, which acts as a weak form of commutativity betwésfh
functions andight functions. One may ask why choice does not demand full coratmet
ity (i.e. left f >>right g = right g>>> left f), and in the context of signal processing, this
guestion is very sensible. After all, it seems intuitivelyvmus that either théeft func-
tion or theright function will run, but in no case will both run. However, besa arrows
can have effects regardless of their dynamic inputs, anddhgositional order of these
effects can alter the program itself, choice is weakeneds precisely this leniency that
makes switching necessary in cases such as the above example

In order to give choice the extra power it needs to be an adeqeplacement for
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Extension left (arr f) = arr (left f)

Functor left (f >>>g) = left f >>leftg
Exchange left f > arr (right g) = arr (right g) >>> left f
Unit f > arr Left = arr Left>>> left f

Assoc. left (left f) > arr assoc. = arr assoc. >>> left f

assoq (Left(Leftx)) = Leftx
assoq (Left(Righty) = Right(Lefty)
assog (Right 2 = Right(Right 2

Non-interference arr Right>s>left f = arr Right

Figure 3.1: The standard laws for arrow choice with our new-imberference law below.

switch, we strengthen thexchangeaw into the more powerful:

Non-interference arr Right>>>>left f = arr Right

Indeed,non-interferencemplies exchange and even commutativity as it is strongan th
either (see AppendiR.1 for details). It states that once the streaming value isadg@s a
Rightvalue, then it will not be applicable teft f, and so it should behave as if thedt f
is not even there. Thus, by including the non-interfereaee for choice, we assert that
either signal functions cannot have static effects or ti@tchoice operation has the power
to dynamically choose which effects to perform.

We can see this in practice by considering a concrete exarbpts consider the case
of the signal function:

left integral>>> right integral

and we supply it with a signal that varies betwéefit 1.0 andRight2.0 every second (that
is, on the interval0.0,1.0), the signal isLeft 1.0, on[1.0,2.0), it is Right1, and so on).
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Examining the output would reveal the following pattern:

(0.0,1.0): Left0.0— Left1.0

2.0,3.0

):

[1.0,2.0) : Right0.0 — Right2.0
): Leftl.0— Left2.0
):

3.0,4.0): Right2.0 — Right4.0

In other words, when the “left” integral is inactive, it twoff, and behaves as if no time

passes. The same is true for the “right” integral.

3.1.3 Pausable Signal Functions Revisited

With non-interfering choice in our arsenal, we can defineva version ofintegralWherin

an even more intuitive and straightforward way:

integralWhegy,oice:: (Double Bool) ~~ Double
integralWhegy,oice = proc (i,b) — do
recv <« if bthenintegral—<i
else returnA—v

returnA— v

Because we are not actually switching out of tiiegral signal function, it will retain its
state internally. When it is executed, it will calculate anmidi ahe latest delta of integral,

and otherwise, it will simply wait.

3.1.4 A Single First-Order Switch

The most basic switching operation is to non-recursivelggwout one signal function for
another dynamically. For example, we could write a simplesging game that accepted

an event stream of guesses, and when the correct answeravadagl, it would switch into
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a signal function that ignored its input and declared thatggame was over:

guess: Event Int~ ()
guess= switch(arr f) (A t — label t)
where f (Eventj|(i == 3) = ((), Event*You Win!")
f_ = ((), NoEvent

wherelabel is a signal function widget that ignores its streaming ingadl displays the
text it was given as its static argument. Note that we aregusia plain, non-recurring,
non-parallel version of switch that we presented in Sedidmi In guesswhen the event
containing 3 is processed, the string “You win!” is given e tabel, and the guessing is
switched out for that label.

For this example again, switch is too strong. Notice thatatgument given to the
switched-in signal function is not itself a signal functidn fact, it's just a constant! We

can rewrite this with non-interfering choice:

gueSShpice:: It~ ()

guUEeSSpice= Proc i — do
rec haveWon— delay False< haveWor| (i == 3)
if haveWorthenlabel “You Win!” — ()

else returnA— ()

Note that we changed the input stream to a continuous streapp@msed to an event stream

simply to make the example clearer.

Reacting to dynamic events

The above versions @uessare quite primitive, and although we use switching in the firs

one, we are far from using its full power. We can make the exarsightly more complex
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by adding an additional component to the input such that tbgrpm is actually reactive:

guess:: Event(Int, String) ~ ()
guess= switch(arr f) (A t — label t)
where f (Event(i,s))|(i == 3) = ((), Event §
f_ = ((), NoEvent

In gues§ the text to put in the label is no longer static and insteaglait of the guess
event, and in its current form, switching is a necessity &stite only way to provide the
dynamically streaming string to the statabel function. However, we could once again
lift the need for switching if we could redesign the label tstead take aimpulse An
impulse is a one time event that initializes a signal funtti®o in this case, the type for
labelwould change fronstring— (a ~ ()) to (Event String ~ ().

With an impulse driven label widget, we can once again cdrherguessfunction to

a switch-free alternative:

gues§ice:: (Int, String) ~~ ()
gues§,,ice= Proc (i,s) — do
rec haveWon— delay False< haveWor| (i == 3)
let imp=if not haveWo&& i ==3
then Event selseNoEvent
if haveWorthenlabel <imp

else returnA— ()

3.1.5 Arrowized Recursion

As we have shown in the previous two examples, there is atdisage for non-interfering
choice, but the non-interference law also gives us a lespob\benefit. By restricting

the arrow effects to only one branch, we open the door to tissiptlity of a new kind of
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runNTimes: Int — (a ~ B) — ([a] ~ [B])

runNTimes) _ = constA[ ]

runNTimes n s proc (b: bs) — do
c+—sf<b
cs«+ runNTimegn— 1) sf—< bs
returnA— (c: cs)

Figure 3.2: The implementation ainNTimesusing structural recursion.

recursion.
Typically, arrows can perform recursive behaviors in ongvaf ways. First, arrows can
use thdoop functionality to perform a value level recursion, or a sdffixopoint recursion.

After all, one of the laws foloopis:

loop (arr f) =arr (A b— fst(fix (A(c,d) — f (b,d))))

Second, there istructuralrecursion. Structural recursion happens when the host lan-
guage’s recursion is used to create an arrow in a recursiye @ instance, we might

have a function like:

runNTimes: Int — (a ~ B) — ([a] ~ [B])

When defining this function, we use Haskell's conditionaltaxrto recur on the value of
the first argument: while it is greater than zero, we run tgeai function and recur, and
when itis equal to zero, we return a constant stream of theyelsp We show a definition
of runNTimesausing this form of recursion in Figuiz2

A key frustration with structural recursion is that the reswe argument is static as
opposed to streaming. Thus, structural recursion is oféefopmed in tandem with higher-
order switching to allow a streaming value to be used in ptddke static argument.

One may be inclined to perform recursion using arrow chdcg,with the standard
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runDynamic: (a ~ B) — ([a] ~ [B])
runDynamic st= proc Ist — do
caselst of
[] — returnA— [ |
(b:bs) - doc+ sf<b
cs<+— runDynamic sf< bs
returnA— (c: cs)

Figure 3.3: The implementation of the choice-basgtDynamicfunction using arrowized
recursion.

choice laws, this can be problematic. In general, if botmbin@s of an arrow choice
statement perform effects, then both of those effects meistpplied statically regardless
of the dynamic streaming values provided. In other wordsyn&on within arrows, even
when guarded by arrow choice, can loop indefinitely in cartia@plementations.

The non-interference law forces us to delay effects ungildipnamic values are ready,
which in turn allows us to use arrow choice for recursion. \A this new form of recur-
sionarrowizedrecursion. In practice, it is very similar to structural wuesion except that
instead of using the host language’s conditional, we usBvachoice.

With arrowized recursion, we can write a function similathe aboverunNTimesbut
that needs no static argument to perform its recursion.cy f&e can make the input stream
of lists the recursive argument and eliminate the need féN&raltogether. We call this
functionrunDynamicand show it in Figuré.3.

When usedrunDynamichas exactly the behavior one would expect of using standard
arrow choice. That is, any signal functions that are not imently active branches are

stopped. For example, if we were to rumDynamic integralvith a signal defined as:

0.0,1.0): [1.0]

[1.0,2.0): [2.0,3.0

2.0,3.0): [1.0]
):

3.0,4.0): [2.0,3.0,4.0]
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then we would see the following results:

0.0,1.0): 0.0] — [1.0]
[1.0,20):  [1.0,0.0]— [3.0,3.0]
2.0,3.0): [3.0] — [4.0]
3.0,4.0) : [4.0,3.0,0.0 — [6.0,6.0,4.0)

It should be noted that using arrowized recursion createssignal functions by need
(i.e. the newintegral that is created dt= 3 above), but once they are created they are kept

around in perpetuity. This is discussed again in Se@i6r2

3.1.6 Dynamic GUI

One power of switch, showcased particularlyFmit [Courtney and Elliott20014, is the
ability to allow a dynamic number of signal functions to extec That s, by default, arrows
have a fixed structure, and the streaming values moving gihwran AFRP program cannot
affect that structure. However, switch allows one to dyreaity alter the arrow at runtime
based on the streaming values.

For example, one may desire a GUI that gathers the names aflarown group of
people. If the size of the group were fixed or at least knowroatggle time, then this is
achievable trivially with arrows, but if the size is a parderdhat is filled in by the user of
the GUI, then standard arrows are stymied. One approachugeta switching mechanism.

For this example, we will assume a few GUI widgets:

label 2 String— (() ~~ ()
getinteger :: () ~ Int
getintegerE: () ~» Event Int

getName :: () ~~ String
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Note that we have both a regular and event-based versigettiteger the event-based
one, which produces an event each time the value changesefid tor our example with
switch, and we will use the regular one with choice.

We can use these widgets in combination withitBeitchfunction to make our GUI:

getNames: () ~ [String

getNames- proc () — do
_ < label“How many people?™< ()
en <+ getintegerE=< ()
rSwitch(constA[ |) — (repeat(),

fmap(A n— runNTimes n getName,)

where theunNTimedunction is the one we discussed in the previous subsedtian fses
structural recursion to run the given signal function theeginumber of times, as shown in
Figure3.2).

The above definition ofetNamesalthough correct, is using the higher order nature of
switch when it is not truly necessary. Switching gives thevg@oto substitute in any new
signal function for the currently running one, but here,riature of the new signal function
is already known: it will be some number gétNamewidgets. Because this fact is known
at compile time, we can use arrowized recursion insteaddatera simpler, switch-free

GUL.
getNames: () ~~ [String

getNames= proc () — do
_ < label“How many people?*< ()
n < getinteger< ()

runDynamic getNamex replicate n()

BecauseunDynamicuses arrow choice to do arrowized recursion, we do not neaddo

any switching.
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3.2 A Case for Settability

In this section, we will explore a second main use of switsh#re ability to start a signal
function mid-computation with no prior state. Once agaim, will begin with a simple
yet canonical example before describing our first-ord@radtive and some further usage

examples.

3.2.1 Restartable Computation

Although pausing signal functions is useful (as inititegralWherexample of Section3.1.1
and3.1.3, there are times when we really do want to restart a sigmation, resetting its
state to its initial defaults. In fact, with switching, the&seven easier than pausing consid-
ering that switch naturally starts its new signal functiconfi the beginning.

For instance, let us consider the scenario where we wouddttikake the integral of
a stream, but at any moment, we may be given an event thatatedi¢chat we should
reset the integral’s accumulation to its initial defaultitiswitch, this is actually trivial:
we simply lift the integral function into the resetting event, and send everything ato

recurring switcher:

integralReset,iich:: (Double Event()) ~~ Double
integralResey,i..n= proc (i,e) — do

rSwitch integral= (i, fmap(const integral e)

Without switch, this seems like a tough problem, and notlaipgut non-interfering choice
lends any help.

One ideais to try to simulate the behavior of a restart witla@tually touchingntegral
itself. That is, because the function we are lifting is justiategral, we could take a

snapshot of its output at the restarting moment and thenmuamisly subtract that value
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from future outputs:

integralReseg},s;.:: (Double Event()) ~» Double
integralReseg}, ;.= proc (i,e) — do
0 < integral <
rec k < delay0 < kK
let K = if isEvent ehen o elsek

returnA—<o—Kk

Although this is a valid solution to this particular situatj a similar solution cannot always
be found. To do so requires a function that point-wise trams$ the output to what it
would have been if the signal function were started at thegdased point in time, and this

function must be computable from the output from that poirtime forward.

3.2.2 Settability

At this point, the idea of lifting a signal function into theent stream, as we did in
integralResey,iich, above, should seem unnecessary. Indeed, we are not evehiagit
into some dynamically given new signal function but rathest jusing a new instance of
the same signal function again. Rather than switching, ost-dirder approach is to de-
velop a notion of signal functiogettability, or a way to change the internal state of a signal
function at arbitrary points.

Because we are dealing with state, we will begin with an evererpomitive example
and examine theelayoperator directly. At first glance, it seems to suffer frora #ame
problem asntegral—the delaywill always output old values, so what can we do to reset

it? However, modifying it to be resettable requires onlydldition of a single input event
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stream:
resettableDelay: 8 — ((B8,Event()) ~ B)

resettableDelay + proc (b,e) — do
out« delay i—<b
returnA— casee of
NoEvent— out

Event() — i

WheneverresettableDelays given an event, it will immediately output its initial wed
again, essentially behaving as if it has only just startedatt, we can take this one step

further and construct a version délaythat can be set to any value of our choosing:

settableDelay: B — ((8,Event(Maybef)) ~~ )
settableDelay + proc (b,e) — do
out« delay i—<b
returnA— casee of
NoEvent — out
Event Nothing- i

Event(Justg — s

With settableDelaythe event stream can potentially carry a new value to seintkeenal
state, and if there is no value, we perform a reset. It may sagmarfluous to have an
event of an option, but adding the ability to set the statesadud make resetting the state
obsolete.

A fortuitous bonus to this function is that, in addition targeable to set the state, we
can also capture the current state. That is, because theestinpam is necessarily setting the
new current state, it can also be made to provide it direttiys, we can usgettableDelay

to both “store” and “load” state.
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General Settability

Although a settable version dklaymay be useful on its own, it would be much more use-
ful to have any arbitrary signal function be settable. Hogvethis would require manually
changing every internalelayoperator to its settable alternative and then properlyimgut
the state-setting events to the appropriate places. Addilly, if capturing the state at a
given moment were important, all of the inputs to tredayfunctions would also need to be
grouped and appropriately routed to the output. This woeléjceptionally cumbersome

and not at all feasible. What we want is a function like:

settable: (a ~ B) — ((a,Event Statg~ (3, Statg)

that will automatically take a signal function and allow ogbth pass in an optional new
state as well as save its current state. For now, we will assiinait theStatetype can
encode an arbitrary type (along with a special “reset” valaed we will discuss it in more
detail when we discuss the implementation of settabilitgaction3.4.2

This settablefunction should hold to certain principles of behavior. Egample, if it
is never provided with a state, then it should do nothing.il&inhy, if the state it produces
is used to set it, then there should be no observable differanbehavior. Additionally,
there should be a particular valueSitatethat acts as eeset(in our settableDelayunction
from earlier, this wagvent Nothingy Thus, if one were to feed a constant stream of reset
states, the output would always use the default values. \Glamethese principles as laws
of behavior forsettableand show them diagrammatically in Figusetl.

In fact, with an appropriate code transformation, any aroan be extended with a
settablefunction. We will explore the details of this transformattim Section3.4, but for

now, it suffices to state that it is possible and availableunexamples.
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settable: (a ~ B) — ((a,Event Statg~ (3, Statg)

Identity
settable sf ~
Uniformity
S
settable sf
e
delay NoEvent}—[ arr Event
Default

settable
(delay i)

Figure 3.4: Thesettablefunction and its laws.
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3.2.3 Restartable Computation Revisited

With the settablefunction, definingntegralResets just as trivial as with switch:

integralReset: (Double Event()) ~~ Double
integralReset= proc (i,e) — do
(v,s) < settable integral< (i, fmap(const resete)

returnA—v

Rather than lifting a dynamic signal function to the signakelgust to be activated by
switch as we did previously, we lift only a reset signal. Thigedence in the amount of
code between this function anttegralResey, ., iS negligible (it basically comes down to
ignoring the state output of the settable signal functidwi), the conceptual difference is
guite important: rather than needing to stop a currentlyinm signal function to replace

it with a new, fresh instance of itself, it is possible to esdn it while leaving it active.

3.2.4 Freezing and Duplicating

This settablefunction has applications beyond just resetting arbitrstgteful signal func-
tions. By separating the state from the signal function, veeemsentially separating the
current behavior from the structure. That is, #edtablefunction gives us the power to
freezesignal functions.

Typically freezing a signal function is thought of as a higbeder operation achievable
only with a switch operator. Specifically, freezing is th@gess of stopping a running
signal function mid-execution and providing it as a piecelata to reuse. Later, it can be
resumed by using a switcher to reintegrate it into the stinecdf the program.

Rather than providing a copy of itself, a function made séstabll provide a stream
of its essencdi.e. its current state), which can then be reinserted attiamg later. It is

worth noting that this does not provide any advantage ovétckvin terms of resources
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or memory, but it does provide the ability to freeze and reswvithout actually needing

switch in the language.

Example

For this example, we will construct a GUI for drawing. The maiindow will feature a
drawing pane, but the user will be able to create new paneswitch between them. When
a new pane is created, it is automatically populated withpy @b whatever is currently on
the current pane.

For this example, we will assume a few widgets:

drawing ()~ ()
choosePane: () ~~ Int

button ;2 String— (() ~ Event())

Thedrawingwidget is a stateful, effectful widget that provides a cawad allows the user
to draw; thechoosePan&vidget returns amnt stream that represents the currently selected
pane; and theuttonwidget takes a static label and produces an event streanmthedtes
when the button has been pressed.

With these widgets, we can create the GUI we described (showigure 3.5). The
state for the GUI is kept as a list of drawing states, initiadi in the sixth line as a one
element list containing eesetstate. This initial list describes a GUI with a single paret th
has a blank drawing canvas. When a user wishes to duplicatuthent pane, the current
state is added to the list allowing the GUI to “save” the oradipane while providing a
duplicate state for the new one. The key here is that insté&deaping track of different
instances of the signal function, each with its own statekeap track of multiple states
themselves and use them with a single signal function.

To make a version of this GUI with switching is surprisinglynaplicated. Instead of

keeping track of multiple states for the singl@wingwidget, we keep a collection of mul-
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guiz: () ~ ()
gui= proc () — do
€dup < button“Duplicate pane?”< ()
€del < button“Delete pane?”< ()
i + choosePane< ()
rec stateLsk— delay[reset — statelLStew
((), statgew) < settable drawing< ((), stateLst! i)
let stateLstew = Case(€qyup, €del) Of
(Event(),_) — set i stateLst statew++ [Statgew]
(NoEveniEvent()) — delete i stateLst
_— set i stateLst statew
returnA— ()

Figure 3.5: The implementation of the GUI from Sectibi.4

tiple drawingwidgets that we can switch between as necessary. The ordipwuesf switch
that provides this information is the paralfgbwitch which processes collections of signal
functions. Therefore, we will start by using concepts baed fromGiorgidze and Nilsson
[2009 for the practical use of pswitch. However, because we ahg actually running a

singledrawingwidget at a time, we are forced to use some clever engineering

e First, in order to satisfy pswitch’s requirement for a colien, we create a new
indexed list data typd.ist. Applying fmapover it applies the given function only to

the currently indexed element.

e We need an event every time the user selects a different padaye achieve this by
using the helper functionnique which converts a continuous stream to a discrete

one by providing an event containing the value of the stredmngver it changes.
¢ We need the switching to be repeatable, so wegaitchrecursively.

The result is shown in Figuré.6.
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data IList a = IList Int [@]
instanceFunctor IListwhere
fmap f(IListilst) = IListO [f (Ist!! i)]

Quiswitch = () ~ ()
QUisyitch = Proc () — do
€dup < button“Duplicate pane?™< ()
€gel < button“Delete pane?*< ()
& < uniquess> choosePanex ()
pSwitch initialSFgarr test) kK— (equp, €del, &)
returnA— ()
where initialSFs= IList O [drawing
test((NoEventNoEventNoEven}, ) = NoEvent
test(inp,-) = Eventinp
k (IList iprev Ist)(NoEventNoEventEvent j =
pSwitch(IList i (set prev ISt (Ist!! iprev))) (arr test) k
k (IList i Ist)(NoEventEvent(), ) =
pSwitch(IList i (delete i Is}) (arr test) k
k (IListiIst)(Event(),_,_) =
pSwitch(IList i (Ist+k [Ist!!i])) (arr test) k
k ilst. = pSwitch ilst(arr test) k

Figure 3.6: The implementation of the GUI from Secti®2.4 using switch instead of
settability.
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3.3 An Alternative to pSwitch

Here, we will pull together the ideas of both settability arah-interfering choice that we
have highlighted in the previous sections to present a higtep yet first-order version of
a parallel switcher.

As we mentioned in Sectiah 1.4 parallel switchers allow for whole collections of sig-
nal functions to be managed and switched in or out at once e@am@ple of the usefulness
of this kind of switcher can be seen in the musical realm wbeeemight have a program
that plays music with software “instruments” that are altjuthemselves signal functions.
The music is given as a sequence of “On” and “Off” events, wlilee “On” events provide
the instrument to play and some initializing data about wiwe to play, and the “Off”

events tell which instrument to stop:

data NoteEvt= NoteOn UID Instr InitData
| NoteOff UID Instr

type Instr = InitData — (() ~» Sound

sumSound [Sound ~~ Sound

Note that theJID type is a unique identifier that is used to connect a gNeteOnevent
with its NoteOffcounterpart, and thBounddata type represents the sound that an instru-
ment produces. TheumSoundignal function is for summing dynamic lists of sounds
together.

Although we will use the samgSwitchthat we introduced in Sectigh1.4 for clarity,

we will show its type signature again, this time with a fewlud type variables instantiated

49



for our example.

pSwitch:: [UID, () ~ B]
— (() ~ Eventy)
— ([UID, () ~ B] = y— [UID, () ~ B])
— (0~ [B])

For our collection, we use a mappingD to signal function (which we implement as a
list for simplicity), and we set the input typeto ().

For this musical example, the initial list of signal functeowill be empty, the events
to change that list will béNoteEvs, and the function will use thdoteEvtdata to add or

remove signal functions from the list as necessary:

maestra: (() ~ Event|NoteEvt) — (() ~» Sound
maestro musie= pSwitch[ | music f>s>sumSound
where f Ist[] = Ist
f Ist (NoteOn uiimprst) = f ((u,iimp) : Ist) rst
f Ist (NoteOff u i: rst) = f (filter ((5 u) . fst) Ist) rst

In order to remove our reliance on switch, we need to make asfeall changes to
the layout of the problem. First, as we did in Secti®f.4 we will need to change the
instruments from functions that take a “static” initiahgi argument to functions that take
that argument as an impulse. Second, we need to know shatidaht the different signal

functions are, so we make use of a finite data type and add peedéindirection:

data Instr = Trumpet| FHorn | Tromboneg Tuba
type Instrument= Event InitData~~ Sound

tolnstrument: Instr — Instrument

50



It is critically important that thénstr type is finite because, due to the fact that choice is not
actually higher order, we need to know exactly whicstrumensignal functions can possi-
bly be called. This technique of representing functions fis&order data type and then in-
terpreting them later is known a@gfunctionalizatioriReynolds 1972 Danvy and Nielsen
2007 and has been established as a viable method of convertyiggihorder functions
into first-order ones. Fortunately, in most situations vehgarallel switching is used, the
possibilities of signal functions are known staticallysswansformation like this one is not
difficult.

With these changes made, we can utilizegidoicefunction. The idea behingChoice
is that as long as we know the possible signal functions tleatnay use, we can run each
one a dynamic number of times. So, rather than keep a dynahid kignal functions, we
keep a static list of signal functions and a dynamic list ghai functionstates We then
use a combination of structural and arrowized recursiorucgiral recursion to provide
access to each possible signal function and arrowizeds®ecuto allow a dynamic number
of runs per possibility.

The type ofpChoicels:

pChoice:: Eq key=- [(key, Eventa ~ B)] —
([(key, (UID,Eventa))] ~ [B])

and as it is somewhat complicated, we leave its implememtand a more detailed de-

scription of its inner-functioning to Appendix.2.
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We can us@Choiceto reimplement our music program without switch:

maestra: [NoteEvt ~~ Sound
maestro= arr (map f) >>> pChoice Istss>> sumSound
wherelst=map(A i — (i,tolnstrument}) allinstrs
f (NoteOn uiimp = (i, (u,Eventimp)
f (NoteOff u ) = (i, (u,NoEveny)

wherealllnstrs is a complete list of all of thénstrs that might be played. In fact, one
notable difference between this versionnofestroand the switch-based alternative from
earlier is thisallinstrs list: the reason that we can write this program at all is bseau

allinstrs can be defined statically.

3.4 Implementing Settability

As we mentioned in SectioB.2.2 we can achieve settability of any arrow with a code
transformation. Here, we will provide a detailed descoptof the transformation process

before presenting Haskell code that implements it.

3.4.1 Design

In essence, the idea of settability is the idea of having ete the internal state of an

arrow. Thus, as we discussed previously, it is encapsulgtedfunction like:
settable: (a ~ B) — ((a,Event Statg~~ (3, Statg)

that will automatically take a signal function and allow ndbth pass in an optional new
state as well as save its current state. However, in ordech@wee this, we will need

to rewrite the underlying arrow to support this behavior.emfdiore, we will describe a
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recursive transformation that will provide settable cali#s to ordinary arrows.

Intuitively, this settability transformation is a simpleoggess of routing state update
information in through the various arrow combinators sd thean be easily accessed by
any internal delay operators and then routing current skaite back out through the com-
binators to the level of theettablecall. For each combinator, there is a transformation
that achieves exactly this goal; we show circuit diagramgHese transformations in Fig-
ure 3.7 and describe them in detail below. Note that we use the wotstito denote the
signal functionsf after having been transformed, and we assume thdvbat Statéenput

stream andbtateoutput stream are always the lower input and output.

e We will begin at the lowest level by examining tldelay operator itself. In Sec-
tion 3.2.2 we showed a design for a settable version of delay, but we toe@odify
it just slightly in order for it to be general enough for aettabletransformation: in
addition to taking in arfcvent Statestream, it also needs to emit its curr&tateas a
stream. This is rather trivial as its current state is id=itio its own input stream, but
this is important to the transformation as a whole. Thus,anauit diagram shows
the input stream both being sent to the embeddieldy operator as well as being
duplicated to thé&tateoutput, and the output is determined by a case analysis of the

Event Staténput with data from thelelays output.

e The simplest transformation is that of the operator, which has no state and should
essentially remain unaffected. In this case, we ignorertpetEvent Statend return

a constant stream of the null, mset state.

e The composition of two functions is a little more interegtireach of the two com-
posed signal functions may have state, so we need to spiin¢beningEvent State
into two pieces and pass the first to the first signal functioth the second to the
second. We gather the resulting states together and jom thi® a single output

state.
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delay i

arr f
sf, >>st,
first sf
loop sf
- N
left sf ‘.
(with Rightinput) o delay |\
J
‘ N
left sf — ot 1o |
_ |
with Leftinput
( puy | -

Figure 3.7: The circuit diagrams showing the settabilignsformations for the various
arrow combinators.
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e Applying a partial applicationfifst) is a simple matter of rerouting the state data and

the unused input stream properly.
e Looping is handled similarly to partial application withienple rerouting of streams.

e The most complicated transformation is for our non-intengg choice’deft operator.
This is because there are two difficult questions that we raddtess in designing
this transformation. First, in the case of an inRightvalue, the embedded signal
function is not executed, so where can we gedtatevalue for the outpuState
stream? And second, again in the case of an ifRpghtvalue, if we are given an
Event State¢hat requires updating the embedded signal function, heweaget that
event where it needs to go? The way to address both of thesgansgeis to allow the
transformed choice operator to contain some internal ,steteeh we achieve with

loop anddelay.

Furthermore, in an effort to clarify the behavior of the sBormed choice, we pro-
vide two diagrams to describe its behavior: one that shows ihdehaves when
given aRightvalue and the other for when it is giverLeft value. Thedelays are
shared between both diagrams: the upgedayshould be assumed to be initialized
with a NoEventvalue and the lower with a null, aeset state value. Thenerge
function is a standard overwriting event merge that favieesl¢ft (newly incoming)

event in the case of two events.

When given aRightinput, the input stream is identical to the output streame Th
Event Statenput is merged with the stordfivent Stateand stored once again, thus

updating the store with any new setting events. The olgpateis the stored one.

When given aleft input, we will execute the embedded signal function. We stil
merge theEvent Staténput with the stored one, but the result goes directly iht® t
embedded signal function, and the store is instead updatbdaWoEventindicat-

ing that there are no paBivent State waiting to be delivered. The output of the
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transformed, embedded signal function, both the streaingfizalue as well as the
output State become the output of the overall transformed signal femgtbut the
outputStateis also stored for potential future use. The stdg¢atevalue is discarded

outright as it is now obsolete.

Setting Switch
Although the stated purpose of this chapter is to develoguage constructs to allow
us to remove switchers from FRP, the constructs themselvemtoecessarily preclude
switching. Indeed, we can extend the ideas of settabilitintdude switching without
much work at all.

We will begin by instead looking at treppoperator from thérrowApplyclassHughes
[200Q:

app:: (a~»b,a)~b

This operator is very similar to a switch, but it is notablyfelient in that it treats the new
signal function input as a continuous stream instead of ageliely separate events. This
is important because once the higher-order signal funetiarsed, it is discarded, ready
to be replaced at the next moment. This means that, in esstece is no sense of state
here, which in turn means that making it settable should mavenpact on its behavior.
Another way to reach this conclusion is to consider what itilkdanean to set the state of
app. Whatever may happen, that state will be immediately ovétewriby the streaming
signal function component. Ultimately, for the purposeseitability,appis a pure signal
function.

Althoughappis stateless, switchers are not. However, the above exjpangill come
in handy as we consider the case for the moment that switcduogrs.

Let us no consider applying the settability transformatimthe repeatingSwitch In
general, the state of the switcher is the pair consisting@turrently running signal func-

tion and its state. Therefore, the output state will be agdistate of these two. Because
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Sz

rSwitch def \' _
wien TG

Figure 3.8: The circuit diagram showing the settabilityngfmrmation for the repeating
switcher.

we only see the currently running signal function when iup@ied as an event, the trans-
formedrSwitchmust keep its own internal state, which we can implement withop and
delay. Finally, the input state event must be allowed towrviés the current behavior ex-
cept for when a switching event occurs, in which case thatctnig event takes priority.

We show this all diagrammatically in FiguBes.

3.4.2 Haskell Implementation

Rather than relying on Haskell's rewrite rules or Templateskddl, we can perform the
entire transformation with only type classes. Our methedlires creating a wrapper for a
generic arrow that itself instantiates the arrow classé&nTany code that is an arbitrary
arrow could just as well be this wrapper.

Thus, our goal will be to concretely define our types and timstantiate the arrow
classes using them. We lay out the process in this sectioralandnote that the code is

available online as a Haskell package.

Data Types

The first type we must choose a concrete representation tbeiStatedata type. For a
singledelay, the definition ofStateseems obvious: it is a maybe type of the stored value
(just as we saw in theettableDelayexample from Sectio3.2.2. One way to extend

this to arbitrary signal functions would be to extend theaidé arrows to include an extra

1. hackage.haskell.org/package/SettableArrow
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parameter that indicates what that arrow’s state is. Theemnwe compose two arrows, we
combine the two component states into one joined state. iledsping cumbersome, this
becomes especially challenging in the presence of arrowizeursion, where we would
need some sort of coinductively defined state type to allawtyfpe unification. Indeed,
this should be technically possible using Haskell’s typurif@s and other features, but the
complexity would detract from our point. Therefore, to kéle@types simple, we make use
of Haskell'sDynamicdata type to store arbitrary state information from indixatidelay
functions? Also, rather than use an auxiliary option type to represefgfault state or an
absence of state (as we did in thettableDelayunction in Sectior3.2.2, we will build
this directly into the type.

We show the definition of th&tatedata type along with the few helper functions we
need in Figure3.9. Note that becausdoStaterepresents an absence of state information,
trying to split it returns a similar lack of information.

With the Statetype defined, we next build our wrapper for a general arrow:

data SA(~~) a B = SA((a,Event Statg~~ (3, State)

Already, we can see that thiAdata type is merely hiding the extra piping that will be

required to store and load the state.

| nstantiating Arrow

Next, we show howSA (~) can instantiate the arrow operators themselves. If it ¢gem t
any program written using the arrow operators could justehe written for the generic
arrow (~-) as forSA (~+). Thus, this instantiation will essentially provide a metho

perform a code transformation to allow any arrow to behavéitsould be made settable.

In fact, it will not even matter if this instantiation actlyabbeys the arrow laws; because

2. Technically, usinddynamicin this way enforces dypeablerestriction to the types of the individual
state components, but this is of little consequence.
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data State= NoState
| DState Dynamic
| PairState State State

reset= NoState

split:: Event State— (Event StateEvent Statg

split NoEvent = (NoEvenf{NoEven

split (Event NoState = (Event NoStatd=vent NoState
split (Event(PairState | 1)) = (Event L Event 1)

join :: State— State— State
joinlr =PairState | r

merge:: Event— Event— Event
merge NoEvent e-e
merge e _=e

Figure 3.9: TheStatedata type and its two accessor functions.

the arrow it is built atop does, we can always strip off theppexr and be left with an arrow

that does satisfy the laws. The implementations are showigure3.10,

The implementations follow directly from the circuit diagns from Figure3.7, and

thus we will omit any further description of how they functio

It feels like we could make aBA(~~) settable merely by removing ti8Awrapper — after

all, the underlying arrow will be of the appropriate type. vitver, this approach limits

modularity by forcing the input and output arrows of gedtablefunction to be different.

Therefore, we instead writesettablefunction for SAdirectly:

settable(SA f) = SA$ proc ((b,es),€) — do
(c,s) + f —<(b,merge g€)

returnA— ((c,s),s)

This settablefunction is straightforward with one exception. If theralseady a state-

update event that is propagating a new state (shown heef,aand the settable signal
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arr f =SAS$arr (A (b,_) — (f b,NoStatg)

first (SA f) = SA$ proc ((b,d),es) — do
(c,s) « f —<(b,es)
returnA— ((c,d),s)

(SA f) > (SA g = SA$ proc (b,es) — do
let (g,&) = splites
(¢, 5)« f=(b a)
(d,sr) «—g—=(c, &)
returnA— (d, joins s)

loop (SA f) = SA$ proc (b, es) — do
rec ((c,d),s) - f < ((b,d),es)
returnA— (c,s)

delay i= SA$ proc (Shew &) — do
Sold <— delay i< Snew
returnA— (f spiq &, DState(toDyn $iew))
where f s NOEvent s
f _ (Event NoState= i
f _ (Event(DState d) = fromDyn d

left ~(SA f) = SA$ proc (bd, es) — do
rec (Sold, €oid) < delay(NoState NoEvenf — (Show, €next)
let enow = Merge € ey
(Snows €next €d) <— casebd of
Left b— do
(c,s) « f —<(b,enow)
returnA— (s, NoEveniLeft ¢)
Right d— returnA— (Soid, €now, Right d)
returnA— (cd, Show)

Figure 3.10:SAimplementations of the Arrow class functions.
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function is also given a state-update evesg},(which one takes precedence? In fact, the

new one must take precedence in order to guarantee the lasstwat in Figure3.4.

I mplementation in Practice

The implementation described in this section has been &dhieved in Haskell and can
be found alhttps://github.com/dwincort/SettableArrow. That said, the library’s
source code is actually slightly different than the codensh the previous subsection
because the code we have provided has a significant perfoenoarerhead.

The biggest problem with settability comes from the fact thaking a signal function
settable causes it to expand considerably, and that eaghosition especially has a costly
overhead. For instance, if one uses the arrow fundemondand then attempts to make it

settable, thesecond fis first expanded to:

arr swap>> first f > arr swap

(for a pure definition obwap. Thus, one use addecondcauses two uses of composition,
which each in turn need to be made settable.

Thus, the major difference between what we have shown her¢hacode in the Set-
tableArrow library is that the library code has been hantiroiged to our best ability. First,
we removed the arrow syntax, replacing it entirely with thr@a combinators themselves.
Second, we additionally define the derivable arrow opesatoch asecondandright (with

the obvious, expected definitions). Third, we introducdtang operator:

uncheckedSA Arrow (~) = (b~ c¢) — SA(~) b c
uncheckedSA & SA$ first a>=> (secondb constA NoState

This function is useful in the special cases where the usewg&rthat a function has no
internal state (or potentially when internal state will eemeed to be set). Instead of re-

cursively applying the settable transformation, this fiorcsimply ignores any incoming
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state and returnNloStateas output. Thus, when the performance cost of usettpbleis
otherwise too high, one can usacheckedSAudiciously to reduce the amount of slower
transformed code.

With these optimizations (excluding usingcheckedSAwe find that the performance

cost is typically about 2-3x.

3.5 Optimizations

Providing such an expressive, first-order alternative édiilgher-order switch function is a
boon for optimizations as it allows the arrow structure tdldly determinable at compile
time. For instance, Causal Commutative Arrows (CCAs) are agodaitisubclass of arrows
that have been shown to be highly optimizallai[et al, 2011, but they are restricted to
be only first-order. As a demonstration of the optimizatiapabilities of our work, we
extend the Haskell CCA transformation to include non-intémfe choice and show the

promising results. We begin with a brief overview of CCAs.

3.5.1 Causal Commutative Arrows

Causal Commutative Arrows are arrows that have two additiamal: a commutativity law
that essentially states that signal function effects caebelered at will, and a product law
that governs the behavior of the causal operatoritii@®r delayoperator). With these two
laws at their disposal,iu et al.[2017]] describe a transformation that allows an arrow to be
reduced to a normal form, which they call the Causal Commu@&inrmal Form (CCNF),
and then even stream fused into a standard function. Themudkemonstrate that GHC can
then aggressively optimize this, yielding performanceeases of orders of magnitude.
The CCA transformation is of particular interest to us as ithatwe will be extending

to add support for non-interfering choice, but first, we ndescribe the CCNF. The CCNF
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of an arrow is either of the form:

arr f
or

loop (arr f >>>seconddelay i)

wheref is a pure function andis a state. We can express these more simply by calling
themArr f andLoopD i f. The transformation, then, is the process of reducing awarr
built with the arrow operators into one of these two formss & recursive transformation
that applies a set of reduction rules until the normal forpraduced.

For instance, if the transformation comes across an arraéledbrmfirst sf then it will

recursively reducsfand then choose one of the following two rules based on thdtres

first (Arr f) — Arr (f xid)

first (LoopD i f) — LoopDi(juggle. (f xid) . juggle)

wherejuggleis a pure helper function to reorder the inputs and outputeasssary.

3.5.2 Extending CCA

CCAs already have a mechanism for dealing with choice, andsitdgiance, it appears
to work with non-interfering choice too. However, it is theavized recursion that non-
interfering choice allows, and not the choice operatorafliyethat actually poses a problem
for the CCA transformation.

As is, the CCA transformation does not support arrowized seoar Of course, as we
mentioned when we introduced it in Secti®i..5 the standard arrow laws are not guaran-
teed to support it, so its absense is perfectly sensible. ederythe absense of recursion
support isnot due to inability — indeed, with the non-interfering choiesviguarding the

recursion, we can add that functionality in a straightfavaanner.
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Intuitively, the presence of arrowized recursion will ppesus with the following two
scenarios:

Arr f =Arr (g f)
LoopDi f=LoopD(ji) (g f)

In the first case, we find that a signal function of the fokm f is defined based on that
same functionf, and the second is the same except for bioénd its state. However,
becausef andg (and j) are pure functions, this is a trivial relation to solve: éed the

solution to the first form is as simple as applying a fix poin¢iator:

f=fixg

The second form is slightly more complicated as a precisaitiefi would require the

use of a coinductive data type forThat is, we would want a data type such as:

data StateCCA k= S (k (StateCCA k)

However, for our purposes, it is acceptable to relax thisiregnent and instead assume
a more powerfuBtatedata type that can encode arbitrary values (this would bendasi

type to theStatethat we used when describing Settability in Sectioh 2

3.5.3 Haskell Implementation

We model the Haskell implementation off of the original CCAnstormation design. We
use Template Haskell along with a clever use of the Arrow tglpsses to perform a pre-
processing step on only the arrowized components. Thugrr#tan try to interfere with

Haskell's native recursion support, we introduce a new ttpses to capture it only where
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we need it:
classArrowFix (~-) where

afix:: (b~~c—b~c)—b~cC

TheArrowFix type class introduces tladix function that acts as a fix point function partic-
ularly for arrowized recursion. In practice, we could mgrééfineafix to be equivalent to
the regular fix point operator, but we will make better usd &b the transformation.

Specifically, when the recursive transformation encowgra@rarrow of the fornafix f,
the first thing it will do is to produce a fresh, unique “hol@he hole (which we represent
with e) is a special internal data structure that acts Akeor LoopD except that instead of
holding the functionf and state, it keeps track of the modifying functiorgsand j. That
is, if the hole is arArr form, then we know that we will eventually come to a scenauichs
as

Arr f =Arr (g f)

and sincef is unknown and will be deduced via the fix point operation, lib&e instead
keeps track of. Applying this hole as the argument foand then recursively running the
transformation will reduce the result to one of the two fomvesidentified in the previous
subsection, which we have already shown can be solved easily

To facilitate this, we create a second set of transformatites that are nearly identical
to the original except that they expect an additional argunfeor instance, if the transfor-
mation comes across a partial application of a hole, theiilitalow one of the following

two rules:
first (earr §) — ear (A f — (g fxid))

first (eLoopp j 9) > ®LoopD | (A f —
(juggle. (g f xid) . juggle))
Note the similarities between this and the description figr ton-hole version at the end
of Section3.5.1 They are almost identical except for the fact that the sadejuments are

functions of functions.
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State

At the end of the previous subsection, we mentioned that wadwase arnStatetype to
encode the arbitrary state componeot a CCNF arrow of the fornhoopD i f. Just as we
used for the Haskell implementation of Settability, weinéilHaskell'sDynamicdata type

as an all-purpose state wrapper here.

3.5.4 Performance Results

We followed the same procedure for performance testing et al.[201]] use. That s,

for each program, we:
1. Compiled with GHC, which has a built-in translator for arreyntax.

2. Translated the arrow syntax to arrow combinators usitgyBan’sarrowp pre-processor

[Paterson200]] and then compiled with GHC.
3. Normalized into CCNF combinators and compiled with GHC.

4. Normalized into CCNF combinators, rewrote in terms of stresand compiled with

GHC using stream fusion.

The three benchmark programs we used are based on the egdngprethis paper but
are simplified. The first uses tranDynamicfunction to run multiple stateful counters
at the same time. The second and third use a function sinsilamDynamicthat runs a
signal function multiple times but chains the output frone@an to the input of the next,
essentially linking them together. For the second, we logether a basic, stateless adder,
and for the third, we link an integral function.

The programs were compiled and run on an Intel Core i7 machitieGHC version
7.6.3, using the02 optimization. The results are shown in Fig@é1, where the numbers

represent normalized speedup ratios.
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Name | GHC | arrowp| CCNF | Stream
Dynamic Counters 1.0 1.66 | 10.91| 12.73
Chained Adder | 1.0 | 191 | 4.06 | 4.29
Chained Integral | 1.0 2.17 | 13.27 | 15.40

Figure 3.11: Non-Interfering Arrow-Choice CCA Performancei®étigher is better)

In general, the results show a similarly dramatic perforoeaimprovement compared
with standard CCA. Notably, the performance of the chainecdgddthough improved in
CCNF, does not show nearly the speedup that the others showeNgeebthis is because
the chained adder has no internal state whatsoever, mdien ¢-processed performance

better.

3.6 Other effects of switching from switch

As stated earlier, arrows with switch are fundamentallyermowerful than those without.
Thus, it was never our goal to demonstrate that non-inieagezhoice and state settability
could provide the tools to replace switch outright, but eatthat switch’s power is often

underutilized, and in those cases, switch can be replaced.

3.6.1 Firstorder

The primary and most important difference between switah rmam-interfering choice is
that switch is truly higher order while choice is not. Thisane that while programs with
switch can accept streams of signal functions and then asetkignal functions, programs

with only choice cannot.

3.6.2 Memory Use

One of the main reasons to use switch in a program is to imppeviormance. Rather

than run a signal function when its results are not being,useaan switch it off, reducing
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unneeded computation. Signal functions that have beeolssdtout will never be restarted
and so can be garbage collected to free memory.

With non-interfering choice, we can similarly stop a sighahction, but because it
might be restarted, it cannot be garbage collected. Ratheg started, it will remain in
memory forever. This is a fundamental reason for demomstystate settability of signal
functions: a signal function that is waiting in memory carvéndts state re-set so that
it can behave as a fresh instance of itself. Thus, with propgnagement of state, we
should never be creating new signal functions while othezdeft for dead but stranded
in memory. Therefore, though our system will always use astl@as much memory as a
version with switch and often times more, it should be capgpethe maximum amount of

memory that a comparable switch-based version would useyairze time.

68



Chapter 4

General Effects iIn FRP

4.1 Resource Types

As mentioned in the introduction, we wish to treat I/O desies signal functions. Con-

sider, for example, a MIDI sound synthesizer with type:
midiSynth: Event Note~ ()

midiSynthtakes a stream dfioteevents as input and synthesizes the appropriate sound of

each note. Now consider this code fragment:

_ <+ midiSynth—< noteg
_ <+ midiSynth—< notes

midiSynthis intended to represent a single output device, but therénar occurrences of
it above; so what happens? Are the event streaotes andnotes somehow interleaved
or non-deterministically joined together? Clearly, thexa problem.

Likewise, we can imagine a similar problem with input. Suggkeyboards intended
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to produce events for every key press:
keyboard: () ~ Event KeyPress

Now consider this code fragment:

inp, « keyboard— ()
inp, +— keyboard— ()

What is the relationship betweamp, andinp,? Do they return the same result, or are they
different? If they are the same, then individual key pressegienerating multiple events,
but if they are different, then which one should get the e¥&kdain, there is a problem.

The solution to these problems is to somehow prevent duitaf certain signal
functions like those above. To do this, we introduce theamotif aresource typeResource
types are essentially a phantom type parameter to eacH figicdion that represents what
resources that signal function accesses. We then asseit tva signal functions share
even one resource, then they cannot be composed togethaudgdtis is done at the type
level, this check is static and can be caught before runtime.

As the resource type is part of the type signature of a sigmadtion, we show it in
the type signature as follows: the typevR» B is a signal function that “consumes” the
resources in s&k, while converting a signal of type into a signal of type8. For the two

examples above, adding resource types yields the follogigpgatures:

midiSynth:: Event Notd" <" ()

keyboard :: () {Keyboarg Event KeyPress

With these types, the above code snippets will not type check
An additional benefit of resource types is that they providew level of transparency

to the meaning of a function. Where before, the type of a sigmaition provided only
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the types of the inputs and outputs, now we also have ea$ig, ataess to the entire set of

resources that a program may use.

4.1.1 Typing Rules

Because they exist only at the type level, we can conceivesoluree types as having no
runtime component; therefore, discussing their behaoukl reduce to simply examin-
ing their effects on typing rules.

In 2.1.1and Figure2.1, we mentioned the standard arrow operators. We now must
update these operators to include resource types, and wetkkayping rules for these
updated operators in Figurel Note that because we are viewing resource types as a
purely type-level entity, the behaviors of these operanlisnot change. Rather, our new
rules will simply apply extra restrictions to make progratiat improperly use resources
produce type errors.

We will examine each of these typing rules in depth:

e The Ty-ARRrule states that the set of resource types for a pure funttied to a

signal function is empty. Obviously, there can be no ressuse in a pure function.

e The Ty-FIRSTrule states that transforming a signal function udirgj does not alter

the resource type.

e The Ty-CowmP rule states that when two signal functions are composedt, rire
source types must be disjoint, and the resulting resoupm ¢t is the union of the
two. This is exactly the behavior we outlined in the previeastion, and it is in this

rule that resource types show their power.

e The Ty-CHc rule is for the choice operator. The resulting resource ggids the
union of those of its inputs, which are not required to beaiigj Unlike with compo-

sition, where the argument signal functions will both bed)se¢ any given moment,
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Figure 4.1: The typing rules for arrow operators with resettypes.
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only one argument to choice can be active. Therefore, thdfdo& no resource
conflicts between the two arguments, and we need not wornytatloether the re-
sources are disjoint. Of course, because we cannot knovwnkehanch will be active,

the result’s resource type set still must be the union of tharaents’.

The Ty-LoorPrule states that looping a signal function does not alterd¢iseurce
type. Looping allows data to be fedback through a signaltiang but it has no

inherent resource usage.

The Ty-DELAY rule states that the set of resource types for a statefuy diefection
is empty. Although we may think of a delay operation as usirgnory and mem-
ory usage as a resource-worthy effect, each uskelafywill create a new piece of

memory, and there will never be contention between them.

There are many different varieties of switch, as we desdrielier, but they are
all related. Therefore, it suffices to show the typing ruletfee simplest one. The
TY-SwITCH rule, similar to the rule for choice, states that the uniothefresources
of the two arguments make up the resource type of the resudtrdasoning is much
the same as for choice: the two signal functions in the argisrean never be active

at the same time, so their resource types can overlap wittooéntion.

4.1.2 Where Do Resources Come From?

When we introduced resource types above, we used an exantpla WiIDI synthesizer.

We stated that the synthesizer could be represented asa &igotion, and then to make

it safer, we “tag” it with aMidiSynthresource type. Here we explore what that actually

means and the connection between the resource type andthacae it indicates.

Concretely, we think of resources as devices that perfffects or that collect some

sort of input and provides some output to the world. In Hdskek would typically achieve

this sort of effect by utilizing théO monad. Thus, the synthesizer might support a function
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such agnidiSynthM:: Note— 10 (); this monadic action would send individual notes to
the synthesizer and return a unit response. To lift this éaréalm of signal functions, we
would make use of the Kleisli arrow (or equivalent).

From there, we must manually tag low level signal functidreg ticcess resources with
the appropriate resource types. At first this may seem unbafteébecause this would be
done by the language or library designer rather than the emgrgammer, our end pro-
gramming safety guarantees are unaffected. Thus, therdesign create a basis of signal
functions that are typed to overlap in resources where g@piate such that the programmer
can use to build resource-safe applications.

Although this approach is possible, it has two irritatinglgems. First, it conflates the
design of resource types with the domain in which they aregased. That is, a language
specification will be forced to have many built-in signal étions to cover the range of
resources that the language requires. Second, therd & stilall disconnect between the
resource types and the resource actions. When a program lscalar resource in its
resource type, there is no clear definition of what effedttbsource will have. This means
that it is possible for a designer to mis-mark a signal fuorctvith the wrong resource type,
and there is no easy way to detect the error. That is, confreisgurce types to solely the

type level restricts their ability to connect to the program

4.1.3 Activating Resources

In order to provide a clear connection between virtual resesiand the signal functions
that use them, we provide a direct operator thettvatesresources. We do this by intro-
ducing a new fundamental arrow operat@f. (to be read as “resource signal function”).
Thersf operator takes a resource as an argument and uses the rfahae resource
to construct a signal function. This means that we can nodotignk of resources strictly
as phantom types, but rather, they will have real substdratentill have an effect on the

execution of a program.
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This pattern brings to mind ideas of defunctionalizatiteynolds[1977, and indeed,
the process here is similar. All resources are declaretaligtas types, and usingf is
tantamount to choosing which fixed resource to activate. KByausefulness of this is that
it provides a clear separation between a core componenedétiguage (thesf operator)
and information about the environment (the resources thbwes).

We can illustrate the behavior o$f with an example, and thus we once again turn
our attention to the scenario of a MIDI synthesizer. The poirrsf is that because the
MidiSynthresource type is available in the environment, the userlweilable to use the
signal function:

rsf MidiSynth:: Event Note """ ()

What exactly is the type afsfitself? That will depend on the resource. In this example,
the resource is one that consuniNeteevents and producés, but other resources may be

different.

4.1.4 Virtual Resources

The resources we have examined so far are all associatedanitiete, real-world devices.
Thus, all the resource types are pre-defined and not depeoemy particular program.
However, there is no reason why we cannot introduce “vittiggources during execution,
and in fact, this is precisely what we must do to support waied

As mentioned in Sectioh.2.4 a wormhole is a way to transfer information non-locally,
and it behaves as a mutable reference in memory where thagveihd (the whitehole)
and the reading end (the blackhole) can be separated. Intoréasure their safe usage,
these two ends must be accessed no more than once, and weaiseedypes to enforce
this restriction. Thus, upon introducing a wormhole, we tralso introduce two fresh
resources.

Unlike global resources that represent real-world devyittesse virtual resources have
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a limited scope in which they function, and outside of thatps; they should disappear.
In this sense, their introduction is a lot likelet construct, and it is this similarity that
leads us to name the wormhole introduction operktw. Within the scope of théetwW
statement, there are two additional resources that candaehyssf, and at its conclusion,
those resources are removed from the resource environment.

One important contribution we make in the design of worméagerecognizing that
the order of execution of a wormhole affects program behla@ne could allow the read
and write from a wormhole to happen in either order, but tH@as two nearly identical
programs to potentially have very different behaviors. Wavsthat restricting wormholes
such that the read always happens before the write allowsdsoueasoning as well as
introduces a new possibility for control flow. Intuitivelsggardless of the structure of a
program, we want the read to be immediate while the writesghtace “between” time
steps. In this way, we can be sure that any data read from ahaberwas generated in the

previous time step, allowing us to use wormholes to creaisalaonnections.

4.1.5 Resource Commutativity

We introduced resource types in order to address the quedtiohat happens if the same
resource is accessed more than once at the same time. Howevean broaden this
guestion to ask what the observable effect of accessing iffieseht resources at the same
time should be. The fundamental abstraction of FRP indi¢htgghat functionality should
be perceived as instantaneous; thus, any resource effiectlsalso be instantaneous. This
implies that the order of multiple resource interactiongudth not matter, or that resource
access must beommutative

This is a natural conclusion, and we can use it to descrilures types in a slightly
different way: the purpose of resource types is to allow affgcts whose ordering can
be commuted. That is, if two effects require an ordering f{ifictance, if the same effect

is performed twice in succession), then it cannot be peenhitfThis concept extends to
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wormhole resources as well: the ordering of the blackhotkevainitehole must not matter,
and thus they are specifically designed so that the whitetrdierelies onpastinputs to
the blackhole.

This means that if an arrow itself is commutative, that agdesource interaction gov-
erned by resource types to it will not affect its commut&givindeed, much like how the
causal commutative arrow (CCA) transformatidnu[et al, 2011 reorders an arrow to
group all stateful (e.gnit) effects separate from pure computation, one could useathe s
techniques to group all resource effects. In fact, becawsenholes can be used to store
state (as we shall discuss in more detail in Sectigh, a resource version of the CCA

transformation would be strictly stronger than the traxiisil one.

4.2 A Resource Typed Language

Because we are storing key program information in the regotyyges and using them as
both types and values, it no longer suffices to simply prosmi®ae new typing rules for our
new operatorsréf andletW). In this section we will explore the foundations of a langea

that fully integrates resources.

4.2.1 Language Definition

We start with-#{— x +}, the basic lambda calculus extended with product and suestyp
and general recursion that we introduced in Chapter From there, we add the type for
resource-typed, arrow-based signal functions, and wexqatéssions for the three standard
operators for themagr, first, and >=>) as well as choice||(), loop, and delay. In the
process, we also add resources as a new component to thadgngomplete with types
for resources and a resource environment. Finally, we aidrthe resources by adding our
new introduction letW) and applicationréf) operators.

We show our extension t&’{— x+}'s abstract syntax in Figuré.2 and the typing
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=

RTp t == (Tin, Tou) resource type
Typ 1 = ..

| 1 s} To resource typed SF
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| arre SF construction

| firste SF partial application

| eg>>e SF composition

| elllle SF choice

| loope SF looping

| delaye SF delay

| rsfr SF resource application

| letW ry rp 6 in @ wormhole introduction
REn # = ri:ty,....mity resource environment

Figure 4.2: The resource type abstract syntax additiodg{e-x+}.

rules for the newly added expressions in Figdiré In addition to the previous syntax, we
let rs range over resourcds, over resource types, aggls over resource environments. A
type judgmentZ F r :: t indicates that resource environmegtcontains an entry mapping
resource to resource typé. Typically, we will combine judgments to the form % - ...
indicating that both environments may be used.

Lastly, we make the following definition of programs that tamguage supports at the

top level:

Definition 1 (Program) An expression p is program if it has type() 3 () for some set of

resources R.

This restriction is actually rather minor. As our languageléfined for FRP, it is rea-
sonable to require that the expression being run is a sigmakibn. Furthermore, as all
input and output for a program should be handled throughuress, the input and output

streams of a program need not contain any information.

78



4.2.2 Resources

Resources can be thought of as infinite streams of data thagspand with real world
objects, and the default resource environmefy, is essentially the real world (i.e. user
and outside data interaction) split up into discrete, gaedtpieces, but new “virtual”
resources can be added to resource environments via wamhol

Resources are used at both the type level and the expresgen Ad the type level,
resources are associated with the signal functions thathese. Specifically, they are
included in the set of resources that is part of the type afaifunctions.

At the expression level, resources can be accessed foramgubutput via thesf ex-
pression, which essentially lifts a resource into a signatfion tagged with a type level
version of that resource such that the input type of the sigimation is the input type of
the resource and the output type is similarly the output tyfpthe resource. All resource
interaction, and thus all I/O, is done wvisf.

The purpose of resources is to track I/O; therefore, deiptéact that they are “usable”
at the expression level, we do not want them to escape thraughbstraction and so we do

not think of them as typical first-class values.

4.2.3 Signal Function Expressions

It's worth noting that these typing rules are almost idaaitio the ones from Figuré.l
The only change is that because we have a more well-speafgaidge, we have typing
environmentd” andZ to use, and indeed, our rule fesf makes use of the resource type

environmentZ. Specifically:

e The Ty-RSF rule says that the input and output types of the signadtion that
interacts with a given resource must match the input andubaypes given by the
form of the resource. Furthermore, the signal functiontedavill have the singleton

resource type set containing the used resource.

79



rN#Zkre.a—p
F,%Parre:avoiﬁ

TY-ARR

R%Fe:a&ﬁ

TY-FIRST R
MZ+firste: (a xy)~ (BxYy)

F,%Fq:aﬁiﬁ F,%Pez:B&»y
Ty-CompP RIURR=R RNR,=0

F,%Pe1>>>e2:afiy

F,%’Pel:asiy I‘,,%’Fez:ﬁie%y
Ty-CHC RIUR =R

rZkel|e:(a+B) Sy
F,%’%e:(axy)fi(ﬁxy)

Ty-Loop =
%+ loope:a~f
MZre:a
Ty-DELAY d 3
MZ+Fdelay e o~ a
TY-RSF

r)'%(r <Tin,Tou’[>) l_ I‘Sf r. Tm '{\[‘; TOUt
R
r"%(rw: <()>T>7rb: <T7()>) Fera~ B
TY-WH [ ZFe:1 R=R\{rwm}
M ZFletWryrpgin e:aiﬁ

Figure 4.3: The typing rules for the new expressions.
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e The Ty-WH says that the body of the wormhole is a signal functiorvigted that two
resources are added#: one of the form((), T) (the whitehole) and one of the form
(1,()) (the blackhole) where is the type of the initializing expression. The result
of the whole expression is the same as that of the body excaptite resourcesy
andrp are removed from the resource set. This omission is validumthe virtual

resources cannot escape the wormhole expression.

4.2.4 No More Switching

An astute reader will note the removal of the switch operdtateed, with the addition of
wormholes to the language, switching is no longer safe.

To illustrate this point, we can consider a simple exampleitc® allows one to take
values at the signal level and convert them into values asitdpeal function level. For

instance, one could imagine a signal function such as thewlg:
. 0 R
switchSE: a ~~ Event(f3 ~> y)

This signal function takes values of typeand produces events of signal functions of type
B R y, all without using any resources itself. However, what ieasf those produced
signal function output events used one or both ends of a wole?hTheswitchSFsignal
function could escape thHetW scope, but then if we were to switch into its argument,
we would be given access to the wormhole resources. Swigthlity to allow wormhole
resources to escape their scope makes it dangerous to us.

There are ways to address this. For instance, we could aestitch so that the
switched in signal function is not allowed to use any reseugpes. Alternatively, we

could refine the definition of a program to only allow resogrdet are inZ,, forcing all

1. This is similar to a trick used in Haskell to hide monadieefs by using the universal type quantifier
forall to constrain the scope. Here, the resources are only alaitaide the body of the wormhole.
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wormhole resources to be “cleaned up” before the prograndaoum. However, to en-
hance clarity in our further discussion, and because weggravthe previous chapter how
so much of switch’s behaviors can be achieved by choice, stead choose to omit switch

from our resource-typed language.

4.3 Examples

We have extended a simple arrowized model of FRP by introdua@source types as a
means to achieve regulated side effects and wormholes tader@a form of non-local
communication. We demonstrate the usefulness of theseeptswith a few examples
derived from two different FRP domains; the first examplesagmonstrate resource types
in general, and the last two will focus on wormholes.

The examples will generally use the arrow syntax rather tharmore abstract arrow
combinators to make their behavior clearer. Additionallg, will assume a few basic data

types such as numbers and Boolean values as well as typiaaitoseover them.

4.3.1 Composition

For our first example, we will look at how resource types beharnder signal function
composition. As the typing rules make clear, a signal fuumctiannot compose with another
signal function that it shares a resource with, but it isvald to compose with one in which
it does not share a resource. For this example, we will usécrassour domain (common
in e.g. EuterpeaHudak 2014), and explore the practice of connecting multiple MIDI
devices’.

Although MIDI devices typically have separate unrelatedams for input and output,

many devices can be set to act as stream transformers theddnsdd notes produced by

2. MIDI stands for “Musical Instrument Digital Interfacehd it is a standard protocol for communication
between electronic instruments and computers.
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the device in real time to the input stream. This is espgciadeful in cases where one
has many MIDI devices but a limited quantity of ports to cactrtbem to the computer. In
cases like these, one can “daisy chain” the devices, or cbtinem together in sequence,
to gather all of the MIDI events produced into one large sethis model, MIDI resources
would have the type:

(Event MidiDataEvent MidiData

Although we are not limited by number of ports in a virtualtsef, we can stillvirtually
daisy chain multiple devices in order to apply a single openauniformly across all of the
MIDI events.

For example, here is a signal function that daisy chainetMiDI keyboards together

and then transposes all of the notes they produce by a givabenof steps:

daisy:: Number— (Event MidiDatat " =+ MD/2MIDls}

Event MidiDatz%
daisy n= proc notes, — do

notes « rsf MIDI; —< notes,

notesg < rsf MIDI, < notes

noteg < rsf MIDI3 —< notesg

returnA— transpose n notgs

If we had accidentally used the same MIDI device more thareptite program would
result in a type error. Thus, the disjoint resource typesienthat the different devices are

kept distinct, just like in the real world.

4.3.2 Recursion

Sticking with MIDI and the musical domain, we can define a aldanction that creates an
“echo” effect for notes played on a MIDI device. We achievs thy delaying and looping

the notes back through the device itself, attenuating eatshlyy some percentage on each
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loop:

} Event MidiData

echo:: (NumberNumbej 2!
echo= proc (rate, freq) — do
rec noteg,: < rsf MIDI; —< notes
notes <« delayT — (1.0/freq, decay rate notest)

returnA— notegyt

Note the use of theec keyword, which will induce the loop operator and rule (froecS
tion 4.2.3.

The echosignal function takes a decay rate and frequency as timengaarguments
and uses them to add an echo to the notes played on the MIDdedeNiuses two helper
functions: decay rate nsattenuates each note ns by rate, dropping notes when their
volume falls below an audible threshold; adelayT— (t,ns) delays each event ins by

the amount of time.

4.3.3 Conditionals

As mentioned earlier, signal function composition regaiitieat the resource types of the
arguments bdisjoint However, for conditionals (i.e. case statements), thpgreeman-
tics is to take thaatural unionof the resource types. Consider the following functions for

sending sound data to speakers:

playLeft :: Sound{Spevika‘r} ()

playRight :: Sound{Spiik%} ()

playSterea: Soung oPeakerSpeakeg} 0
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We can use these to define a signal function for routing soaitiget proper speaker (often

called a demultiplexer):
data SpeakerChoice- Left || Right|| Stereo
routeSound: (SpeakerChoic&ound {Speaker,Speakat} 9
routeSound-= proc (sc sound — do
casescof
Left — playLeft — sound

Right — playRight —< sound

Stereo— playStereo< sound

This is well typed, since the case statement in arrow symeokes the inference rule for
the choice operatof|().

The routeSoundsignal function may only make use of one speaker at a timeijtbut
feels natural that it should acquire both ®eeakgr andSpeakeg resource types, because
we cannot know at compile time which speakers will be usedthEumore, even though
different branches of the case statement ussdneeresources, those resources will never

be used more than onsanultaneously

4.3.4 Clarifying Domains

An added feature of resource types is that they increaserdngparency of code. For
example, consider the following non-resource-typed @ogdesigned to control a simple

robot:
controlRobot: Bool~+ (Double Double)

controlRobot= proc b — do

returnA—if b then (—5,0) else(10,10)
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Without documentation, it is near impossible to discerntwthis program’s purpose is. In
fact, this program was designed to control a robotic carliaattwo motors (one to control
each front wheel) and a bump sensor on the front. The senevidps aBool value to
show its status, and the motors each tak&oableargument that control their speed. On
the whole controlRobotmakes the robot go straight unless its bump sensor is hithigtw
point it does a brief turn in reverse before continuing gtiaagain.

The problem withcontrolRobotis what we have referred to as th® bottleneck Run-

ning the program that utilizesontrolRobotprobably looks something like:

repeatForevef do
iNp < runlQOjnput

runlOgytput (tick controlRobot inp

We have twaunlO, commands performing effects, and we are steppingtmérolRobot
signal function forward in a pure way. This creates a conadpfand code-level) gap
between where any data is produced and where it is used. @ddurce types, the input
and output devices can be consolidait®o the signal function itselimaking the function

of the program much clearer. Consider the following:

Motor,  :: (Double ())
Motorg :: (Double ())

Sensogump :: ((), Bool)
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R= {Motor_, Motorg, Sensogump}
controlRobog :: () 3 ()
controlRobog = proc () — do
b < rsf Sensasump— ()
if bthen rsf Motor, < -5
else dorsf Motorp, <10

rsf Motorgr < 10

We can see clearly whabntrolRobog does—the type shows us what resources are being
used, and they are being used alongside where they are pahduithin the signal function
itself. Furthermore, we know that, for example, if we wanatll a command to the right
motor when the bump sensorTisue, we can. However, if we want to do that when the
bump sensor i¢alse we will have a type error—if we must, we know that we need to
rewrite code rather than simply add it.

Let's now consider a more complicated program. In a monadiméwork, functions

controlling a robot might look like the following:

moveArmUp :: 10
moveArmDown: |O
moveArmLeft :: 10

moveArmRight:: IO

O

clawGrab o

0
0
0
0
0
clawRelease ::10 ()

These functions activate various motors in the robot arm dventhe arm as expected.
We might also have a compound functidoss:: 10 (). The documentation faosssays
that it moves the arm while releasing the claw to toss what#we claw was holding.
Perhaps we have testéass and now want to make the tossed object go higher, so we

would like to additionally rurmoveArmUpn parallel withtoss Is this a good idea? We
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don't actually know howossworks; if it callsmoveArmDownnternally, that could result
in a motor conflict. With resource types, these functionbetlome much clearer. Consider

the following:

moveArmUge {Motorerical} 0

Motonyerti
moveArmDowee - g (O vertal) 0

Motoryori
moveArmLefls ::a o Ogronalt )

{Motororizontal}
> 0

moveArmRighy- :: a

clawGralse o (MOtOlctaw} 0

clawReleasg: MO ()

. {Motoryertical, Motorciaw}
tosssE:: a FVNS ()

Now, not only is it clear which motort®sssg uses, but trying to rutosssg at the same time

asmoveArmUgg will result in a type error.

4.3.5 Data transfer

One strength of wormholes is their ability to transfer dagtneen two disparate parts of a
program. Typically, this would involve rewriting signalrfations so that they consume or
produce more streams so that one can create a stream linkdrethe two components to
be connected. However, this work is unnecessary with wolasho

We will consider the following two programs:

PR CR = (IntegerwR/% Integen — (() it )

PR CR= (IntegerBI% Integen — (() 3 ()

We will assume that as long & andR, are disjoint, therR; andR; are disjoint also.
These two programs both do almost the same thing: they a&cguitream olntegers from

a source, apply a given signal function to them, and then genesult to an output device.
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Our goal is to connect these two programs in order to crossstreams. That is, we
would like the stream fronf?, to go to the output device d® and vice versa. Without
wormholes, we would be forced to examine and change the mesiéation and type of at

least one of these two programs. However, instead, we camedefi

main= letW ry, rp, 0in
letW ry, rp, 0in
Py (rsf rp, >>>rsfry,) >>

P, (rsf rp, >>>rsfry,)

We pair two wormholes together almost like twlelay expressions, except that we swap
the inputs and outputs. This provides us with two functidrag tire able to communicate

even when no streams seem readily available.

4.4 Delay and Loop

We have provided looping as a built-in feature via thep arrow operator, and in our
introduction (Sectior2.1.2), we described that its use in FRP will always be paired with an
associated use afelayto enforce causality. With wormholes, these two functioresra
longer fundamental but instead can be constructed.

We start by showing that a strictly causal implementatiodaelfycan be produced as

syntactic sugar with a wormhole:

r#Ztr-e:a

Ty-DELAY 0
MNZ#tdelaye:a~~a

.def .
delay i “letw rwrp i in rsfry>srsfry

By attaching the blackhole and whitehole of a wormhole badbaick, we create a signal

function that accepts present input and returns outpuyddlay one step. Essentially, we
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see that thelelayoperator is the connection of two ends of a wormhole.
Interestingly, we can attach the wormhole ends the otherta@yObviously, this can
lead to a trivial signal function of typ@ 2 () that does nothing, but if we provide a signal

function to be run in between the connection, we can builddhewing:

M#Zteg:y F,%’l—e:(yxa)fe(yxﬁ)

Ty-DLOOP =
MN#rdoopege:a~pf

dLoop i % letw rwrp i in proc a— do
X< rsfry—= ()
(y,b) « e—=<(x,a)
rsfrp,—<y

returnA—b

We are able to achieve a delayed form of looping by a cleveotisevormhole. We first
produce a new wormhole and provide the loop’s initializatwalue as its initial value. We
extract the loop datafrom the wormhole by accessing the whitehole, feed thatgeith
the input valuea to the signal functiore, we loop the resulting loop databy sending it
to the blackhole, and finally we return the generated valuBue to the causal behavior
of wormholes b values that are output frombecome neva input values tce on the next
iteration. Thus, the input on th# iteration is given by the output on time- 1 iteration.
With the results of this example, we no longer need to prolidging or delay as

fundamental operators in our language.

4.4.1 Wormhole Loop Syntax

There is one problem with using wormholes for looping, whigkthat doing it in practice
often feels somewhat imperative. The nature of explicittitimg to blackholes and reading

from whiteholes can obscure the underlying feedback thatgsirring.
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Actually, a similar problem happens with arrow loop itseifice theloop operator is
not always easy to use. The solution in this case is that asymax is extended with r@c
keyword, which allows the programmer to write recursivedjided streaming values. This
rec syntax is then translated into an invocation of tbep operator Paterson200]. Of
course, it is possible to rewrite non-causal loops with $iyistax, and doing so can create
an infinite loop, so one often needs to usgetayoperator of some sort to prevent this.

We can create a similar system with wormholes. That is, weosaite a custom syntax
that eases program development and that desugars intcasawdrmhole creation and
application. It will be nearly identical to the arrow loogc syntax in appearance, but it will
rely on a different underlying transformation. We will tibve arec block, and within that
block, values are allowed to be recursively defined. Howenather than simply hoping
that the user usedelay operators in the appropriate places, we provide a new aperat
introduce which we will use in the desugaring.

Theintroduceoperator behaves to the user identicallgébay That isintroduce:: a —

(a 2 a), and it must be used whenever a new recursive value is defif@dnstance, if
we have a signal functiosf, and we would like its output fed back to itself as input, with

an initial value of 0, then we could write the following in goroc syntax:

rec X < introduce0—y

y + sf—<x

Basically, the rule of thumb is that streaming values on tghtrside of anntroducedo
not need to have been defined yet. However, because thixsgridasigned for resource
typed FRP, which is commutative by design, the real rule isttireavalue to the right of the
introducemust simply be defined within (or before) thec block.

The desugaring is as expected. We create a new wormhole apdpudate it with
initial values gathered from eaattroducefrom therec block. Then, at the start of threc

block, we read the whitehole, and at the end of it, we writeht lhlackhole. All of the
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introducestatements are removed post-desugaring.

For the example above, the block will desugar to:

letW ry rp 01in
X< rsfry—= ()
y + sf—<x

() < rsfrp—y

If there are more than onatroducestatement in the block, then they can be grouped
together: the value stored in the wormhole would be a tuplallaff the introduced val-
ues, and they could be read all at once from the whitehole artewall at once to the

blackhole.

4.5 Semantics

We provide a discrete, synchronous operational semaimti¢bdé resource typed arrowized
FRP language we have built. As these semantics are somewhpleg and in an effort to
demystify them, we separate the functionality into threstidct transitions. At the highest
level, we apply a temporal transition. This transition dsthow resources behave over
time and explains how the signal function itself is “run”. (R# from Definition 1 that
only expressions with typé) & () are allowed as “runnable” programs.) Because our
language is lazy and evaluation is performed when necessgmgessions may be able to
simplify themselves over time. Therefore, this transitiat return an updated (potentially
more evaluated) version of the input program.

The temporal transition makes use of a functional transtianterpret the flow of data
through the component signal functions of the program avangpoint in time. Thus, the
judgments in the functional transition handle how the in&aeous values of the signals

are processed by signal functions.
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Because the expressions to be run can contain arbitrary Eodidulus, the functional
transition judgments make use of an evaluation transitibermnecessary to evaluate ex-
pressions when strictness points are reached. This idydaiple transition that performs
as a typical, lazy semantics of a lambda calculus.

A top-down view of the three transitions is the most intdtway to describe their
functionality. However, to define them, it is easier to staith the evaluation transition

and work up from there. Therefore, we present the followraggitions:

e— ¢ Evaluation transition
(v,x,e)= (¥",y,€,#) Functional transition
(%, W ,P) AN (%', w',P") Temporal transition

where
eand€ are expressions

¥ and?’ are sets of triples
xandy are values
w and¥’ are sets of wormhole data
Z# and%' are resource environments, and

PandP’ are programs

In the following subsections, we discuss these transitiomsore detail.

4.5.1 Evaluation transition

The evaluation transition is used to evaluate the non+sirgacomponents of the language.
We start by assuming a classic, lazy semantics for lambdeessions and application,
product-type pairs and projection, and sum-type case sisayd injection as provided by
Z{—x+}. We show our additional rules for the additional expressiohour language

in Figure4.4. Note that we leave outelayandloop due to them being implementable via

wormholes.
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ET-ARR ————
arr(e) val

ET-FIRST ————
first(e) val

ET-COMP —————
(ep > ey) val

ET-CHC —
(er]|| &) val

ET-RSF

rsfr val

ET-WH -
(letW ry rp g in €) val

Figure 4.4: The evaluation transition judgments for oueagton taZ{—x+}.

We use the notatioe val to denote that expressianis a value and needs no further
evaluation.

Obviously, these rules are very straightforward: no ewanas done on signal func-
tions in this transition. This transition is important fbetoperations of/{— x+}, but it
is strictly a formality here.

The languageZ’{— x+} has a standard Canonical Forms Lemma associated with it
that explains that for each type, there are only certainesgions that evaluate to a value
of that type. By simple examination of these new rules to taedition, we can extend the

lemma as follows:

Lemma 1 (Canonical Forms)If e val and e: a B B, then e is either an SF constructor,
an SF partial application, an SF composition, an SF choicehent, an SF resource

interaction, or a wormhole introduction.

45.2 Functional transition

The functional transition details how a signal function &eds when given a single step’s
worth of input. It is a core component of the temporal traositdescribed in the next

section as it essentially drives the signal function for @stant of time. It is a big step
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FT-ARR

(7 ,x,arr(e)) = (¥,e xarr(e),0)

e—*e (V. x€)= (V" y & W)
(7, (%,2),first(e)) = (¥, (y,z),first(e"), #)

er—=" e (V. xe)= (Ve V1) emre (V&)= (V26 72)

FT-FIRST

FT-CowmpP
(V. xe1>>e) = (V" 2, €] >> €, #1UW5)
* / * / / /
Fr-Cre, X7 left(X) e —*¢€ (”I/;x,e@)é(”f/,y,e/ljﬂ)
(7 x.elllle) = (V,y, €|l e, 7)
oo, X2 IGX) & e (VX&) = (V. y.e )
2 7 xelle)= (Vy.elle,7)
RS Uy )1 %18t = (U {(h -0 yorstr.0)
* / /
FT-WH e— e( (%U{(rW;aa')v(rm()7')}7X7e()3(7/7y7e(7W)

(V. xletWryrpein e = (V,y,& . # U{[rprw,&]})
Figure 4.5: The functional transition judgments.

semantics. The functional transition judgments are shoviigure4.5.

Before we discuss the judgments themselves, it is importaekamine the compo-
nents being used. First, one will notice the et represents the state of the resources
(both real and virtual) in the world at the particular momentime that this transition is
taking place. Each element of is actually a triple of a resource, the value that resource
is providing at this moment, and the value to be returned &b tbsource. At the start,
we assume that all of the elements have the form -), which indicates that resource
provides the valu and has no value to receive. It should be no surprise thatrhe o
judgments that read from or modify this set are RSF and F-WH, the judgments for
resource interaction and virtual resource creation.

The second argument to each of the judgments (typicaity Figure 4.5) represents
the streaming value being piped into the signal functionweieer, since the functional
transition is only defined for an instant of time, rather ttt@a value being an actual stream,

it is the instantaneous value on the stream at this time #tepartner is the second result,
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or the instantaneous value of the streaming output of thetisignal function.

The third argument is the expression being processed. Thpogel of the functional
transition is to describe how signal functions behave wheengvalues from their stream-
ing input, and as such, it is only defined for signal functi¢that is, expressions that have
the typea g B for some seR). Notably, there are only judgments corresponding to the
forms given in the updated canonical forms lemma (LeninaOn the output end, this
term represents the potentially further evaluated formhefibput expression. We prove
later in Theoren? that this output expression is functionally equivalentte input one.

The first three terms of the output correspond to the threestef the input, but there is
also an additional ter#’, which contains data about any wormholes processed durisig t
transition. In addition to adding the two virtual resourcesated by a wormhole expression
to the resource environment, we need to separately keep afabe fact that they are a
pair. Therefore#” contains elements of the forifmy, rw,e] wherery, is the name of the
blackhole end of the wormholey, is the name of the whitehole end, aad the value in
the wormhole. We will use this information later to propeulydate wormholes over time
in the temporal transition.

Note also that we use the teem-* € to denote continued application of the evaluation
transition— on e until it is evaluated to a value. That valueds

As this is a critical piece of the overall semantics, we exsreach of the judgments

individually:

e The Fr-ARR judgment does not touch the resources, so the ittpig returned un-
touched in the output. The expressiemxdoes not need to be evaluated due to the
lazy semantics, but it is the streaming output nonethel€lss.final two outputs re-
veal that no further evaluation of the expression has bera dod no wormhole data

was created.

e The Fr-FIRST judgment is only applicable when the input streaming vasue pair

(which is assured by the type checker by using theFTRST rule). The first element
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of the pair is recursively processed with the argumefit$g and the output is formed
by the updated”’ and by re-pairing the outpyt As the body of thdirst expression,
e, was evaluated, its updated form is returned along with aoymkole data the

recursion generated.

The Fr-Comp judgment first sends the streaming argumethiroughe; recursively.
Then, with the updated”’, it sends the resuit throughe,. The resulting?” andz
are returned. Once again, the updated expression is rdturtige output. Lastly, the
wormhole data from both recursive calls of the transitiom anioned together and

returned.

The Fr-CHcy judgment is applicable for a signal function choice operativhen
the streaming argument evaluates tefavalue. This argument is defined in typing
rule Ty-CHc to be a sum type. The “left” expressias, is evaluated and a recursive
call is made. The output is formed by the updatédthe new streaming output, the
choice operator applied to the updatddand the original, unevaluatesd, and any

wormhole data from the recursive call.

The Fr-CHC», judgment proceeds similarly to therFCHC, judgment, but whem is

aright value instead of &eft value.

The Fr-RSF judgment require$’ to contain an element of the forfny, -), wherer

is the resource being accessgis the value the resource currently has, and no output
has been sent to this resource yet. The streaming atugut into the resource, and
the result is the streaming valyefrom what was in the resource. The sétis
updated, replacing the triple used here with a new one ofdhm fr,-,x’) showing

that this resource has essentially been “used up”.

The Fr-WH judgment first evaluates its bodto the valueg'. For its recursive call,

it updates the set” with two new triples corresponding to the two new resources
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created in the wormhole operatiofiry, e,-) and (rp, (),-). These are two fresh,
unused triples thasf operators can make use of in the balyAs triples are never
removed,”” will include these two triples as well. The result is thi$ with the new
triples, the streaming value y, the updated beflyand the wormhole data from the
recursion updated with the eleméng, ry, & ] corresponding to this wormhole. Note
that the returned expression is no longer a wormhole but éas teplaced with the
body of the wormhole. This is because now that this wormhakelieen evaluated,
its values live inside/” and it has been cataloged#i—it is no longer needed in the

expression.

The following theorems provide some extra information dtiba overall functionality of

this transition.

Theorem 1(¥ Preservation)If (7',x,e) = (¥",y,€,#'), thenv(r,a,b) € ¥, 3(r,d,b') €
¥ and V[rp,rw,i] € #, 3(rp,ap,bp) € ¥ and3(rw, aw,bw) € 7.

This theorem states that the elements in the irgudre preserved in the output. In
fact, there is a direct correspondence between them sucifi tfrinput set has an element
with resource, then the output will too. Furthermore, when new values daded (as in
FT-WH), they correspond to values i#t. The proof is straightforward and proceeds by

induction on the functional transition judgments. It hasbemitted for brevity.

Theorem 2. [e Preservation] If & o & B and(¥,x.e) = (V',y,€,#), thené: a R B
and é has the same structure of sub-expressions as e with the excepat wormhole
expressions may have been replaced by their bodies. Forsaplaced, there is a corre-
sponding element iw” of the form[rp, rw, i] such that p and ry are the virtual resources of

said wormhole. Furthermore, R R andVvr € (R'\R), either[r, , ] e # or [,r, ] ¥ .

This theorem states exactly how the output expressioan be different from the input

expressiore. Notably, it will still be a signal function with the same ipand output types
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and it will still behave in essentially the same way, but és&f resource types may grow.
Specifically, if the resource type set does grow, it is beeaus/ormhole expression was
reduced to its body and the virtual resources it introducedhaw visible at a higher level.

A notable corollary of this theorem is that# = 0, thene= €.

Proof. The proof follows by induction on the judgments and the tgpinle Ty-WH for
wormholes. A cursory examination of the judgments revéwsthe only one to change the
form of the expression from input to output is-%VH, which replaces the input expression
with the body of the wormhole. The typing rule tells us thaeif o & B andeis a
wormhole, then the body o has typea R B whereR= R\ {rw,rp}. Although the
resource type set may have grown, it could only have growrhbyatdition ofry, ry, or

both. Furthermore, the elemem,, rw, ] is added to the output'. O

Lastly, it may appear that multiplsf commands on the same resource could be prob-
lematic; after all, the =RSF judgment initially requires the resounce have a triple of
the form(r,y, ), but it results in the third element of the triple being filied That is, there
is norsf command judgment where the triple has a value in the thintheht. However, as
we prove later in Theorer®, if the program has type & B, then it must have at most one

rsf command for any given resource

4.5.3 Temporal transition

Because signal functions act over time, we need a transtishaw their temporal behav-
ior. At each time step, we process the program, taking intde ®f the world (i.e. all the
resources) and returning it updated. There is only one temhpr@nsition, but it is quite
complicated. It is shown in Figur&6.

This transition says that the resource environn#nthe set of wormhole dat#”, and
a programP transition into an updated resource environment, an uddsageof wormhole

data, and a potentially more evaluated program.
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Yin={(r,read 1,-) | r € Z}U{(rw,i,") | [b,Tw,1] € #)}U{(rp,(),*) | [rp,Tw,i] € #)}
(%, ), P) = (Yout, ), P's #new)
X' = {updater o’ |r € Z,(r,_,0) € Your,0—*0'}
W' ={[rp,rw,if 0="-theni elseo] | (rp,,0) € Yout, [b,Tw,1] € (# U #new)
(BN P) s (%, W' P

Figure 4.6: The temporal transition.

Before we can begin to analyze how the transition behaves aregfain level, we
first need a method of actualigteractingwith resources. This happens via the use of two
functions:

read = (Tin, Tout) — Tout
update :: (Tin, Tout) — Tin — (Tin, Tout)

The read function simply returns the current output value of the givesource, merely
“peeking” at what is there. Thepdate function takes a resource and the value to give to it
and returns an updated version of the resource.

The first precondition extracts data from the resources amdvoles and compiles it
into a form that the functional transition can use. For tleueces, we create triples of the
form (r,read r,-) meaning that the resourceprovides the valueead r and is waiting for
a return value. For wormholes, we actually create two tsiptee for the blackhole and
one for the whitehole. The whitehole uses the whiteholeunesoname,, and the current
value in the wormhole, and the blackhole usgand produces only).

This data is provided to the functional transition alonghwttte progranP. Because
P has type() B () by definition, the streaming argument is set(jo The result of the
functional transition is the updated value %gi;, the streaming output & (which the type
guarantees to bg), the updated program, and a set of any new wormhole dataptezed
during execution.

The last two preconditions are analogous to the first ong. ¢ktract the resource and
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wormhole data fron¥,y. For every element irfgy: that corresponds to a resource4)
we take the output value, evaluate it, and push it to the resource. The resulting teda
resources make up the new st It may be thab was never filled and is still empty—the
update operation is executed regardless in order to push the resoue time step into the
future. Note that because of the use of the evaluation transthis step acts as a strictness
point for the streaming values of the signal functions.

The wormhole data is extracted in much the same way. For elemgent in’q; that
corresponds to a blackhole in either the original wormheaiadet”” or in the new addi-
tions #hews We examine the output value If o was filled in, then the updated wormhole
entry contains the new value; otherwise, the wormhole késudd value.

Each application of the temporal transition is designedef@resent one moment in
time, or one unit time step. We could easily parametrizettiaigsition with an actuabt,
or change in time, but this is not necessary. In fact, one legnk Df real time itself as a
resource whose value can be probed at any moment, and inslmitige semantic behavior
of the transition is allowed to be independent of real time.

In total, we see that the temporal transition uses the pnogr#o update the resources
2 and the wormhole dat#’. Because of Lemma, we can see tha#’ contains all the
resources tha¥ did, and similarly,”#”’ contains all of the elements from bot and#pew.
Therefore, if(%Z, % ,P) AN (Z',w',P), then this transition can repeat indefinitely. That s,
the next step would bez’, 7", P') AN (2", »",P") and so on. Since each pass through
the transition represents one moment in time, this makesesasa valid way to represent
program execution over time.

We can use the temporal transition to establish an overalasécs for a progran®
in our language. Recall tha¥, is the default resource environment containing all the

resources of the real world.
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Definition 2 (Program Evaluation)If P is a program (that is, an expression of the form
() B () for some set R), then P will have the infinite trace startingtates %,, 0, P) that

uses only the temporal transitiof.

4.6 Safety

Here we show the safety that resource typing provides. Véadhto show that if a program
is well typed, then no two components will compete for the saasource. To express this,

we must first define what it means to interact with a resource.

Definition 3 (Resource interaction)A program P interact®once with a resource r at a
given time step if it reads the value produced by r at that t&tep, returns a value to r at

that time step, or does both simultaneously.
With this definition, we can state our resource safety thaore

Theorem 3 (Resource safety)lf a program P: a B B, then P will interact only with
resources in R, and for each resource it interacts with, it ddlso at most once per time

step.

This theorem tells us that any program that type checks wijl ase the resources in its
type and never have the problem where two components arg fyirthe same resource.
The program will be entirely deterministic in its resourcamagement, and from the type
alone, one will be able to see which resources it has the palt¢ém interact with while it

runs.

Proof. The proof of resource safety begins by examining the temp@nasition. Because
each element i%Z is a unique resource, we know that interacting once eachdiffiégrent
elements inZ will never cause a problem. Furthermore, as all we do to erétis

exactly oneupdate operation on each resourc&, will likewise have unique resources.
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The concern, then, comes from the functional transition. miist prove that updates in
Yout @re not being overwritten by future updates during the fionet transition.

Therefore, the bulk of the proof proceeds by induction on ftirectional transition
where we must show that any element¥immre only being updated at most once. Based on
the updated Canonical Forms Lemma (Lemihawe know that sinc® : a g B, it must

be one of the five SF operators. We examine each in turn:

e SF constructor: If P is of the formarr(e), then by typing rule ¥-ARR, R= 0 and
it will use judgment F-ARR. There are no other transitions nor resource interaction

being performed in this judgment, and sifike: 0, we trivially satisfy our conditions.

e SF partial application: If P is of the formfirst(e), then by typing rule ¥-FIRST,
we know that ife has typea R B, thenR = R. Furthermore, we know thds will
proceed via judgmentFIRST. By our inductive hypothesis, we know thatvill
interact with each resource iR at most once, and since no resource interaction

happens in this judgment, we satisfy our conditions.

e SF composition: WhenP is of the forme; >>> e, it will proceed by the F-CompP
judgment. By typing rule Y-CompP, we know thate; has resource type sBi and
& has resource type sBp such thaiR; UR, = RbutR; "R, = 0. By our inductive
hypothesise; evaluates interacting with at most the resourcdzjiande, evaluates
interacting with at most the resourcesRp. However,R; andR, share no common
resources, and together, they makeRipTherefore,P does not interact with any
more resources than thoseRnand any inR that it interacts with, it does so at most

once.

e SF choice: WhenP is of the forme; ||| e, it will proceed by the F-CHCy or
FT-CHC, judgment. Typing rule Y-CHc tells us thate; has resource type sB4
ande, has resource type sBp such thaiR; UR, = R. By our inductive hypothesis,

we know that eithee; evaluates interacting with at most the resourceRjiror e
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evaluates interacting with at most the resourcd®)irbut only one transition is used.
We know thatR is the set of all common resourcesRa and Ry, so regardless of
which transitionP proceeds through (runnirg or e;), only resources iR will see

interaction, and they will only be interacted with at mostenTherefore, we satsify

our conditions.

e SF resource interactionif P is of the formrsf r, then it will proceed by the FRSF
judgment. Typing rule Y-RSF tells us that its type must lme{vr»} B. The transition
completes in one step with no preconditions making use ofunihér calls, but in
fact, 7' is being modified, so resource interaction is taking place sék that the
element in¥” for resource is the only one being accessed and it happens precisely

once. The access is allowed because trivialty{r}.

e wormhole introduction: Rwill proceed by the F-WH judgment when it is of the
formletW ry rp & in e. Typing rule Try-WH tells us thae has typex & B the same
asP. First, we recognize that no resource interaction can beqmeed bye because
it is never evaluated as a expression by the functional itrans Even though we
add values to”, we do not modify and existing values, so we are not doing arg t
resource interaction in this transition. Therefore, oduictive hypothesis tells us that

only acceptable resource interaction is done in the tiansif the precondition. [

This proof takes the progress and preservation of our secsdat granted. The proofs

for these can be located in Appendi3.

4.7 Haskell Implementation

In addition to the typing rules and operational semantias,bwilt an implementation of
arrowized FRP with resource types and wormholes within thekelalanguage. This im-

plementation differs slightly from the language design \&eehspecified, but this is due to
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a few particular limitations in Haskell. At the end of thiscsen, we will discuss possible
extensions to the Haskell language specification (or, mkety|] language extensions for

GHC) that could allow us to overcome these limitations.

4.7.1 The Resource Type

We will begin by building a system to allow for resource typdsssentially, a resource
is a type-level entity that can be accessed to perform a reaffextful update (recall the
read and update functions from the previous section). We choose to reptetenidea

of resources as a type class, and then new resources canabedcby allowing types
to instantiate this class. We make use of GHC’s functionakddpncies and multiple

parameter type classes to write this:

classResourcerabr — a,r — b where
read :r—I10b
update::r —a— 10 ()

rsf ::r—>(a{~r»} b)

Where in our theoretical model, thhead andupdate functions were pure, here we allow
their Haskell counterparteadandupdateto perform effectfulO actions. Thus, we addi-

tionally require resources to obey the following Resource:La
read r>>read r=readr

To instantiate this class with a resource type, one wouldigeoas the three type pa-
rameters the resource, its input type, and its output typenTfor the given resource, one
can define theead andupdatefunctions which will perform the resource’s I/O effects.

Rather than force the user to instantiate isfgfunction, there should be a default im-

plementation provided by the library author, or the one whbtings the arrow type. For
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instance, one could build this resource type system on t@psofple Kleisli Automaton
over thelO monad:

dataa~~b=KA (a— 10 (b,a~ b))

In this case, a simple implementationrsf could be:

rsfr=KAS$A a—do
updater a
b« readr

return (b, rsfr)

With this infrastructure in place, a user can define res@uveey easily. For instance,
if a user wanted to declare a resource for printing lines xtftie the terminal console, he

could do so:
data Console= Console

instanceResource Console Stririg where
read_ = return ()

update_ = putStr

Thus, resources are extensible both over the nature of therlying arrow type as well

as by the user who wishes to add new resources to his envirdtnme

4.7.2 Resource Type Sets

Resource types alone are not enough; next, we need a way tsegprsets of resource
types. Our implementation is inspired by Haskell's HLigtréiry [Kiselyov et al, 2004
for heterogeneous lists, and as such, resource type sétcidlly be implemented using
lists of types (which have an inherent order and may haveichtpk). Our goal in this
subsection will be to create type classes and families twalis to perform our main set

operations: union, disjoint union, and set removal. In addito some of GHC’s more
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well-known language extensions (multiple parameter tyjpeses, etc.), we make use of
the newer type families and data kinds extensions as well.
To begin, we use an updated version of the type equality ¢tass HList, here with

equality constraints and Boolean data kinds:

classTypeEq(x:: k) (y:: k)(b::Bool) [ xy—b
instance(True~ b) = TypeEqgx x b

instance (False~ b) = TypeEqxy Db

An instance ofTypeEghas its third type a3rue only when the first two types are equal.
Although it is possible to write a similar construction ugidaskell’s closed type families,
the two versions are not the same. This versioiygfeEqwill unify more eagerly in the
case of type inequality, which will prove essential for how imtend to use it.

We will also need a way to make a type level decision based @thehtypes are equal,

so we introduce the following closed type family:

type family IfThenElsgb :: Bool) (x:: k) (y:: k) :: k where
IfThenElse True x y= X
IfThenElse False x ¥y

If the first type argument is True, the result is the second (then” clause), and if it is
False, the result is the third (the “else” clause).
Together, type equality and the conditional type familpwallus to write a type class

that computes type level list inclusion:

classElemOf(x:: x) (ys:: []) (b:: Bool) | xys— b

instanceElemOf X[] False

instance(TypeEq x y bElemOf x ys z ~ IfThenElse b True)z
= ElemOfx(y":ys)r
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classUnion (xs:: [%]) (ys:: []) (zs:: [*]) | Xs ys— zs

instanceUnion '[] '[] ']

instanceUnion ’[] ys ys

instanceUnion xs’[] xs

instance (ElemOf x ys lres~ IfThenElse b y$x " ys), Union xs res zs
= Union (x": xs) ys zs

Figure 4.7: The Union type class.

The first instance states that a type is never an element ahatyeype list. The second
states that a type is an element of a type level list eith¢isfequal to the head of that list
or if it is an element of the tail.

With these classes and family established as the basicsamvbegin in earnest with
the set operations we need. We present a type class thatrpsrtbe union of two sets
in Figure4.7. The first three instances dictate that the union of a set thighempty set
(in either order) is the set itself. The last states that wefoal the union of two sets by
examining the head of the first set. If it is an element of theoed set, then the result is
the union of the tail of the first set and the second set. Otisenthe result is the union of
the tail of the first set and the head of the first set added tedhend set.

Another way of viewing our set union operation is that is ipeqding the two under-
lying lists together but skipping any elements that the tets lhave in common.

Next, we can use this union operation together with a digjess test to create our
disjoint union type class, which we show in Figur&.

Lastly, we create a type class that represents set removalhwe show in Figurd.9.
Unlike the other type classes, this class will have an aasatifunction that performs the
removal. The first instance states that removing an elememnt &n empty set is just the
empty set. The second states that removing an element fragh\ah®se head element
is that element is the tail of the set. The third states thabkéng an element from a set
whose head element is not that element is the same as rentbeigement from the tail

while including the head in the result. One may note that veeaussick similar to what we
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classDisjoint (xs:: [*]) (ys:: [])

instanceDisjoint '[] ']

instanceDisjoint '] ys

instanceDisjoint xs '[]

instance (ElemOf x ys Fals@isjoint xs y3g
= Disjoint (x": xs) ys

classUPIlus (xs:: [x]) (ys:: [*]) (zs:: [#]) | XS ys— zs
instance(Disjoint xs ysUnion xs ys zs= UPIus xs ys zs

Figure 4.8: The Disjoint type class for establishing disipess and the UPlus type class
for performing the disjoint union.

classSRemoveéx :: [x]) (ys:: [x]) (zs:: [#]) | X ys— zswhere
ys zS
sremove: X — (b <~ ¢c) — (b~ ¢)
instanceSRemove ¥] ’[| where
sremove = unsafeCoerce
instance(ys~ z9 = SRemove & . ys) zswhere
sremove = unsafeCoerce
instance(SRemove x ys'yéy’: ys) ~ z9 = SRemove gy " ys) zswhere
sremove = unsafeCoerce

Figure 4.9: The SRemove type class removes resource typesdsmurce type sets. It has
a value-level function as well.

did in theTypeEcclass to test for type equality.

We need the value-level functi@memovebut it has no value-level computation, so we
fix it for all instances asinsafeCoerce a — b. Although seemingly overpowered, we are
using this coercion in a safe way: not only is the functioelitsonstrained by the class,
but because it can only be used when the type set and the dlémnemove satisfy the

class, we can be sure that we will not change the type into ongginappropriate.

4.7.3 Re-Typing the Arrow Operators

We now have both type level resources as well as a method tes@&nt and operate over

sets of types. What remains is to use these types in the typihg arrow operators, as we
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did in Figure4.1

In Haskell, arrows are represented by Areow type class, which itself is a subclass of
the Categorytype class. In order to retain our ability to use arrow syntaeaur code, we
follow the same patterf. Thus, instead of recreating our arrows from scratch, we lgimp
modify the existing classes to suit our needs.

We show the code for these type classes as well as relevditroof theArrowChoice
type class (which provides the choice operations) andtr@vLooptype class (for loops)
in Figure4.10* Note that we require the () function for choice rather than the more
traditional and simpleleft. Because choice allows for a union of types, we can on longer

define (||) as a composition déft andright; however, we can defirleft andright in terms

of (I[[)-

4.7.4 Wormholes

In our theoretical model, wormhole resources were subffgrdint from physical resources.
Specifically, wormhole resources were handled with a sépatigual resource environ-
ment’# . In practice, it is simpler to instead make wormhole resesijost the same as
physical ones. Thus, implementing wormholes comes downgiaintiating théResource
type class.

Ideally, we would be able to use local class instances swathaté could generate new
types for our resources and then locally declare them aarnioss of theResourceaype

class for the wormhole body. Although local type class ins¢s have been discussed, no

3. As we will discuss in Sectiod.7.6 GHC does not currently support rebindable syntax for Agow
which means no method of re-typing the Arrow classes will eaging the arrow syntax with resource types
possible. However, we show this process to future-proottreept, or to prepare for when this feature is
supported.

4. Note that the code we present is not actually valid Haslae because we are using thesymbol
for our arrow. In Haskell, a symbol like this can only be usedagbinary type operator, but we use it as
an operator over three types (input to the left, output toridpet, and resources above). In Haskell, we are
technically forced to use a prefix type operator insteadfdiuthe sake of clarity and consistency with our
examples, we take the liberty of using the symbol operator.
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classCategory(~~) where

id::bLl
2

(35) 1 (UPlus 1 2 13) = (b5 ¢) — (¢ 2 d) — (b2 d)

classCategory(~~) = Arrow (~) where

arr ::(b%c)—>(b£ )
first :: (b~ ¢) — ((b,d) ~ (c,d))

classArrow (~~) = ArrowChoice(~) where
(IIl) 2 (Union ry 2 r3) = (b <4 d) — (c~2 d) — (Either b cd d)

classArrow (~+) = ArrowLoop(~+) where
loop:: ((b,d) ~~ (c,d)) — (b~ c)

Figure 4.10: The Haskell Arrow classes redefined to perrsibuiece types. Note that we
are only including the primitive operations and leaving auoy that can be defined in terms
of them (e.gseconqgl.
version has yet made it into GHC, so we are forced to take anafipgroach.

We will make two new types to represent whiteholes and blalgéhand provide each

with a hole for a phantom type so that we can keep their typ&isdt in the presence of

multiple wormholes:

newtype Whitehole r t= WhiteholgIORef 1)
newtypeBlackhole r t= Blackhole(IORef 1)

Within every whitehole and blackhole is a referencel@Re} to the piece of memory that

they both non-locally share. Writing tl®esourcenstances is straightforward:

instanceResourcéWhitehole r ) () t where
read (Whitehole ref = readlORef ref

update_ _ = return ()
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instanceResourcdBlackhole r ) t () where
read_ = return ()

update(Blackhole ref t = writelORef ref t

Now that we have wormhole resources, we can consider wrikia¢etW operator to
introduce them. We will make one change from the version wgewtised earlier in the
chapter. Because Haskell has no way to simply extend the typeament for a body, we
turn the body argument into a function that takes two resouatues (one for the whitehole

and one for the blackhole). Thus, the type of this functiolh a0k like:

letW:Vrerr’'r"tbec.
(SRemovéWhitehole yt) r r’, SRemovéBlackhole ¢ t) r' r”) =

t — (Whitehole yt — Blackhole ft — (b~~c)) — b L

To remove the wormhole resource types from the output resotype set, we use two
instances oERemove

The implementation ofetW would be straightforward to write were it not for the fact
that creating a whitehole and blackhole requires@Ref Therefore, we must introduce

one more function that our arrow must be able to support tmalNormholes:

classArrow (~~) = ArrowlO (~) where

initial AIO :: 10 d — (d — (b~ ¢)) — (b~ C)

This class and its function allow an arrow to be built from thsults of an initializing 1/0
action. A function like this is required to build wormholdsjt it also clearly breaks the
guarantees of resource safety if used incorrectly. Thusliew it for the implementation

of letWbut expect that it is not exported to library users.
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We now give the implementation &t\W.

letW t inner= sremoveundefined: Blackhole ¢ t) $
sremoveundefined: Whitehole 1t) $
initialAIO (newlORef}
(A ref — inner (Whitehole ref (Blackhole ref)

Notice that this is where we make use of the value-lsxa&iovdunction from theSRemove
class. Without it, we would not be able to make the output uss® set match the one

returned by thénner function.

4.7.5 An Arrow Instance

We have done our best up until this point to avoid choosingparicular instance of the
arrow class—resource types should be relatively univesdlapplicable to many forms
of arrows—>but at this point in our discussion of implemeiotatwe will provide a sample
signal function implementation.

As hinted at earlier, our implementation will be similar teetKleisli Automaton, but
we will augment it slightly to properly deal with resourc&gpecifically, we will define our

arrow data type as follows:

dataSFrbc=SF(b—10 (c,1O(),SFrbo)

The SF data type has two separate ways of dealing Waihactions rather than the single
way that the Kleisli Automaton has: the actions can be peréatduring the arrow’s exe-
cution, or they can be gathered up in the outigu{) to be performed latetbgtweertime
steps).

Instantiating the arrow classes is trivial with this dataeyand our instances look iden-

tical to those for the Kleisli Automaton but witkturn () filled in for the extrdO () outputs
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and a simple bind>>) whenever two of those actions need to be combined. Indbad, t
extra output becomes relevant only for resources, such as whk are defining our default

implementation ofsf:

rsfr=SF$A b—do
c—readr

return (c,update r brsfr)

As can be seen here, the ext@a() output allows us to delay executing thedate actions
until between time steps, which is critical for making woités behave properly.
Recall from Definitionl that for a signal function to be a program, it must have type

() % (), and we can write a function that will allow us to run a program

runSF:: () 3 ()—=10 ()

runSF(SF s = do
((),actionsf) «+ sf()
action

runSF sf

4.7.6 Limitations
There are two limitations with the implementation we havesgnted in this section.

Abstract Types With Wormholes

The implementation we have provided works with any conaeteurce types, but it cannot
always handle arbitrary resource type sets. This meananlydtll program can be defined,
but functions that transform arbitrary other signal fuass may be rejected by the type
checker.

An example will help illustrate this point. Let's assume wavé a signal function that

does some arbitrary resource interaction with resourcaisd that has an output type that
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is the same as its input type:
mySF: a £a
mySF= ...
Perhaps we want to wrap this with a wormhole to create a feddioap. We can define

the following:

R
mySFI'oop ra—= ()~ )
MyShyop @ = 16tW a(A w b— rsf w>ss> mySFEss>rsf b)
As long asmySFHis defined and concrete, this will work fine.
However, as functional programmers, we may naturally waraltstract the behavior

of “wrapping” a function with a wormhole, and so we desire tatev

wrap:: (a~a) —a— (() ~ ())

wrap sf a= letW a(A w b— rsf w>> sf>>> rsf b)

With this, we could simplifymySh,,, = wrap mySEwhich seems great. Unfortunately,
this is impossible. The type checker does not know whaill be, and so it cannot verify
critical steps such as whether the whitehole or blackhaeures we create might already
be part ofr. This is frustrating because we as programmers know thaiefmuirces of a
wormhole we construct will be fresh and absent from any eatyitr, but Haskell's type
checker is currently not up to the task of deducing this.

This limitation only appears when combining signal funattcansformers (such as the
abovewrap function) with uses of wormholes. Thus, we see it as an aabéptimitation
for our prototype of resource types. We believe the issuddcba overcome in more
dependently typed languages, so for a fully working impletaton, we must either extend

or abandon Haskell.

Rebindable Syntax

Currently, arrow syntax in GHC is activated by the “arrowsidaage pragma and is fairly
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restrictive: GHC expects all arrows to follow a particularrh, and that form cannot change
through a segment of arrow syntax. With resource-typedaaréhe arrow’s type may
change within arrow syntax—indeed it will if amgf operations are within the syntax.
GHC sees this as an error.

Unlike the type removal from the previous limitation, thissas entirely surmountable.
In fact, there is even a template from which to begin workimginadic rebindable syntax.
The rebindable syntax extension to GHC allows one to detlsrewn Monad class, and
then GHC will follow it exactly, even if it calls for the typef the monad to change within
the syntax. Although no effort has been made to write thisresibn, it should not only be
possible, but we expect it to be straightforward, if time ©ming.

Additionally, this limitation even has a currently availalwvorkaround. Although GHC
does not support rebindable syntax for arrows, Patersoiggal arrowp arrow prepro-
cessot does. Therefore, a user who desires resource types alohgawiw syntax can
instead remove the “Arrows” language pragma from their s@dile and run it through
arrowp before handing it off to GHC. The error messages tend to be si@mkenging to

comprehend, and it is more of a hassle to use, but it is a tealyivorking alternative.

5. One may note that the code shown in this entire Haskellédmphtation section never explicitly uses
Haskell's arrow syntax, and this rebindable syntax retsbnds the reason why.

6. Available on Hackage afttps://hackage.haskell.org/package/arrowp.
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Chapter 5

Asynchronous Functional Reactive

Processes

5.1 Considering Asynchrony

Arrowized functional reactive programming is naturallyjsiironous: components are con-
nected via composition, and those connections describecasynous flow of information.

In other words, if a signal function has an output typexathen it can be composed with
another that has an input type @f and every output from the first is synchronously fed to
the second. In fact, even if raatais being conveyed along one of these connections, as
would be the case ifr were (), there is still a sense dimethat is communicated. Thus,

to create asynchronous signal functions, we need to canaidentirely new connection
method: we must consider how we can construct a connectairstimehow dissociates

time from data.

5.1.1 Wormholes Revisited

Of course, we have already discussed the answer previgathgr than use default compo-

sition for our asynchronous connections, we use speciabjgtied wormholes that apply a
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time dilationover their contents, warping those contents to match thagwof their output.
Where synchronously there would be a unit delay between dkbble’s inputs and the
whitehole’s outputs, asynchronously, there must be aréifiiesort of effect on time. In-
stead of the whitehole emitting exactly what the blackhaleepted, it will emit a stretched
out or compressed image of it depending on the nature of tinits butput. For example,
if a sine wave were passed through a wormhole from one prdoessother running at
half the speed (in a discrete realm, this would correspontexperiencing half as many
time steps per second), then the receiving process woutéiperthe frequency of that sine
wave as twice as fast.

Of course, the fundamental nature of the wormhole will narge—even with this
new model, if the two ends of the wormhole share the samemofidime (i.e. are in the
same process), then this will simplify to the same unit détay we started with.

Operationally, we can achieve this in a discrete model lmynaig the underlying data
structure of the wormhole to sometimes return nothing @ating a stretching of time, or
that no new data has been generated from the blackhole bim&st whitehole access) and
other times return multiple elements (a compression of timehich multiple elements
have “queued up”). Thus, we build our wormholes atop a queuetsre, which we model
using a list.

Interestingly, we generally do not need to worry about hosgdathis list can get or
other common issues of buffering. Because wormholes argrssito be read only by
one source (the whitehole), we do not need to keep any buiearia between whitehole
accesses. Thus, the amount that the buffer can grow is gadvénnthe number of times its
blackhole is written to before its whitehole is read, whisltyipically predictable and fairly
well bounded. Of course, one can design a pathological chseavthe process writing to
the blackhole stalls indefinitely, but as long as the systehates fairly, this should not be
a realistic problem.

TheletW operator changes slightly to reflect this. The blackholeuese remains the
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same, but the whitehole resource will now be of tyjg List t). Additionally, as the
underlying data type is now a list, the initial value giveriie wormhole will also be a list.
Because of this underlying queue, wormholes somewhat rdearinénnels from other
languages. Although they are conceptually similar in thaytboth ferry data from one
place to another, their use is somewhat different. Unlilee dbtput of a channel, from
which individual data can be popped off and used, the outpat ff wormhole consists of

the time dilated data from another process.

5.1.2 Forking

With this model, communication between asynchronous comapis can, and in fact must,
be done entirely at the resource level (i.e. with wormhol@$erefore, any asynchronous
process will have the typ@ g (). But still, we must be careful—we cannot simply com-
pose two asynchronous signal functions together eveniifitigut and output types arg
because any connection using standard composition wallldrébrce a synchronization
point.

Therefore, we introduce a new operator:
fork: )R (s aRa

Thefork operator will spawn a new process for the given signal famcéind allow it to run
freely with its own sense of time. In its own process, it willHave as an identity.

As mentioned above, even when inputs and outputs seem t@ygomvinformation,
they are still communicating a sense of time; this is the eagefork as well. Although
the embedded signal function is specificallyt synchronized with the inpyp stream, that
stream still provides a notion of time to the asynchronoousgss.

This may seem confusing or irrelevant, but it has a serioymghwhen considered

in the presence of arrow choice. Iffark operation is in a branch of a choice that is not
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currently active, then it is not currently receiving anyarrhation, about time or otherwise.
Therefore, it should not and must not provide any sense @ftimthe asynchronous process
it has created. That is, if Bork is in an un-taken choice branch, then the forked process
must not be active (or must be immediately terminated). Imynaays, this is similar to
the ideas of non-interfering choice discussed in Chapteshich dictate that if a branch is
inactive, the program as a whole should behave as if thathrdoes not exist.

At first glance, this seems dangerous—What if we stop a prooasexecution, leav-
ing it in some sort of unsafe state?—however, we can easisgep this issue by relying
on the fundamental abstraction of FRP. Because we assumeashantaneous values are
processed infinitely fast, then at any given point in time, itistantaneous value is either
processed entirely or not at all. Thus, we can never be “imrtiakelle of” anything.

Operationally, we handle this by treating each time ste@fgiven process asteans-
action that will either succeed completely or fail completely. §hif the process stops
mid-execution, the transaction fails and no effect is olmae.

In total, we have a system where multiple signal functions e independently of
each others’ notions of time and yet still communicate wheaded. That is, we have a

system ofcommunicating functional reactive processebich we refer to as CFRP.

5.2 Motivating Examples

Before proceeding with the formal syntax and semantics of CixeRrovide a few exam-
ples to help motivate the design we have chosen. In theseptegmve demonstrate some
high level, expressive operators that can be built usingfAeP tools. In Sectiob.4, we

will define these operators in more detalil.
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5.2.1 Fork

Forking a signal function to run with its own notion of timetlse most primitive asyn-
chronous computation that CFRP offers. That said, it is pawenid useful even on its
own.

In the world of computer music, it is not uncommon to want tegemt a GUI to a user
while simultaneously producing music, and indeed, FRP canské for both. Unfortu-
nately, the GUI will probably be running at around 30-60 femnper second, but in order
to get high quality sound, the pitch produced must be remdrenore like 44,100 samples
per second.

This thousandfold disparity would pose a problem for a symcbus FRP model, but
it is exactly the problem that the fork primitive is desigrtecovercome. Furthermore, we
can make use of fork’s interaction with choice to provideuker with an option to dictate
whether the music should be playing or not. If the user opsdénce the music, the forked
process will stop executing.

We will assume two domain specific signal functions: a widgat produces a selection
option (select: String— (() ~» Bool)) and a sound playeplaySound: () {Speakers 0)-

With these, we define:

musicGUI: () {Speakery ()

musicGUI= proc () — do
b < select'Play music?" < ()

if b then fork playSound= () elsereturnA— ()

While the selection irue, the playSoundunction will proceed at its own time rate in its

own process, but when the user sets Fatse it will stop and the process will stop as well.
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5.2.2 Asynchrony in network packet maps

Although the forking from the above example is useful, CFRP alan handle the more
interesting case where the asynchronous processes neechbounicate as well. For ex-
ample, in the realm of networking, one may have two signattions, one for determining
an incoming packet’s destination and another for examitiiegpackets to determine an
optimal network map. Every network map is guaranteed to beech so it is acceptable
to use an old map when routing, but it is essential that thiesysoutes packets as fast as
possible. Even though creating the network map may takegtlore, a fully synchronous
system will force packets to wait whenever the map is beicgloalated, but with CFRP,
we can construct new maps in an asynchronous process tteatenges time more slowly,
allowing us to retain fast routing performance.

We might describe this scenario with the data typaskef Dest and Map and the
signal functiongoute:: (PacketMap) ~~ DestandmakeMap: Packet~ Map. Using arrow

syntax, we can write the synchronous version:

router:: Packet~ Dest

router= proc p — do
m <« makeMap— p
d < route— (p,m)

returnA—d

This router will executenakeMagor everyPacket slowing down packet routing severely.
Even with a modifieadnakeMap:: (List Packe} ~» Mapthat accepts batches of packets, we
will get an intermittent slowdown; for example rifakeMapran on batches of ten packets,
then every tenth packet would be delayed while the map wawg lmeeated.

Instead, we can create asyncoperator that will automatically forknakeMapto its
own asynchronous process and provide wormholes for conuatioin between the pro-

cesses. WittmakeMaprunning with its own, slower notion of time on the other enchof
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wormhole from the main process, the streanfPatkes it receives will be compressed and
theMaps that it produces expanded. Operationally, this meansdvaPackes will queue

up in the input wormhole, and as soonraakeMap finishes oneMap, it will collect the
gueuedPackes and begin working on the next one. Meanwhitajte will run quickly on
eachPacketand automatically see neMlaps whenever they are created. Tdmyncoper-

ator has the typasync: (Lista ~» 3) — (a ~ List ) and we will define it from CFRP
primitives in Sectiorb.4.1once we present the language more fully. That said, we can use

it now to code an asynchronous version of the router:

router:: Packet- Dest

router = letW ry rp (Mgefault: €) in proc p — do
Mhew <— async makeMdp—< p
Mprey <— ISt ry —< ()
let m= if null mpeywthen head myey elsehead Mew
() <=rsfrp—m
d < route— (p,m)

returnA—d

Note that we use a supplementary wormhole initially suppliéth a default map simply
to keep track of state during a time step. That is, the wormfexds the old map back to

the beginning of the process in case no new map is ready byetlidime step.

5.2.3 Speculative Parallelism

One of the benefits of non-deterministic asynchrony is thigyato perform multiple oper-
ations at once and observe which is fastest. In particukaican start two tasks, and when
one of them finishes, we can accept the value it returns armiegsr even cancel the other
task. This is calledpeculative parallelism

Let us assume we have two signal functions that representwautasks. In syn-
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chronous FRP, these two signal functions will both compuggr tlesults in one time step,
and even if one finishes first, the program will wait for theesthOne option to try to
address this is to allow the signal functions to take muétifghe steps to complete. That
is, we can let the input be an event stream that is assumedyt@wer provide a one-time
“impulse” event and allow the output to likewise be an evérgasn that will only return a
value when it has taken enough steps to have produced thit val

Even with events and the ability to delay returning a valyachronous FRP models
will not work properly because the two signal functions wtill proceed in lock-step. Even
though one may finish before the other, their synchroninativeach step will prevent one
with many fast steps from ever beating one with a few compmrtatly intensive steps.

The asynchronous nature of forking can overcome this huBkéeause we can allow
each signal function to run with its own time, we can actuabgerve which is faster, even
if it is the one that takes more time steps. Thus, we can peoaitlinction for speculative

parallelism:

spar:: (Eventa ~~ Event)
— (Eventa ~~ Eventy)

— (Eventa ~ Event(B +y))

Whenspar g e, is given an impulse, it will fork botle; ande,. Eventually, some time
later, it will produce an event that is eitherLaft § if e; finished first or eRighty if e
did. At that point, it will stop both signal functions and pikaece no more events. The
spar function can be defined from CFRP primitives, and we will shois trefinition in
Section5.4.3

As a practical case, we can once again consider the netwatikgamaps from our pre-
vious example. Let us assume that there are two differeneimgntations omakeMafr
one that spends a brief time step on each packet in its batbrporating the packets into
the map one by one, and the other that creates a map out ofttttedigpackets and then

merges that in its entirety to the older map all in one longetstep. Which approach is
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faster may be indeterminable at the outset, so we would diker both and use the result

from whichever finishes first. Withpar, this is trivial.

5.2.4 Parallel Composition

Although asynchrony typically implies nondeterminism i@@she previous examples), we
can also use it to define a certain class of deterministiccwoant scenarios such as a
parallel, no-feedback function pipeline. As long as therea feedback, the parallel com-
position of two signal functions is possible because thé éine can begin work on the
“next” value while the second one is still working on the “@nmt” value. In fact, whole
chains of signal functions can be parallelized in this walyjc@rse, this mentality assumes
discrete events, and so we must restrict this procedurelycapply to event streams.

For this example, let us assume we have a signal functiorupnog data to process,

two signal functions for computation, and a signal funcfiendelivering output:

source: () et Eventa

sf, :: Eventa ~~ Eventf
sf, :: Eventf ~» Eventy

sink:: Eventy e ()

Note the use of resourcesc andsnk

Rather than simply compose these all in series, we can asymzkreach one, but
instead of relying on a master thread to manage the othenssevthe parallel composition
operator:

(>|>) :: (a ~ EventB) — (Eventf ~~ () = (a ~ ())

which we will define in Sectio®.4.2 Note that the type of|> is similar to that of simple

composition. With it, we can connect the output of one sidganattion directly to the next
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one and still reap the benefits of parallelism:

{src, snk}
e rd

pipeline:: () ()

pipeline= source>|> sf; >[> sf, >> sink

For a practical case, consider an FRP implementation of argmognterpreter. Pro-
gram interpretation proceeds through a number of stepsapsrparsing, optimizing, and
evaluating. While optimizing one piece of code, we could tb&ocally start parsing the
next, but standard synchronous composition of these stepddworce us to wait until
each code event is optimized and even evaluated before waegamparsing the next one.
However, because parsing depends on neither optimizadioemaluation and optimization
does not depend upon evaluation, we can connect thesex{vitmstead of>>> and see a

performance improvement.

5.3 The Language

5.3.1 Syntax

Once again, we will start witt¥’{ —x +}, the basic lambda calculus extended with product
and sum types and general recursion that we introduced int&tfapand extend it further
with arrow operations, resources, and wormhbl@is extension is shown in Figufel

We let T range over typesy over variable names over expressions, arid over en-
vironments. A type judgmerit - e:: T indicates that it follows from the mappings in the
environment that expressioe has typer. Sums, products, and functions satigfyand
n-laws. Further, we let range over resourceispver resource types, anl over resource
environments.

Lastly, we define processes that CFRP supports, and note that€RREen any process

1. We will additionally use the notatianfor the empty list, : for construction, ang- for appending two
lists.
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Typ 1 = ...

| 11 g T resource typed SF
Var v
Exp e = ...
| arre SF construction
| firste SF partial application
e >>e SF composition
| er]]| e SF choice
| fork e SF fork
| rsfr SF resource interaction

| letW ry rp & in e wormhole introduction
Env I := vy Tq,...,Vh i: Ty type environment
Res r
RTp t = (Tin, Tout) resource type
RENW :=rq::tq,....rn ity resource environment

Figure 5.1: The CFRP extensionf6{— x+}.

as a top level program:

Definition 4 (Process) An expression e is process if it has type() 3 () for some set of

resources R.

5.3.2 Typing Rules

The part of the language not associated with resources gndlg$unctions (that isZ{—
x+1}) is necessary but tangential to our discussion, and as suebmit the typing rules
and semantics. It suffices to say that they are as expectedrfon-strict, functional lan-
guage.

The seven signal function expressions allow the consbmaif complex signal func-
tions in CFRP. The rules are presented in FiguBand we will examine the new or altered

ones in more detail here:

e The Ty-FORK rule states that a forked signal function must have t@p@ (). The

whole expression acts as the identity signal function tetsaming input.
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MN-e:xa—p

TY-ARR 0
MYrarre:a~f

F;Wl—e::avR»B
MWHfirste: (orxy)&(ﬁxy)

TY-FIRST

F;Wkel::aiziﬁ F;wkez::ﬁséy
Tvy-ComP RIWR, =R
F;W%e1>>>e2::a~R»y

F;Wkel::aﬁy F;LIJFeZ::B&y

TY-CHC RIUR, =R
R
HWrhelle:(a+B)~y
. . R
Ty-FORK hwre:z()~0

I‘;Wl—forke::afia
(rz (Tin, Tow)) €W

TY-RSF m
M WErsfr: Tin ~ Tout

CWorw (), ListT),rp i (1,()) et a L4 B
TY-LETW MWHe:Listt R=R\{rw,rnp}

MWYHIetW ry rp g in e::avR»B

Figure 5.2: The typing rules for the CFRP signal functions.
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e The Ty-LETW rule is for wormhole introduction. It says that the body lod tvorm-
hole is a signal function provided that two resources areddd?: one of the form
((),List T) (the whitehole) and one of the forir, ()) (the blackhole) wherkist T
is the type ofg. The result of the whole expression is the same as that ofdtlg b
except that the two new resources are removed from the @seat. This omission

is valid because the virtual resources cannot escape thalvade expression.

5.3.3 Operational Semantics

The operational semantics for CFRP are broken up into two meisitions: thevaluation
transitionfor evaluating basic lambda calculus andfimectional transitiorfor interpreting
the flow of data through the component signal functions of ghegram through time.
Beyond these two, we have tegecutive transitiona one judgment transition that defines

the course of program execution. Thus, we present the foitpthree transitions:

e € Evaluation transition
(ST,.2, %)= (S,T,%',#") Functional transition
(T,2,w) | (T, %', ") Executive transition

wheree are expressions§ are program state3, are process maps$7 are resource maps,
and? are wormhole maps.

These semantics follow a similar three-tier system to theasgics for synchronous
FRP with resource types from Chapteb. However, where the synchronous semantics
use a big-step transition for the middle tier, we use a snbgl, svhich allows us to merge
the synchronous “temporal” transition right into the fuaotl transition. Furthermore, the
small step semantics are critical for being able to exptesgiterleaving of processes that

is necessary in describing the asynchrony inherent in CFRP.
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Evaluation Transition

The evaluation transition is used to evaluate the non+sirg components of CFRP. n
an effort to conserve space, we take as given a classic, tnop-functional semantics
for lambda expressions and application, product-typespaid projection, sum-type case
analysis and injection, and list-type construction an@ eamlysis. Furthermore, we simply
let all seven signal function expressions of CFRP go “unevatiiaso that they can be
handled fully in the functional transition.

CFRP has a standard Canonical Forms Lemma associated witheixiilains that for
each type, there are only certain expressions that evaloaevalue of that type. The

relevant portion of this lemma for our purposes is as foltows

Lemma 2 (Canonical Forms)If e is a value and e a 3 B, then e is either an SF con-
structor, an SF partial application, an SF composition, &n hoice statement, a fork, a

resource interaction, or a wormhole introduction.

Functional Transition

The functional transition is a small-step, stack-basaukiten that details how signal func-
tion expressions behave. Not only does it describe how akignction handles an instan-
taneous value of input, but it also governs the conceptusdgge of time and applies a
code transformation, updating the program itself wheragedode segments are executed.

With four inputs and outputs, the functional transition keaather complex, but in
actuality, no single judgment uses all of the inputs. Thaesfwe will occasionally omit
matching inputs and outputs for a given judgment with thelicagion that the judgment
holds them constant.

The first argument to the transition is the program stateclwis used by every judg-
ment in the transition. The program state consists of a obstackK, an expressioe, a

streaming valu@, and update datd and can come in one of two forms:
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FR-FIRST

(+,z) frame
FrR-ComP FrR-ComP
L >>e) frame 2 (e; > -) frame
FR-CHC; ————— FR-CHCp ——————————
L (&) frame % (e1|[| ) frame

Figure 5.3: The stack frames for the functional transition.

1. An evaluation stateof the formK > (e,v,U) corresponds to the evaluation of sig-
nal functione with instantaneous streaming valuand update datd relative to a

control stackk.

2. A return stateof the formK < (e,v,U) corresponds to the evaluation of a stack
with possibly transformed signal functi@nresulting instantaneous streaming value

v, and update datd.

The control stackK represents the context of evaluation and is representedlias ai
frames The possible frames are shown in Figir& and we use the operator ; to add
frames to the stack.

The selJ contains pairs of resources along with input data for theseurces. This is
necessary because writing to resources happens condgfe@ieertime steps, and 90
acts as a buffer that accumulates resource writes untilaleeyeady to be written.

The judgments for the most basic arrow expressions (SF rwatisin, partial applica-
tion, and composition) utilize only the program state. Wevsthem in Figures.4 without
the clutter of the other of the transition’s arguments wheleassumed that the other pa-
rameters proceed through the transition unchanged. Forthre, as these judgments are
relatively straightforward, we omit a detailed descriptaf them.

The second argument to the functional transitidbnjs a mapping from process iden-
tifiers to program states and is used to represent the clyrmemining processes. It is

necessary for forking new processes, as seen in the foliptmia judgments to handle the
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e— ¢
(K> (ex,U)) = (K> (€¢,x,U))

FT-EvAL

FT-ARR (K> (arre,x,U)) = (K< (arre,e xU))

X X

FTERSTL (K (fstex,U)) = (K& (firste x,U)

FT-FIRST, (K> (firste (%,2),0)) = (K, (~2) > (&x),U)

FT-FIRST3

(K; ('72) < (e7y)7U) = (K<] (firsta (y7Z),U))

FT-Co
ML S (e s e xU)) = (K (55 ) > (en,xU))

FT-CoMP,

(K;(-=>e)<(eyU)) = (K;(er>3> ) > (e2,y,U))
FT-CoMP3

(K;(e1>> ) <(ep,zU)) = (K< (eg>>e,2U))

Figure 5.4: The functional transition judgments for thend&rd arrow combinators. The
process datal(), resource map%), and wormhole map#’) are all assumed to be held
constant.

fork operator:
_ pfresh, T'=T[p+ £r>(e(),0)]
FT-FORK (K> (fork e x,U),T) = (K< (fork e px,U),T’)
;o
FT-FORKp T =if pe Dom(T)thenT elseT[p+ 1> (g (),0)]

(K> (forke px,U),T) = (K< (fork e px,U),T’)
Note that we allow théork operator to take an optional additional process identifigu-a
ment. Thus, in the judgmentrtH-ORK, we fork a new process with a fresh process ID, and
in the Fr-FORKp judgment, the identifier is available. Although in this sedqudgment
we know that we have forked before, we still must check to siforked process is il
in case it was terminated due to a choice statement. Alse,that this judgment assumes
that# and?  are held constant through the transition.

The parallel judgments to theTH-FORK ones are those for governing the behavior of

choice (||). Recall that CFRP utilizes the ideas of non-interfering cadi allow the
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X X
(K> (er]][€2,%U),T) = (K> (er[|| &2,X,U),T)

T =T\ (getChildrenOf T &)
(K> (e[| &2, LeftxU), T) = (K (-[[|€2) > (€1,%,U), T')

FT-CHC2 (1 e < (en.20).T) = (K< (e [[[€2,20).T)
T' =T\ (getChildrenOf T )
(K& (ex ||| 2. RightyU).T) = (K: (ex][]) > (62,0, T')

FT-CHCr2 e e T < (8,.20).T) = (K< (a][[62,20).T)

FT-CHCe

FT-CHCp

FT-CHC1

Figure 5.5: The functional transition judgments for choifehe resource mapA) and
wormhole map ¥') are assumed to be held constant.

branching decision to affect the program behavior. Spedificany forked processes from
an un-taken branch of a choice expression are terminatenldér to express this behavior,

we make use of the following meta-level function oVer
getChildrenOf :: T — (a0 5 ) = T

ThegetChildrenOf function takes a process data map and a signal function &mchsethe
set of process data that the given signal function has caodeelforked. It is used in the
judgments describing the behavior choice as seen in Figbrerhe Fr-CHc, judgments
show the functioning of the choice operator. For the most, plais behavior is typical of
non-interfering choice, but we take one additional step. RWVtlgoosing the left or right
branch (in F-CHcy1 or FT-CHC,1), we remove all processes fromthat were produced
by the other branch.

The last two arguments to the functional transition are @ased with resources. The
mappingZ maps resources to resource data. Each resource may haverandifype of

resource data, but regardless, the resource and its datamplement the following two
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functions:
read <Tin, Tout) — Data— Tout

update :: (Tin, Tout) — Data— Tin — (Tin, Tout)
whereData represents the associated data type for the given resolineaead function
returns the current output value of the given resource, Imépeeking” at what is there
without affecting it in any way. Thapdate function takes an input value for the resource
and returns an updated version of that resource. In praetscean be seen in the transition
judgments, calls to these functions will generally be offthven read r Z(r) and similar for
update. As might be expected, reading can happen at any time, battimgdonly happens
at a time step.

Because wormholes need to share an internal sense of statanwet simply add two
resources t@. Instead, we use a layer of indirection in the forn¥of We create a dummy
resource iz that contains the wormhole state and then #Sé& map both the blackhole
and whitehole virtual resources to that dummy. We additlgmaclude an identifier (either
“W” or “B”) to keep track of whether this resource is from a wiiitde or blackhole.

The wormhole resource state consists of a pair of quéyes, whereb is the accumu-
lation of blackhole data ang is the next readable value for the whitehole. We define the

read andupdate for wormhole resources as follows:

read ry (b,w) =w
update ry (b,w) () = (¢, b)
read rp (b,w) = ()

update ry (b,w) x = (b;x, w)

The functional transitions that make usesfand#”” are the most critical transitions of
CFRP, and they can be seen in Figbré These judgments behave as expected given our
intuitive descriptions of the operations from the begignai the chapter and the immedi-

ately preceding descriptions of the parameters, with twesio
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re#z U =(rx):U y=readr Z(r)

FT-RSF
RS S sfrxU). %, 7) = (K2 (st ry.U"), % 7)

rew U =(rx):U y=readr Z(fst#(r))

(K> (rsfrx,U)Z, 7 ) = (K<(rsfr,y,UNZ, %)

rfresh %' =2Zr— (g,8)] #' =#Irp— (r,B),rw— (r,W)]
(K> (letW ryrp g inex,U),Z, %)= (K> (ex,U),Z,#")

F1=2% [r—updater Z(r) x| (r,x) €eU,reZ|

Ry =% |1 — update rp Z1(r) x| (rp,x) €U, # (ryp) = (r,B)

Hz = Ao |r — update ry Zo(r) X | (rw,X) € U, # (ry) = (r,W)

(EQ(G,(),U),%,W) = (£I>(e7()70)7%37/%)

FT-RSFy

FT-LETW

FT-TIME

Figure 5.6: The functional transition judgments that inelwesource and wormhole man-
agement. The process dafd (s assumed to be held constant.

e Once virtual resources are added#oand# by the Fr-LETW judgment, they will
not need to be added again, so the expression is modifiedltwextieletWoperator
on return. Despite this, wormholes cannot be created &ntiiéh a pre-processor
due to the fact that a process that is forked, terminatedilamforked again must

recreate its wormholes. As this is a dynamic operation, gtrbe handled here.

e Rather than deal with a particular form of an expression, thel ME judgment
handles the case where the program is ratarn state with an empty control stack.
This state signifies that the signal function has run its sedor this time step. All
update data ibJ is processed, updating as necessary, and the program begins again
with the program state changing framturn to evaluationand a new empty set of

update data.

Structural Preservation of the Functional Transition

The purpose of having an expression in tétirn program state in the functional transition
is to allow the transition to apply a code transformationisTthansformation is useful to

allow wormholes that have been executed to not be executed exgthe future. We assert
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Exe=e
K;(-,z) me=Knafirste

Ki(->>e) xe=Kxe>s>e
K;(e1>>) xe=Kmie >>e
K (-[lle2) e=Kpae|l| &
K:(er]l]-) e=Kpae||e

Figure 5.7: The definition of the frame application operatoused by the unwinding
operator:.
that this transformation will not negatively impact the beior or functionality of the code,

but to state this more precisely, we first define a notionratindinga program state.

Definition 5 (Unwinding) If S is a program state of either the formrK(e,v,U) or K <
(e,v,U), then S+ € (read Sunwindsto €) where é= K i e. (Thex operation is shown

in Figure5.7.)

Basically, this gives us a way to examine the entire progratha&owe can compare it
before and after any transformations. We use this to shototlratransformation affects

the program in only very specific ways.

Theorem 4(Structural Preservation)f S is a program state, & e:: o 8 Band(ST,Z, %)=
(S,T". %', #"),then S € :: a R B such that éwill be identical to e except that:

e There may be code irl that has been further evaluated by the evaluation transitio

than in e (as peFT-EVAL),

e Wormhole expressions in e may be replaced by their bodi€saimcethere are corre-

sponding updates i’ and %’ (as perFT-LETW).

The proof of this theorem follows directly from an analysiglee functional transition

judgments.
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Program Execution

With the functional transition well defined, we can discuss dverall execution of a pro-
gram in CFRP. Because of the asynchrony inherent in the languagatuitively want to
think of the program as running multiple signal functioneate. However, we describe it
technically as only one process running at a time, with aaeterministic choice between
which one runs.

The following judgment describes the executive transjtwnich defines program exe-

cution:
(p,YeT

Exec  (ST\{(p,9},%,7)= (S.T" . %", 7")
(T.2,7) 4 (T"u{(p,S)}, %', ")

Note that the choice dfp,S) from T is made non-deterministically and fairly. Thus, this
transition arbitrarily chooses a process and runs one dtép execution. The returned
process data is the s&t, itself a result of the functional transition, extendedhibe
process that just rafp, S).

We can define the execution of a whole program as a sequermggththis EXEC

transition as follows:

Definition 6 (Program Execution)Program execution is the application of the reflexive
transitive closure over thEXEC transition |} starting with initial parameters &= {(p, € >
(e,(),€))}, #Z =%, and# = 0 where p is a fresh process ID, e is a process, aaglis

an initial mapping of resources representing those of tla weorld.

5.4 Concurrency Operators

In Section5.2, we showed some examples of the higher level constructsamabe built in
CFRP. Now that we have defined the syntax of CFRP, we will definetbesstructs and

display their underlying principles.
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5.4.1 Asynchrony

Asynchrony is trivially available in CFRP via tHerk primitive. That said, it allows no
direct communication between processes. However, by uUsirkgin conjunction with

wormholes, we can easily create asyncoperator:

async: (Lista £ B)— (a 8 List B)
async st= 1etW ry; rp; € in1etW ryo rpo € in (fork g f)
where f=rsf ryj > rsf ryo

g = rsf ry; > sf>>>rsfrpg

Quite simply,asynccreates two wormholes, one for input values and one for awgdues,

and then uses them like channels between the main proces$iseafutked process.

5.4.2 Parallel Composition

In Section5.2.4 we examined a signal processing pipeline that made userallglezing
composition to link together different signal functiongbuhat they could each process as
fast as possible. This|> function essentially creates two forked processes: one thal

parallel job and one to accept the result of that job.

>>)(RRUR=RRNR=0) =
(a A EventB) — (Eventp 2 0) = (a~()
sf, >|> sh=IletW ry rp €in (fork g>> f)
where f=sf; >>>rsfry

g = buffer (rsf ry) > sf,

To simplify the definition of this function, we have made u$¢he functionbuffer, which
is shown in Figures.8. The buffer function takes a signal function that returnsiat of

Evens and converts it into a signal function that retuBvens one at a time. Essentially,
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buffer:: (a £ List (EventB)) — (a & Eventp)
buffer sf=letW ry rp (€ : €) in proc x — do
(b:.) «rsfry—=()
elementgey < Sf—< X
case(b++ compress elements,) of

£ —do _«rsfrp—<¢
returnA—r

(y:ys)—do _<«rsfr,—ys
returnA—y

compresg = €
compresgNoEvent rst) = compress rst
compresgEvent x rst) = Event x compress rst

Figure 5.8: Theoufferfunction.

the list is compressed to just its events—if there are mae tne, then they are buffered
and returned one at a time, and if there are none and the lsi#enpty, therNoEvents
returned.

As long as there are no wormholes or resources permittinfijdiveof information from
e, back toe;, then>|> can provide something resembling deterministic paraleleven

though it is made of only non-deterministic, asynchronausgonents.

5.4.3 Speculative Parallelism

In Section5.2.3 we discussed the idea of speculative parallelism andttbanibe achieved
in CFRP. In Figuré.9, we show the definition of theparfunction.

Thesparfunction starts by creating a new wormhole that it uses tp keek of whether
it should continue or not. If it should continue, then it seitkde impulse event stream to
asynchronized versions of its two input signal functiond ainserves their buffered outputs.
Because we only expect a single event in the output, we caerithi#m simply to reduce
the type fromList (Eventa) to Eventa. If either signal function produces an event, then

we return it and setontinueto Falseby sendingralseinto the blackhole. the wormhole.
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spar:: (RiWR, = R) = (Eventa 3 EventB) —
(Eventa 3 Eventy) — (Eventa & Event(B+Y))
spar sf sf, = letW ry, r, (False: €) in proc a— do
(continue: _) < rsfry — ()
if continue|| isEvent athen do
g <« buffer (async(arr collapse>>>sf;)) <a
& < buffer(async(arr collapse>>>sth,)) <a
case(ey, &) of
(Event b_) — do_ <+ rsf r, < False
returnA— Event(Left b)
(.,Event g —do_ <+ rsfr, < False
returnA— Event(Right ¢
_ — do_ < rsfrp,—<True
returnA— NoEvent
else do
_<«rsfrp,—<False
returnA— NoEvent

collapses = NoEvent
collapse(NoEvent rst) = collapse rst
collapse(Event x rst) = Event x

Figure 5.9: Thesparfunction.
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Otherwise, we satontinueto Trueand outputNoEvent

If the wormhole indicates that the speculative paralleisoomplete (that is, i€ontinue
is False, then we choose the second branch, which simply reasbatt@é should not con-
tinue and outputBloEvent Note that by choosing the second branch, we are also eécti
halting the progress of the asynchronized processes,minegeany unneeded computation

if one of the processes is still trying to produce an output.

5.5 Language Properties

CFRP satisfies two important properties that we highlight is $lection: resource safety
and resource commutativity. We will provide an intuitivense for these two properties,
but a formal treatment can be found in Appendix.

We begin with a concept of@oment in timeOne moment is the computation between
time steps that a given CFRP process executes. The idea of annhomime comes
from the fundamental abstraction of FRP, in that one momegmesents the simultaneous
execution of all data with the same time stamp.

The notion of resource safety starts with the guaranteeatlsagnal function of type
as B will not interact with any resource¢ R. That is, resources that are not represented
in the type of a signal function will not be read or updatedtmst signal function.

This idea extends in two directions. First, we can consiterramifications of this
in an asynchronous setting. Resource safety gives us thargearthat no two processes
can interact with the same resources, which in turn mearshhiple processes cannot
encounter any of the typical problems of resource contantio

In another direction, we can look at resource safety frormgteal perspective and
state that within any given moment in time, a process camtetact with any resource
more than once. This satisfies the fundamental abstractaatyn if the same resource

were accessed twice at the same time, then there must beenngrtb its access, but any
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ordering would imply that the moment itself was not procdssetirely simultaneously.

An extension to the idea of resource safety is that of regocwenmutativity Once
again, this comes from the fundamental abstraction. If tderof access of two resources
within the same moment makes a difference, then this impiesrdering within the mo-
ment, which in turn implies a lack of simultaneity.

CFRP has both resource safety and commutativity.

5.6 Blocking

One might think that it would be useful to allow blocking in CERRd indeed, an ability
to block would be critical to a high performance implemeiotatof CFRP. Furthermore,
blocking would allow two asynchronous processes to resymike, essentially providing

the ability to do synchronized parallelism.

5.6.1 Blockingrsf

One method to achieve blocking would be to include a new oarsf thersf operator: a
blockingresource signal function, which we could claikf and would have the following
typing rule:

r:: (T, List T, ey
Tv-BRsE " {Tin List Tou)

MWEbrsfr:: 1 {jj Tout
Notice thatbrsfrequires its resource to have an output type that is a listhaitit returns
the output of only a single element. The idea here ishinsitwill block while the resource
provides an empty list and will then provide values one ate tas they appear.
If used on a standard resourcebrsf r will only progress through time and return a
value whenr produces a value. It cannot be used on a blackhole (the cutyoe of a
blackhole resource is not a list), but on a whitehole, it \pilbvide one datum that was

provided by the blackhole.
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With the brsf operator, it becomes possible to resynchronize two asgnolis pro-
cesses. Instead of having the two processes communicateveiwormholes accessed
with rsf, like we did when defining thasyncfunction (in Sectiorb.4.1), we let the white-
hole resources of both wormholes be accessed with blocHihg forces both processes
to wait for each other to proceed, giving them a synchronaimsbior.

The main drawback of thbrsf operator and its design is that we lose our strongest
guarantees in its presence: it breaks the fundamentabahsetr of FRP. That is, to use the
parlance of the previous section, a uséff will interrupt amoment in timeThus, despite

its apparent usefulness, we omit it and any other blockiregatprs from the language.

5.6.2 Simulated Blocking

Because of the power of non-interfering choice, we can desigeal version of blocking
that does not disrupt our sense of time and thus preservégritiamental abstraction.

Consider the definition dérsfgiven in Figures.10 In our semantics, resources cannot
be treated as they are here (as first class values that coadybments to functions), so
this is not a function we could ordinarily define, but it pretsean interesting idea. Once
per moment in time (or in other words, on each iteration of #ignal function), the given
resource is accessed. If it returns an empty list, this indicates ithla&s no ready data,
and the first branch of the case statement takes effect;srbtanch, the argument signal
function is not run. However, if there is data, then the sidmaction is run. Furthermore,
the data gets buffered by the wormhole, meaning that if aoogs returns too much, the
data is fed tesfslowly, one element at a time.

This version ofbrsf does not break the fundamental abstraction, but it is alsteso
what weaker than true blocking. This is because true blgckiss a non-local effect on
its process, preventing the entire process from doing amytivhile the blocking occurs.
However,brsfwill only prevent the argument signal function from actiagd it will have

no effect on any other signal function in this process (&.g.cdompositional context).
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brsf:: (r:: (x,Listy)) — (wai z) — (X R Event 2

brsfr sfd:ef letW ry rp € in proc X — do
y <+ rsfr—<x
prev<— rsfry — ()
case(concat prevy) of

£ — returnA—< NoEvent
(Y :ys)—do () «rsfrp—ys
z «+sf<y

returnA—< Event z

Figure 5.10: A potential definition dirsf. Note that theconcatfunction will concatenate
the elements of a list of lists into a single list.

One consequence bfsfs weak form of blocking is that it may often have a negative
performance impact on the programs that make use of it. Shatien drsfis blocking, its
behavior mimics “busy-waiting,” where it continues to lo®gen though it is accomplishing
nothing. This is entirely necessary when the compositionatext should run regardless
of the blocking, but it seems unfortunate in most cases. ,Timydementations of CFRP
are encouraged to provide a special combination of forkimdy l@ocking that can assure
there is no compositional context to the blocking in the éatlprocess and then use true
blocking instead obrsfs weak blocking to achieve better performance.

Thus, we have the ability to simulate blocking on a local schut we cannot achieve

true process blocking in general without breaking the fumelatal abstraction.

5.7 Haskell Implementation

Just as we have extended the theory of arrowized, resoyed sygnal functions to include
asynchrony, so too have we extended our Haskell implementathus, the implementa-
tion discussion here will build directly off of where we enldat the end of Sectiod.7.

Once again, we make certain modifications to the theory we lpagsented in order to
satisfy Haskell’s particular constraints. Note also thé implementation suffers from the

same pitfalls and limitations as does the one in the prevcbagter.
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5.7.1 Updating Wormholes

Ouir first goal will be to update wormholes to satisfy our newafication for them. In the
synchronous FRP that we described earlier, whiteholes heaebiue in the wormhole data
structure but never write to that value. In CFRP, they cannahisesimple. Rather, when
data is read, the whitehole needs to remove it from the uyidgrtata structure so that it
is not read a second time. Thus, the whitehalgsdatefunction will perform an effect.

Furthermore, it is imperative that whiteholes be process#dretheir corresponding
blackholes if they are both in the same process. If the whleels processedfter, then
blackhole data may not be visible when the whitehole nexdsedhis was implicit in the
design of the F-TIME transition judgment, but we must make it explicit here.

We begin by updating th&vhiteholeand Blackholetypes to more closely match the

CFRP wormhole semantics:

newtype Whitehole r t= WhiteholgIORef[t], IORef[t])
newtype Blackhole r t= Blackhole(IORef[t], IORef[t])

A wormhole consists of twdORef, which correspond to thie and w elements of the
wormhole state from the semantics respectively. Both the@elble and the blackhole
resources each have access to both of them (i.e. thddiRefof the whitehole and the
blackhole both point to the same data and likewise for thersdc

The Resourcdanstances will look familiar, but they are updated to deahwists of
data (as opposed to individual elements) as well as to ieclhd whitehole’'sipdatebe-
havior. They are shown in Figufe11 Note that we perform a typical functional queue
optimization here of constructing the list of data in reeeasid then reversing it when it is
requested.

Now, both whiteholes and blackholes have an effect upontupgarl he blackhole adds
a new element to the underlying data structure, and the dlgegemoves what it has read.

Next, we must address the ordering and assure that whitelaodeprocessed before
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instanceResourcéWhitehole r § () [t] where
read (Whitehole(_,w)) = readlORef w
update(Whitehole(b,w)) - = do
bgata < atomicModifylORef BA | — ([],1))
atomicModifylORef WA _ — (reverse Rata, ()))

instanceResourceBlackhole r § t () where
read _ = return ()
update(Blackhole(b, -)) t = atomicModifylORef BA | — (t:1,()))

Figure 5.11: The updated definitions of wormhole resource€FRP.

blackholes. Recall from Sectigh7.5that our running definition of the data tyf&-is:

dataSFrbc=SF(b— 10 (c,1O(),SFrbo)

where thdO () in the output tuple is used to carry the update actions. Wechieve the
ordering we want by expanding ti8#type so that instead of having a single action type

(10 ()) to denote the updates, we have a pdi@ (),10 ()):

dataSFrbc=SF(b— 10 (c, (10 (),I0()),SFrbg)

We then update the default implementationsdfto:

rsfr=SF$A b—do
C«readr

return (c, (return (), update r b, rsfr)

and in theResourcenstance folWhitehole we overwrite that definition with the following:

rsfr=SF$A b—do
C«readr

return (c, (update r breturn ()),rsfr)
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When we run the signal function, we choose the proper ordefiegents, and then we are
guaranteed that whitehole updates will always be beforekhlale ones.

Lastly, theletW operation looks almost exactly the same as before excefpthdani-
tialization value for the wormbhole is of tygg rather than simply and there are twiDRef
instead of one. This has the interesting effect of allowing t create wormholes that have

no initial value in them, a trick which we used earlier in soofi¢ghe parallelism examples.

5.7.2 Forking New Processes

In the semantics we defined in this chapter, fimk operation makes use of the helper
functionshavelForked andgetChildrenOf to determine if it needs to fork a new process or
not. In Haskell, these two functions are non-trivial, andapproach the problem from a
different perspective.

Rather than actually terminate processes that should biv@ase insteadreezethem.
That is, we keep them alive, but we prevent them from haviyg@ticeable effects. Then,
if they ever need to become active again, we can simply unértieem. This strategy allows
us to sidestep the questiontafvelForked, as anyfork operation will only ever spawn one
new process.

Rather than going into excruciating detail, it should suffecsay that we will extend
our SFtype to additionally include process status informatiohaAy time, we can see an
MVar which contains the current process’s status as well as gerefe to a list of the status

MVars of all child processes. The status will be one of the folfayvi

data PStatus= Proceed
| ShouldFreeze
| ShouldSkip
| Frozen(MVar ())
| Die
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and theSFtype will become:

type PState= (MVar PStatusPChildren)

data SF r b c= SF((b,PState¢ — 10 (c, (10 (),I0 ()),SFrbo)

wherePChildrenrepresents the child processes.

By default, processes are in tReoceedstate, which indicates that they should proceed
as normal. If, in the course of execution, a choice brancikiert that would deactivate cer-
tain processes, then those processes’ states areSkeotddFreezea process that “should
freeze” will freeze itself when it is next able by switchingelf to theFrozenstate, where it
will additionally generate a neMVar that it will block on. If a choice branch is taken such
that it activates processes, then any child processesrhauaently in theShouldFreeze
state are set t&houldSkipand any that arérozenare awakened (theivVars are un-
blocked) and set t®roceed Thus, if a process is frozen and unfrozen so quickly that it
did not even have time to properly freeze itself, then it wélalerted to skip its current run
and restart. Lastly, there is a state to terminate the psoaiésgether that can be used for
cleaning up asynchronous processes when the program ends.

These states allow us to update thaSF function, which we show in Figuré.12
We can see that during theasestatement in the body, we check to see what state the
process is in before continuing. Only if it is inRroceedstate do we perform the effects
(actiom >> actiorp). In any other case, we consider the situation as a faileda@tion and

either block and wait§houldFreezZg restart ShouldSkipy or abort altogetheie).

Fork Itsalf

Forking is essentially a special internal use of runninggaai function, so it follows that
fork will make use ofunSFE More precisely, théork command will create a nefRStatefor
the child process by copying the current process’s statkthadchild to the list of children

in its own state, and then use GHC'’s underlying thread forkingreate a new thread for
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runSF:: PState— () ~ () — 10 ()
runSF(ps@(mvar,_)) (SF sj = run sfwhere
run sf=do

((), (actiony,actiorp), sf) « sf((),ps)
command— takeMVar mvar
casecommanabf
Proceed— actiom, >> actiorp >> putMVar mvar Proceetk> run sf’
ShouldFreeze» do
wait + newEmptyMVar
putMVar mvar(Frozen waiy
takeMVar wait
run sf
ShouldSkip— putMVar mvar Proceets> run sf
Die — putMVar mvar Die
Frozen_ — error “Impossible: Frozen in runSF

Figure 5.12: The definition aunSFthat can handle asynchrony.

the process.

Internally, fork could use any one of GHC’s mechanisms for creating a new pgoces
We choose the standaiarklO operator, but variants to support OS threads (GH&@®OS
function) or specific cores (GHC®rkOn) are fine too. As long as GHC is run with the
-threaded flag, we have found that these perform comparably for the Igingsks we

have tested.

5.7.3 Controlling Forked Processes

As discussed previously in the chapter, we control forkext@sses not with a thread iden-
tifier or another such imperative representation, but bggihe choice operator to freeze
or resume threads. We discussed the machinery for this préweous subsection, but here
we will further explore the mechanism within choice itsdlb. simplify this discussion, we
will only explore the implementation of tHeft operator.

In the previous subsection, we mentioned a data B@kildren which we use to store

149



information about the states of any child processes. Theahdefinition is given by:

data PChild = PForkChild PStaté PChoiceChild PChildren
type PChildren= IORef[PChild]

The idea here is that every time we fork, we create a new psoe#h its own state, and
every time we enter a choice statement, we create a new skildfen that we can easily
freeze or resume.

When we enter &ft statement, we ugaitialAlO to create a newChildrenreference,
which we will then pass to the body of theft (or just store for later if the incoming
streaming value iRigh). Then, if any component of the body forks a process, it well b
added to thaPChildrenreference and we will be able to access it directly. Howdwefiore
we do, we check to make sure that we, the parent process, arBroceedstate. If we
are not, then we should not make any active changes, but ifreyetteen we can tell the
children to either freeze or proceed as necessary.

Other than this extra bookkeeping, choice proceeds in hiedl/fashion of the Kleisli

Automaton fashion.
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Chapter 6

UISF — A Case Study

One common application of functional reactive programnigig the design ofraphical
user interfacegGUI). As a case study in the ideas of arrowized FRP and theepiaof
non-interfering choice and resource types, we built theRUIBrary. UISF, which stands
for “User Interface Signal Function” is built in Haskell oopt of the GLFW graphics pack-
age and is currently being used as the main GUI toolkit forcthraputer music langauge
Euterpealfludak 2014. The full UISF package is available on Hackage.

This chapter will discuss the design principles behind UaSkvell as demonstrate how
it works with a few examples. Note that, as mentioned in thelkdk Implementation sec-
tions for resource types (Sectiohs and4.7), Haskell's type system does not fully support
resource types. Thus, although UISF has most of the opeedttapabilities discussed pre-
viously in this report, it cannot yet guarantee the sametggi@perties. However, in the
absense of resource types, we can use the arrow syntax wahpissues.

We will start with a technical description of the UISF intsré in the next section. Once
armed with the basics, we will build a few example GUIs, dssing the benefits of this

design as we do.

1. The source can be foundiatckage . haskell.org/package/UISF.
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label ;. String— UISF a a

displayStr .2 UISF String()

display :: Show a= UISF a()

textboxE :: String— UISF (Event String String
radio ;2 [String — Int — UISF () Int

button :: String— UISF () Bool

checkbox :: String— Bool — UISF () Bool

hSlider, vSlider :: RealFrac a= (a,a) —a— UISF () a
hiSlider, viSlider: Integral a=a — (a,a) - a— UISF () a

Figure 6.1: UISF graphical input/output widgets

6.1 Arrowized User Interface

The UISF library focuses on tHgISF data type, which is an instance Afrow (as well as

ArrowChoice etc.). In many ways, this data type is similar to the aut@mahodels we

have used in previous implementation sections of this tepat it is extended with further
features specific to GUIs.

Using UISF, we can create “graphical widgets” using arrow syntax. Esaghal func-
tion component of &JISF has the capacity to itself be a widget, such that upon composi
tion, one can create compound widgets—in fact, it is in thghfon that the entire GUI is
created.

Unlike in the rest of this report where we use the symboto refer to an Arrow type,
we will follow the library itself. Thus, instead of using tgp such aa ~~ b, we will use

UISFah

6.1.1 Graphical Input and Output Widgets

Some of UISF’s basic widgets are shown in FigGr& Note that each of them is, ulti-
mately, a value of typ&JISF a h for some input typea and output typd, and therefore
may be used with the arrow syntax to help coordinate theictfanality. The names and
type signatures of these functions suggest their funditgnevhich we elaborate in more

detail below:
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e label A simple (static) text string widget.

e displayStr A simple dynamic text string widget allowing a time-vargistring to be
displayed. For convenience, we also provitigplay, which “shows” the streaming
argument:

display= arr show>>> displayStr

o textboxE A bidirectional text input widget. The input stream can lsed to set the
current text value, and the output stream provides thaevallietextboxEkeeps its

state internally.

There is a more primitive version:

textbox: UISF String String

which does not keep track of its current state but ratheriregithe manual use of a

delay and a loop.

e radio, button checkboxThese are three kinds of “push-buttons,” suitable foieetr

ing input from the user in the form of choices between stgiittonms.

e *slider: There are four different kinds of “sliders"—graphical \gets that looks
like a slider control as might be found on a hardware devicke first two yield
floating-point numbers in a given range, and are orienteztwotally and vertically,
respectively, whereas the latter two return integral nusbor the integral sliders,
the first argument is the size of the step taken when the stidéicked at any point on
either side of the slider “handle.” In each of the four casies,other two arguments

are the range and initial setting of the slider, respedtivel
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6.1.2 Widget Positioning

In addition to just creating widgets, we must determine whitvey will appear on the
screen. UISF uses two mechanics to do tlagoutandflow. A widget’s layout determines
its size, and its flow determines its relative position tesitter widgets.

All pre-built widgets (i.e. the ones presented in the prasisubsection) have an already

defined layout, but this can be altered with:

setLayout: Layout— UISF ab— UISF ab

and new layouts can be built using the following function:

makeLayout: LayoutType— LayoutType— Layout
data LayoutType= Stretchy{minSize:: Int}
| Fixed {fixedSize: Int}

ThemakeLayoufunction takes information for first the horizontal dimesrsiand then the
vertical. A dimension can be either stretchy (with a minimsize in pixels but that will
expand to fill the space it is given) or fixed (measured in gixel

The default flow for widgets is in a top-down format, whereleagdget will be placed
from the top of the window sequentially. However, this carchanged by the following

functions:

topDown, bottomUp, leftRight, rightLeftUISF a b— UISF a b

whose names make clear their behavior.
One should note that this flow component means that the Ul®kam@renot commu-
tative. Indeed, reordering composition of widgets wilkiik cause their visual appearance

to change. However, due to thec keyword within arrow syntax (which uses arrow loop),
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unique:: Eq a=- UISF a(Event g
edge :: UISF Bool(Event())

hold :a— UISF(Eventga
accum:: a— UISF (Event(a— a)) a

Figure 6.2: UISF Mediators between continuous and discrete

this is rarely an issue: the widgets can be coded in whatewkar aonakes them appear
properly on screen, and the streams between them will copnejerly.
Lastly, widget transformers can be nested, meaning thapar®f a GUI can be in one

flow while another portion is in another.

6.1.3 Non-Widget Signal Functions

Unlike the signal functions from Subsecti@nl.], the signal functions presented in this
subsection have no graphical effects. They are not purespdce signal functions, we
could simply lift a pure function witharr—but their effects are all achieved with state
rather than being visual. For this reason, many of the siigmaitions we will present here
are not specific t&JISF and can actually be used in other arrowized domains; howkrer
simplicity, we will express their types as specifidttSF. This also means that they can all
be written manually using arrowized recursion, state vigoland delay, and other concepts

discussed previously.

Mediators

Mediators are functions thatediatebetween discrete and continuous signals. A selection
of UISF’s mediators that we will use in our examples are shmigure6.2and described

below:

e unique Converts a continuous stream to a discrete one by providingvant con-

taining the value of the stream whenever it changes.

155



e edge Generates an event whenever the input changesfeiseto True?

e hold: This signal function converts a discrete stream to a caotis one by “holding”

the last value it was given.

e accum Starting with the statically given value, applies the fiimas attached to the

streaming input events to that value returning the resut@mtinuous stream.

Folds

In regular functional programming, a folding, or reduciegeration is one that joins to-
gether a set of data. The typical case would be an operatiogierates over a list of data,
such as a function that sums all elements of a list of numbers.

The two primary folds in UISF are based on the ideas of strattur arrowized recur-

sion as described in Secti@nl.5 For structural recursion, we have:

concatA:: [UISF b @ — UISF [b] [c]

and for arrowized recursion, we have:

runDynamic:: UISF b c— UISF [b] [c]

which is the very same function from Secti8ri.5

The concatAfold takes a list of signal functions and converts them tonglsi signal
function whose streaming values are themselves lists. ¥ample, perhaps we want to
display a bunch of buttons to a user in a single window. Ratem toding them in one
at a time, we can useoncatAto fold them into one operation that will return their result

altogether in a list. In essence, we amcatnating the signal functions together.

2. In signal processing this is called an “edge detectovjhgirise to the name chosen here.
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As described earlier, theinDynamicsignal function is similar except that it takes a
single signal function as an argument rather than a list.nTmstead of folding over the
static signal function list, it folds over th@] list that it accepts as its input streaming

argument.

Timers

UISF has an implicit notion of elapsed time, but it can be maxdicit by the following
signal source:

getTime: UISF () Time

whereTimeis a type synonym foDouble
Although the explicit time may be desired, some UISF widgitpend on the time

implicitly. For example, the following signal function ates aimer:

timer:: UISF DeltaT(Event())

In practice,timer takes a stream that represents the timer interval (in se&oadd gen-
erates an event stream, where each pair of consecutivesegesg¢parated by the timer
interval. Note that the timer interval is itself a streamtls®timer output can have varying
frequency.

Because UISF is a pull-based AFRP system, this concept of tidetimers is not
perfectly precise or accurate. For instance, if the clotd fe.g. the length of the unit time
interval) is one hundredth of a second, then a timer may bgdred up to a hundredth of

a second late.

Delays

Another way in which time can be used implicitly in UISF is inelay. UISF comes with
five different delaying widgets, which each serve a speaiiie depending on whether the

streams are continuous or event-based and if the delay is@léxgth or can be variable.

157



delay :a— UISFaa

fcdelay:: a— DeltaT— UISF a a

fdelay :: DeltaT— UISF (Event g (Event g
vdelay :: UISF (DeltaT,Event g (Event g
vcdelay: DeltaT— b — UISF (DeltaT,b) a

Figure 6.3: UISF Delays

They are shown in Figuré.3and described below:

To start, we will examine the most straightforward one. Teéay function creates
what is called a “unit delay”, which can be thought of as a yléla the shortest amount
of time possible. This delay should be treated in the samethatyone may treat at
in calculus; that is, although one can assume that a delag fallace, the amount of time
delayed approaches zero. Thus, in practice, this shouldée@ only in continuous cases
and should only be used as a means to initialize arrow feé&dbac

The rest of the delay operators delay by some amount of aitoel and we will look
at each in turnfcdelay b twill emit the constant valub for the firstt seconds of the output
stream and will from then on emit its input stream delayed bgconds. The name comes
from “fixed continuous delay.”

One potential problem witfcdelayis that it makes no guarantees that every instanta-
neous value on the input stream will be seen in the outpuamstrerhis should not be a
problem for continuous signals, but for an event streangutecmean that entire events are
accidentally skipped over. Therefore, there is a speedldelay for event streamfslelay t
guarantees that every input event will be emitted, but ireotd achieve this, it is not as
strict about timing—that is, some events may end up being@®@ayed. Due to the nature
of events, we no longer need an initial value for output: fo firstt second, there will
simply be no events emitted.

We can make both of the above delay widgets a little more cated by introducing
the idea of a variable delay. For instance, we can expandapebdities offdelayinto

vdelay Now, the delay time is part of the signal, and it can changedycally. Regardless,
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this event-based version will still guarantee that evepytrevent will be emitted.videlay
can be read “variable delay.”

For the variable continuous version, we must add one expnat iparameter to prevent
a possible space leak. Thus, the first argumentttelayis the maximum amount that the
widget can delay. Due to the variable naturesofilelay some portions of the input signal
may be omitted entirely from the output signal while othesyreven be outputted more
than once. Thus, once again, it is highly advised towdsayrather tharvcdelaywhen

dealing with event-based signals.

6.1.4 Asynchrony

Without resource types, wormholes are particularly damg®rbut UISF does allow cer-
tain forms of asynchronous, concurrent processing. Ojpeily, this is important due to
system constraints on computational power. That is, theréwa primary ways in which

the illusion of continuity fails:

e Computations can be sensitive to the sampling rate itself wat a low enough rate

will cause poor behavior.

e Computations can be sensitive to the variability of the samgphte such that drastic

differences in the rate can cause poor behavior.

These are two subtly different problems, and we addresswitithsubtly different asyn-

chronous operators:

asyncUISE :: NFData b=- Automaton(—) a b— UISF (Event g (Event b
asyncUISE :: NFData b=- Double— Automaton—) a b— UISF a[(b, Time)]

In fact, UISF has a few more asynchronizing operators, bubmvit them in order to keep

our discussion concise.
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e asyncUISE: This takes an Automaton built over regular functions an&esat asyn-
chronous, generally for the case where the given signaltifumés a slow running
operation. This slow computation may have deleterioustsfen the GUI, causing
it to become unresponsive and slow, so we allow it to run asymously. The com-
putation is lifted into the discrete, event realm, and farhesput event given to it,
a corresponding output event will be created eventuallycddise, the output event
will likely not be generated immediately, but it will be geated eventually, and the

ordering of output events will match the ordering of inputets.

e asyncUISE: This function can convert a signal function with a fixed fwal clock-
rate to a realtime UISF. The first input parameter is a bufiee s 1 seconds that
indicates how far ahead of real time the signal functionlmsradd to get, but the goal
is to allow it to run at a fixed clockrate as close to realtimgassible. Thus, the
output stream is a list of pairs providing the output values@ with the timestamp
for when they were generated. This should contain the rightler of samples to
approach real time, but on slow computers or when the victleakrate is excep-
tionally high, it will lag behind. This can be checked and mared by checking the
length of the output list and the time associated with thd Bfement of the list on

each time step.

In both cases, we require that the output types be instarfcifData which is the
Haskell way of declaring that they can be strictly evaluaté@ do this to assure that the
computations are actually performed asynchronously amndazdy returned to the main
process and computed there.

UISF’s asynchronous functions, although inspired by wastegwith fork, do not actu-
ally follow the design pattern from Chaptewery closely. Rather than use non-interfering
choice to govern when forked processes are active or notsebelocking, but because we
have such rigid patterns for forking and communication leetthe forked processes (that

is, one can only do this by using one of the async functioms3, ilocking cannot cause
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any sort of deadlock. Thus, we can use blocking without ceaiperceivable violation to
the Fundamental Abstraction of FRP.

This means that in their implementation, the async funstican use Haskell®Vars,
and indeed, they do. For instance, in the definitio@®fncUISE, we fork a new thread
and then communicate with it vigVars in the data-sending direction and EDRefto
retrieve computed values. If there is no data being sentaddiked thread in théVar,
then it will block, effectively stopping computation unitiis asked to resume.

It is worth noting that the when using asynchrony in UISF, anadvised to compile
the program with GHC’s-threaded flag to allow for multi-core processor utilization.
This is not strictly necessary as multi-threaded operatgam be interleaved into a single-
threaded computation, but it will often improve performaninternally, we are using the
forklO operation to create new threads, which creates a lightweigbkell thread for each
asynchronous component. Because these threads stay althe fength of the program,
GHC can often schedule them effectively. However, in certaises, a user may want better
control over which cores are performing which operationsl taus we also provide “On”
versions of the async operators. These “On” versions idsisa GHC'dorkOnoperation,

which allows the user to specify exactly on which core eackdd thread should be run.

6.1.5 Settability

The UISF library has the concepts of non-interfering cheaind settability built right into
the design. Thus, UISF signal functions can also supporsettablefunction established

in Section3.2:

settable: UISF a b— UISF (a, Event Statg (b, Statg

Any UISF signal function that is declared settable can have its stated, loaded, or reset.

Because settability comes with a performance overhead, asg¢chmake an active
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design decision to turn it on when it is required. In the fatwe plan to improve the setta-
bility transformation by making it automatically apply widesired but incur no overhead

when unused.

6.1.6 Putting It All Together

A Haskell program must eventually be a value of ty@e() in order to run, and thus we
need a function to turn @ISF value into anlO value—i.e. thdJISF needs to be “run.” We

can do this using the following functién
runUl :: UISF () () = 10 ()

Just like in the model langauges we described in previousossc a full program is forced
to do all of its effects internally, so its input and outpuesims must both be of tygde.
ExecutingrunUI ui will create a single Ul window whose behavior is governedtmsy t

argumenti :: UISF () ().

6.2 Example: Time

For our first example, we will examine how easy it is to use tuaiin the UISF frame-

work. We will build a simple timer GUI that ticks forward forwser-specified amount of
time (via a slider widget), displaying the elapsed time liptiphically and textually. If the
target time is greater than the elapsed time, the timer wiitioue, and if it is less than or
equal to the elapsed time, then the timer will stop. A resébbuat the bottom will reset
the elapsed time to zero. The inspiration for this examplaeofrom the 7GUIs project

[Kiss, 2014, which in turn took the idea frongnatoff et al.[200§.

3. Technically, this function is calledinUl" in the UISF library as the actualinUI function takes an ad-
ditional parameters argument that can be adjusted forapEage fine-tuning. We will not use this argument
in this report, so we drop it.
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Although we discussed tmer widget in the previous section, it is not useful for our

current purposes, so the first thing we do is to create amalige widget to help us keep

track of time:
getDeltaTime: UISF () DeltaT

getDeltaTime= proc () — do
t + getTime—< ()
tprev <— delay0 <t

returnA—t —tprey

This function uses thgetTimewidget along with a unit delay to return the change in time
on each tick of the underlying clock.

Next, although UISF has built-in widgets for displaying tteglickable buttons, and
interactive sliders, there is no widget for displaying autga” to graphically indicate the
passing time. Although we did not discuss UISF’s suite fonoa widget construction,

one still exists, and we will use it to create this gauge:

gauge:: Layout— UISF (DeltaT,DeltaT) ()
gauge= uniquesss> canvas! draw where
draw (x,t) (w, h) = block((0, padding,
(minw round xx (fromintegral W) /t,h — 2% padding)
wherew = w— 2xpadding

This widget takes a pair of (elapsed time, total duratiorg draws a black block on the
screen of the appropriate size. Considering we have notsisedifunctions likeanvasor
block the point of showing this code is to demonstrate that argaginew widget like this
can be done simply and concisely.

With these widgets written, constructing the timer GUI litse straightforward. The

GUI is shown in Figurés.4 and a screenshot of it running can be seen in Figuse
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timerGUI:: UISF () ()
timerGUI = proc () — do
rec leftRight(label “Elapsed Time:>>> gauge — (e,d)
display— e
leftRight(label “Duration:” >>> display) — d
d + hSlider(0,30) 4— ()
reset« button“Reset’— ()
ot « getDeltaTime=< ()
e« delay0 — case(resete >= d) of
(True ) — 0
(False True) — e
_—e+4ot
returnA— ()

Figure 6.4: The Timer GUI.

|2.3248421207472347

Duration: I4.B

Figure 6.5: A screenshot of the Timer GUI.
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tempConverter. UISF () ()
tempConverter= leftRight$ proc () — do
rec ¢« unique<<< textboxEx< delay Nothing= Cypdate
label “degrees Celsius = *< ()
f < unigue<x textboxEx< delay Nothing= fypdate
label“degrees Fahrenheitx ()
let chym = join $ fmap(readMaybe: String— Maybe Doublé¢c
foum= join $ fmap(readMaybe: String— Maybe Doubl¢ f
Cupdate= fmap(A f — show$ round$ (f —32) x(5/9)) frum
fupdate= fmap(Ac — shows round$ ¢+ (9/5) +32) Chum
returnA— ()

Figure 6.6: The Temperature Converter GUI. Note that is the same as>> but with its
arguments flipped.

6.3 Example: Bidirectional Data Flow

For our next example, we will consider the concepbuafirectional data flow. In many
GUI systems, it is easy to link one widget's output to andthieiput, but it is not always
as easy to link the second widget’s outfnsick to the first's input. However, this is a
straightforward feature of arrows with loop, and the UIS¥dry handles it easily.

Thus, for this example, we will build a lightweight utilitp tconvert between temper-
atures in Celsius and temperatures in Fahrenheit. Once,abaimndea for this example
comes from the 7GUIs projecK[ss, 2014. The complete code for this example can be
seen in Figur&.6and a screenshot of it running can be seen in Figure

The most complicated part of this GUI is actually the texispay and conversion oper-
ations, which is all in pure Haskell. The part that actuallggents the GUI is all found in
the first four lines of arrow syntax. After that, we use t&econstruct to use pure Haskell
for the parsing and conversions. Because the results of tieions are used in the
widgets themselves, the whole block is put through a loojp Wierec keyword and the

looping values are held back from infinitely looping widklays.
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Figure 6.7: A screenshot of the Temperature Converter GUI.
6.4 Example: Dynamically Active Widgets

In the previous two examples, we demonstrated primarilyRUttures that are inherited
from the arrowized design. For this example, we will make osS®ISF’'s adherence to
non-interfering choice to use arrowized recursion to @e@aBUI that has widgets that can
activate dynamically. We will build a text-basednd map a structure to organize data.

Mind maps are typically used to help a person organize thisugFhey start with a
single element (usually) that has connections to other eisn which in turn can have
connections to others. We will represent our mind map daitaamap from strings to lists
of strings:

type MindMap= Map String[String

Thus, elements are keys and the elements they connect toedrgalues.
Our GUI will allow a user to lookup keys or add elements to thedmimap, and as the
mapping grows, so too will the number of label widgets we ldigpIn order to provide

easy text entry, we will create a compound widget out of abi@xiand a button:

textEntryField:: String— UISF () (Event String
textEntryField txt= rightLeft$ proc () — do

b + edge<x button txt—< ()

t < textboxE” << delay Nothing< fmap(const” ) b

returnA— fmap(const{ b

ThetextEntryFieldis given a label for the button it displays. When that buttoprisssed,

this compound widget will produce an event of the currentitethe textbox and then clear
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mindmap: UISF () ()
mindmap mag;; = proc () — do
e «+ textEntryField‘Lookup” —< ()
a <« textEntryField’Add” — ()
key+ hold*” —e
M <— accum magpsiz) — fmap(Av — insertWith(++) key|v]) a
leftRight(label “Key =" >>> displaySt) — key
runDynamic displaySt~ findWithDefault]] key m
returnA— ()

Figure 6.8: The Mind Map GUI. Note that it requires the Habkidp package to function,
as that package provides timsertWithandfindWithDefaulfunctions that operate on Maps.

mackerel|

Key = !sushi

wasabi

salmon

tuna

Figure 6.9: A screenshot of the Mind Map GUI.

the textbox to prepare for the next entry.

We use two of thesextEntryField in the full program: one for looking up keys and
the other for adding values. We store the map in an accunmuladt updates every time
we have an “add” event. Finally, we display a dynamic numiedisplayStrwidgets
depending on how long the list is in the currently viewed kéthe map.

The complete code can be seen in Figiu&and a screenshot of it running can be seen

in Figure6.9.
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6.5 Example: Asynchronous Computation

As we introduced in Sectiof.1.4 UISF supports asynchronous operations, and here, we
will build an example that makes use of the feature. Spedifjoae will present a GUI

for performing a complex and lengthy calculation, but whes ¢alculation is requested, it
will be performed asynchronously. Thus, the GUI will stiintinue to respond and behave
normally.

The lengthy computation will be the calculation of potehtigeld in the card game
Pinochle. In this game, players first get a hand of cards agewl Itid to receive a further
4 card “kitty”. With the kitty added to the winner’s hand, hiays his meld, which are
specific combinations of cards. For instance, having oneach @f the aces is worth 10
points, and having a King-Queen of the same suit is worth @tpoPinochle is played with
a special deck of playing cards that has two of each card bytiocludes the cards from
Nine to Ace in each suit.

The GUI will present a set of buttons for the user to enter hrsdhand will then calcu-
late the average expected meld the user can expect if he karigtty. The calculation is
performed asynchronously, and when it produces a reselGthl displays it both plots it
and displays it textually.

Before we can begin building this GUI, we must have some logau&Pinochle itself.
Thus, we assumBlumber Suit andHand data types that behave as expected as well as

two functions for calculating a hand’s meld and possibl@ltssrom winning the Kkitty:

data Meld = String
calcMeld:: Hand— Meld
calcKitty :: Hand— ([Meld], HistogramDatg
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handSelector: [Suif — [Numbef — UISF () Hand

handSelectof] - = constA EmptyHand

handSelecto(s: ss) ns= proc () — do
bs« leftRight$ slabel(show § >=s> concatA(map cardSelector ns< repeat()
hand< handSelector ss ns ()
returnA— addToHand handmap(s,) (concat$ zipWith replicate bs ng
where slabel str= setLayoutFixed 75) (Fixed30) $ label str

Figure 6.10: The compound widget for building a Pinochlechan

pinochle:: UISF () ()
pinochle= proc () — do
hand<— handSelector allSuits allNums ()
evenfpdate<— Unique— hand
meld«— hold*” —fmap calcMeld evepdate
leftRight$ label “Total meld = "> display— meld
b +— edge>>> button“Calculate meld from kitty™— ()
eventiry < (asyncUISE $ arr calcKitty) < fmap(const hanglb
let (meldy,d) = case(evengiwy, b) of
(Event(k,d), -) — (Eventk Eventd
(-, Event.) — (Event‘Calculating ..., Event NoHistogram
- — (Nothing Nothing
runDynamic display<< hold [] < meldy
histogram(makeLayou{Stretchyl0) (Fixed15)) —d
returnA— ()

Figure 6.11: The Pinochle GUI.

We will also make use of the following two custom UISF widgets

cardSelector: Number— UISF () Int

histogram:: Layout— UISF (Event HistogramDatga()

The cardSelectowidget looks similar to duttonwidget but has some extra internal ma-
chinery to allow for selecting two of the same card. HigtogramWithSaclavidget dis-

plays a graphical histogram on scréen.

4. Technically, thehistogramwidget is a built-in widget in UISF, but for brevity, we did nimclude a
detailed discussion of it when we introduced the main UISfuees earlier in this chapter, and we are using
a simplified version of it here.
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1 Ace 1 Ten 2 Kings 0 Queens 0 Nines

0 Aces 1 Ten 0 Kings J 0 Queens l 1 Jack 0 Nines

Diamonds 0 Aces 0 Tens J 1 King I 1 Queen 0 Jacks 0 Nines

Clubs I 1 Ace 0 Tens 0 Kings J @ Queens } 0 Jacks ] 0 Nines

| Total meld =|2: ["KQ of D"]
Calculate meld from kittyl

Figure 6.12: A screenshot of the Pinochle GUI.

The first step in building this GUI is to provide an interfaceailow the user to en-
ter his hand. We do this by addingcardSelectorfor each possible card. Because the
Pinochle deck is totally static, we can achieve this withgerstructural recursion. Thus,
thehandSelectocompound widget is shown in FiguéelQ

In the Pinochle UISF itself, shown in Figuéell, we use the hand selector at the very
beginning. We then display the meld just from the hand sodad provide a button to
calculate the potential meld from the kitty. When this buttopressed, an event is sent to
the asynchronizedalcKitty function, and the results are gathered, displayed, anteglot

in the histogram. A screenshot of the program running carebe s Figures.12

6.6 Differences From Theory

Although UISF is inspired by CFRP and the theory contained isréport, it is different

from that theory in a number of ways.
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Resource Types

First and foremost, there are no resource types. This may §ke a critical omission
considering that resource types are core to CFRP’s safetamiess, but it is a necessary
evil. As mentioned in previous chapters, arrows with reseuypes are still not fully
supported in GHC, and wormholes themselves cannot be impleahe

Of course, the biggest cost of omitting resource types iswlgacan no longer guar-
antee safe usage of arbitrary effects. One way to addressvthild be to remove effects
altogether, but we find this to be too restrictive. Thus, wideséor allowing effects with a
warning to the user to take care when using them.

The most common resources used in CFRP programs are actuely dhwormholes.
Mostly, this is because CFRP uses wormholes as its built-ieeqarof looping and state
(recall from Sectiort.4.1that we remove the need ftwop anddelayin the presence of
wormbholes), but they are also central for any asynchronpesations.

To prevent UISF users from accidentally misusing wormh@hsch becomes easy to
do now that we have no resource types), we remove them gritioeh the interface of the
language. We revert to using the classiop anddelayoperators for state, and we force
all asynchronous communication to follow a few specificeraus (i.e. it must be able to be
expressed using one of the various “async” functions).

Removing wormholes is unfortunate for a few reasons. Fiesgnting to the classic
loop anddelayoperators reintroduces the potential for unbounded lapparhich is only
detectable at runtime. Second, it restricts the forms tegt@rony can take (wormholes
allow arbitrary communication channels between multipiecpsses, but the async func-
tions enforce a sense of “parent” and “child” processes3tlizavhere once we had a single
letWcommand for creating a wormhole, now we must have many difteasync functions.
This bloating of the language is reminiscent of the manyete$ of switch necessary be-
fore our concept of non-interfering choice. In some sertsgygh, UISF is better for not

having wormholes. Although restrictive, the various asfumctions are optimized to run
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efficiently at their given tasks, and the specific optionslalsée may help users identify

appropriate ways to write the programs they are trying toewri

Limitations

Another significant difference between UISF and CFRP has to itlo tive behavior of
these async functions themselves. UISF is built atop theV&IJpenGL library, and the
current interface that it uses has little support for coreniroperations. Specifically, the
GUI itself must be entirely single-threaded. That is, we aammultiple signal functions
at multiple time rates, but all of the GUI behavior must beniag in the same thread at the
same rate. To prevent UISF from causing its GLFW back-entrmat errors, we restrict

the async functions to forkutomatos rather than othddISFs.

6.7 Conclusions and Discussion of Similar Libraries

UISF is a fully functioning, viable GUI library. The examglehown in this chapter are a
sampling of what can be done with it, but perhaps an evenrimttanple is its integration

with Euterpea. Within Euterpea, UISF itself has been extdnid handle various sorts
of MIDI input and output, and additional graphical widgessgiano and guitar frets) are

available for users.

Other GUI Libraries

GUI libraries come in many flavors and varieties. On one erti®tpectrum, designs em-
ploy a callback structure, in which widgets register theneseas awaiting certain events,
and when those events occur, the widgets are “called batks’design is typical of object-
oriented languages, and there are far too many exampleteto ci

In fact, many functional GUI libraries are simply built atope of these imperative
designs. For instance, FranBage[2000, although built on top of the FRP system

FranElliott and Hudak] 1997, provides a fundamentally imperative design (with@sl
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monad) for designing applicationdgnatoff et al.[2004 explore this interface between
imperative GUI toolkits and functional languages by conrgnan object-oriented GUI
toolkit into the FRP language FrTime in a principled way.

UISF shares many similarities with Fudge@alsson and Hallgre1 99§, which uses
stream processing as a central concept of design. IndeeRIPAf general is clearly in-
spired by the Fudgets design. However, while AFRP is syndusty default, Fudgets
are instead asynchronous. UISF, built atop the AFRP framewsrobviously naturally
synchronous, but it also has strong asynchronous suppibet fiorm of its async operators.
Thus, we feel that it finds a good middle ground between thesapproaches.

There are many other GUI libraries even in the category of BR$d ones in Haskell
[Apfelmus 2012 Czaplicki 2012 Giorgidze and Nilssor200§. Grapefruit Peltsch2009
is a push-based FRP system that provides direct access édssifruit [Courtney and Elliott
20014 introduced the first arrowized switch function and in gehéas a principled design
to arrowized FRP that UISF models in many ways. E@zdplicki and Chong2013 is
an asynchronous FRP language for creating GUIs that usesifttiditional” and arrow-
ized FRP design allowing the user to handle signals direntlyaisic cases or use signal

functions for reactive or stateful computation.

173



Appendix

A.1 Proof That Non-Interference Implies Commutativity
(and Exchange)

Theorem 5(Commutativity)
right f > left g= left g>>>right f

Proof. This proof is straightforward. We will begin by assumiRgghtinputs only, and

thus we can modify our assertion to:

arr Right>s>right f > left g= arr Right>>> left g>>>right f
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Starting with the left hand side,

arr Right>s>right f >>leftg
= { Unit backwards;
f >> arr Right>>>left g
= { Non-Interferencg
f >> arr Right
= {Unit}
arr Right>>>right f
= { Non-Interference backwards

arr Right>>> left g>>>right f

For Leftinput values, the proof works in exactly the same way exdetwe must use

non-interference’s mirror:
arr Left>>>right f = arr Left

which follows directly from non-interference and the defon of right. n

A.2 Choice-Based Implementations of First-Order Switch

Although using non-interfering choice and settabilityomis for a different paradigm for
designing FRP programs, we can also use these tools to impleperators that are simi-

lar to the classic switchers. We show two such implementatio this appendix.
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A.2.1 Standard Switch

The standargwitchfunction can be implemented with non-interfering choica straight-

forward manner:

switChoice:: (0 ~~ (B,Eventy)) — ((Eventy,a) ~ f3)
— (a~B)
switchinoice Sy Sh = proc a — do
onOne« delay True—< not onTwo
(b,et) + if onOnethensf; < a
else returnA— (undefinedNoEvent
let onTwo= (isEvent e} || (not onOne
if onTwothen sf, < (et a)

else returnA—< b

Here, we keep track of two internal state variables calle@neandonTwothat indicate
whether we should be running the first or the second signatimm When the first pro-
duces an event, we senOneto Falseso that we stop running it, and we sgtTwoto True.
Then, we pass the impulse generated from the first signatiomto the second one, and

for the future, the impulse stream contains oNlyEventvalues.

A.2.2 Parallel Switch

ThepChoicefunction is somewhat more complicated and is shown in Figuie pChoice
takes a mapping of keys to signal functions (implementeeé hsra list for simplicity) as
its static argument. For each element of this static listkeep a dynamic list of states
(the statesvariable in the figure). We check the input events for any #ratkeyed to
the signal function we are currently processing and updaestate list accordingly (by

either adding or removing elements), and then we run theakigimction for each state
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pChoice:: Eq key=- [(key Eventa ~~ )] —
([(key, (UID, Eventar))] ~~ []
pChoice] | = constA[ |
pChoice((key,sf) : rst) = proc es— do
rec states— delay[ | < stategew
let eshis = map sndb filter ((== key) . fst) es
states,p, = update states @
output« runDynamic(first (settable sf) < stategp
let stategew= map(A ((-,s),uid) —
((NoEventEvent g, uid)) output
rs < pChoice rst<es
returnA— (map(fst. fst) output) ++rs

where update:: [((Eventa, Event Statg UID )]
— [(UID,Eventa)]
[((Eventa Event Statg UID)]
update § | =
(u

update § |d NoEvent : rst) =

update(filter ((# uid) . snd s) rst
update (uid,i) : rst) =
update(((i,Event),uid) : s) rst

Figure A.1: The implementation @Choice

and recur. Note that the static signal functions are all isguwriven; thus, when new
states are first added to the state list (which is done irugdatehelper function), they
are given an impulse event, but otherwise, they are gNeBven((i.e. in the definition of
stategew). This restriction to strictly impulse driven signal furgts is not fundamental
— indeed, we could write a version pChoicethat accepts signal functions that also take
a streaming input — but making it more generic would neetfessmplicate this already
dense definition.

It is also worth noting that there is a subtle difference irf@@nance betweepChoice
andpSwitch When the finite data type is large but rarely usg8ywitchmay outperform
pChoicebecaus@Choicestill has to iterate through its entire static list on eadpswhile
pSwitchs dynamic list will be just the relevant signal functionshak said, their perfor-

mance should be comparable when the finite data type is sorajpared to the number of
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currently running signal functions.

A.3 Proofs of Preservation and Progress for Synchronous
Semantics

In order to prove preservation and progress for our sensgntie must show these prop-
erties for each of the transitions we have defined. Here we stad prove the relevant

theorems.

A.3.1 Evaluation Transition

The evaluation transition is mostly lifted from a standaagyl semantics forZ’{— x+}.
The additions presented in Figutelsimply explain that the new expressions are all values.

Therefore, preservation and progress follow trivially.

A.3.2 Functional Transition

Preservation for the functional transition proceeds inaghtforward manner making sure

that the streaming input is appropriately transitioned astreaming output.

Theorem 6 (Preservation during functional transitiorj e : a & B, x:a,and(_,xe =
(LY, ), theny: B.

Proof. The proof of preservation proceeds by induction on the d&am of the transition
judgment along with the knowledge of preservation for thel@ation transition. Each of
the judgments can be proved trivially with a brief examioatof the typing rules, so we

omit the details. O

Progress for the functional transition is a somewhat maeré@sting concept. Because
of the complexity of the transition, we are forced to make s &ssumptions about the

input data:
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Theorem 7 (Progress during functional transitionf e : a R B, x: a, and ¥ contains
elements such thatr € R, (r,a,-) € ¥ where r: (Tin, Tout) and a: Ty, then3dy: 3,€ : a R

B, # suchthat v ,x,e) = (V',y.&,#).

We require that in addition to the expressiemeing well-formed and the streaming
argumenk being of the right type, the sét must also be “well-formed”. That is, for every
resource thag might interact with (all resources R), there is a triple ir/” corresponding
to that resource that contains values of the appropriatestyNotably, they must all be
resources that have not seen any interaction. This is nohegasonable requirement as
we proved in Theorerf that at any point during the functional execution, no resesiisee

more than one interaction.

Proof. The proof of progress proceeds by induction on the derimadibthe functional
transition judgment. Based on the Canonical Forms Lemma (Laeinwe know that the
functional transition need only apply to the five forms of grsil function, and we see by

inspection that it does. We examine each judgment in turn:

e SF constructo(FT-ARR): Whene is of the formarr(€), typing rule Ty-ARR tells
us thate : a — B. Asx: a, the streaming outpw xis of type8 as necessary. The

other outputs exist regardless of the forneof

e SF partial application(FT-FIRST): If eis of the formfirst(¢/), then the typing rule
Ty-FIRsT tells us thate’ has resource type sBtjust ase does. Our inductive hy-
pothesis tells us that outputs are available for our reeeitsansition. The streaming
output(y,z) has the appropriate type, and the expression output, fobyegplying

first to the expression output of the recursive transition hasanee type as.

e SF compositior{FT-ComP): e may be of the forme; >>> e,. By typing rule Ty-
CompP, we know thae: a B v,er:a 2 B,andey: 3 i y. The evaluation transitions
progress, and by our inductive hypothesis, the functiaaalsitions in the precondi-

tion progress as well. The output is formed from the resulte® precondition with
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the streaming value being of typey as required. The expression output, made by

composing the two expressiogsandej has the same type as

SF choicgFT-CHC1 and F-CHc2): Wheneis of the forme ||| e, typing rule Ty-
CHc tells us thate: o + 3 £ y,er:a B y, andey : B % y. For either form ofix,
there is a judgment, and in either judgment the inductiveotiygsis gives us output
values wherey : y as expected. The returned expression is also of the apatepri
form considering tha¢] from FT-CHC1 ande] from FT-CHC2 have the same types

ase; ande, respectively.

SF resource interactio(FT-RSF): Ifeis of the formrsf r, then the typing rule Y-
RSF tells us that its type must lme{wr»} B andr : (a, ). By the conditions of our
theorem,”” must contain an elemeftty,-) such that : 3. Therefore, the streaming
outputy is of the right type. Lastly, the output expression is ideaitito the input

expression.

Wormbhole introductionFT-WH): We use typing rule Y-WH when e is of the
form letW ry rp & in eyoqy it tells us thateyegy has typea R B whereR =

R\ {rw,rp}. Before using our inductive hypothesis, we must prove thatvdlue
set for the recursive call meets our requirements. We knaty(BU {rw,r,}) 2 R,
so?V U{(rw,&,-),(rp, (),-)} clearly satisfies the condition. Therefore, the streaming
outputy will be of type 8. Furthermore, the output express&mmust have the same

type aseyoqy Which satisfies our output requirement. O

A.3.3 Temporal Transition

By the definition of the overall operational semantics (D&bni2), we know that the trace

of any progranP is infinite. As long as we can prove progress, preservatiamakevant.

We make use of the preservation and progress theorems fewéhgation and functional

transitions shown earlier to prove the following:
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Theorem 8(Progress of overall semantic$) P is a program with typer B B and RC %,
then the trace of P will always be able to progress via the temiptbansition - when

starting from(%,, 0, P).

Proof. The judgment for the temporal transition allows the inpypitogress so long as the
preconditions are met. The first condition defingsto contain elements for each resource
in # as well as for each whitehole and blackhole paitZin This is used in the second
condition, which will progress only if we can prove that,, (), P) will progress through
the functional transition.P may access resources fhas well as any virtual resources
introduced through wormholes. In the base case, the furadtivansition has never been
run, andR does not contain any virtual resources. Then, bec&SeZ,, 7in contains
elements for every resource R so we meet the conditions of the functional progress
theorem (TheorenT). In the inductive case, we are dealing with a potentiallstier
evaluated prograr® with resourcesk, which may contain virtual resources. Then, all
virtual resources will have been generated from previowssgs through the functional
transition, and all of the virtual resources will be repreed by#”’. Once againi, will
contain elements for each resourcérinand the functional transition can progress.

The last two preconditions are simply definitions#f and#’ such thatR' contains
the same number of elements keyed by the same resource neesd that#”’ contains
the same whitehole and blackhole resource nam#s as well as any new wormhole data
entries from#new

The output progran® is not the same aB. Notably, its type may have changed to
() R (). From Theoren2, we know thaR is the seR with up to two new virtual resources
for each element a#ye\ corresponding to the whiteholes and blackholes of the elésne
of #new This is fine for exactly the reason that these new resoureedlacumented” in
Wnew @nd #hew is unioned with#” for the output of the transition. Therefore, wheénis
being generated in the next iteration, all of the resouré&¥ will be represented, both the

original ones inZ and any virtual ones created and documented’in
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Finally, we must consider the overall base case. On the tsttion through the tem-
poral transition, there can be no virtual resources becaoseormhole expressions have
been executed by the functional transition yet. Therefibre jnitial wormhole se¥”” can

be the empty set. ]

A.4 CFRP Properties

In order to express the ideas of resource safety and comwitytatve first need a way to
discuss a given process’s execution at a given moment in time

In order to do this, we need a bit more access to the execuéimsition than we have.
Specifically, we define the following slightly modified exdéiga transition: | ,. The be-
havior of || ; is identical to that of} except that when the transition internally invokes the
functional transitiore on a process with process IR it must do so in a restricted form
such that the &TIME judgment is not permitted. Furthermore, we usggto refer to the
reflexive transitive closure over this transition .

This modified executive transition allows us to rigorousgfide the term “moment in

time”.

Definition 7 (Moment in Time) We say(S %, %) <, (S,%',#") represents the se-
quence of unique program states%, S, ... S, = Sifand only if 3T, T’ such tha{T,Z, #) Up
(T'.Z',w") where T(p) = S, T'(p) = S, and for all intermediate T3 such that Tp) =

S. We call this sequence of states part of the samment in time.

Essentially, the idea of a moment in time fits with the fundataeFRP abstraction,
where we assume that the program executes infinitely fastis,Tone “moment” is the

sequence of steps on one process that occurs between aractpassage of time.

Lemma 3. The program states representing one moment in time canmusiecan update

to a resource.
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This lemma is trivially provable due to the fact that res@srcan only be updated in
the Fr-TIME judgment, which is definitionally restricted from being avfehe states of a
moment in time. Furthermore, it provides us with the knowlkedhat any process that is
terminated while it is mid-execution will not affect any oesces.

We will go on to show that no resource can be interacted withertttan once in a given
moment and that any data observed in a given moment will beahee regardless of the

process’s structure or what other processes are runnimglasynously.

A.4.1 Resource Safety

In order to state that CFRP interacts with resources in a saf@raadictable manner, we

first must define what it means to interact with a resource.

Definition 8 (Resource interactionvery program state S of the forfK > (rsf r,x,U))

for any control stack K, value x, and update set U iesource interaction of resource r.

With this, we can state the following trivial lemma regagli@source interaction over

a sequence of states:

Lemma 4. A sequence of program stateg. S S, will interact with a resource r exactly |
times where j is the number of states in the sequegce §,_1 that interact with resource

r.

Together, we can use this definition and lemma to define res@afety:
Theorem 9(Resource Safety)yor a program P:: a R B, we know:

e No program states will ever interact with a resourcg R.

¢ No two processes in P can interact with the same resource.

¢ No moment of time in P will ever interact with a resource more thiace.
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This theorem has three components. The first statementsafisatra well typed pro-
gram will not interact with resources not noted in its typéeThext statement asserts that
even with the asynchrony of multiple processes running kanaously, resource access
remains unique across the entire program. The last statemsearts that for any given

process, within one moment in time, no resource will be amsore than once.

Proof. The first two statements of this theorem follow from the tgprales. First, ifP is
well formed and has resource tyfesthen there can be nsf construct inP for a resource
r Z R. the second follows naturally from the typing rules for famd composition.

To prove the third statement we show that for all statesSo#%2, %) < (S, %', #"),
no two can interact with the same resource. §ebe a state in the sequence that interacts
with resource. Then, S = (K> (rsfr,_,Uy)), andSc;1 must be(K < (rsfr,_,Uy;1)). The
only way to move from aeturn state like this to amvaluationstate is through either the
FT-TIME judgment or the FCoMpP, judgment. No state can move through the HME
judgment by definition of anoment in timgand the F-ComP, judgment will not allow
code that has already been executed to run again, which weecgure of due to Theoredn
(Structural Preservation). Therefore, no s@tg, can repeat the same stateRs

Furthermore, due to the typing rules and the fact that evateg § unwinds to a well
typed expressioaand that a moment contains no-F IME judgments that would allow the
expression to begin again, there can be no more tharsboemmand for in this moment.

Therefore, no resource can be interacted with more thaniaribes sequence. O

A.4.2 Resource Commutativity

The resource safety theorem tells us that a process willrrpareeive more than one re-
source interaction with the same resource in a given mometithe. We use this to make

the following claim:
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Theorem 10 (Commutativity) For any S and r, if(SZ,#') —p (S,%',#") is the set
of states §...S, and there exists &« n such that 5= (K> (rsfr,_,U;)) and $;1 = (K <

(rsfr,x,Ui11)), then x will be the same for all S regardless of i.

This theorem states that within a given moment in time fornewiinitial # and %',
regardless of where a resource is read or what comes befatteorit within that mo-
ment, it will produce the same value. Thus, if two sequendede both use the same
resources and can execute in the same moment in time, thelyecanbstituted and the
values produced by their resources will not alter becausieabfchange.

Thus, we state that the order of execution of the componéatsignal function running
atthe same moment in time does not change the result of tgegono This fits the model of
our abstraction exceptionally well because it implies thatcan really think of a moment
in time as happening all at once—no one component needs fehdpefore another to

produce the result.

Proof. We will prove this theorem by proving that it holds for anygasce type.

First, if r is a blackhole, the theorem holds trivially. The-RSF, judgment applies,
and due to the definition atad for blackholes and regardless of anything else, the value
will be ().

If r is a whitehole resource, then the transition fr&to S§,1 must once again be
FT-RSF,y, in which case the valueis determined uniquely by the elemembf the worm-
hole’s internal resource data, and it suffices to show tlgatriless oS andi, w will be the
same. Resource data can only be changed by a resource updite), and the only func-
tional transition judgment that updates resourcestid ME. Furthermore, the FTIME
judgment will only update if an elemeft, _) is in the update data passed into it. However,
(r,_) will only be in U for sets of update data in a process that has already practsse
FT-RSFy judgment with the resource in question. By Theor@ifResource Safety), we

know that no other process can interact witlso that element can only belihfor states
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inS...S,. Lastly, because no stat&g... S, use the F-TIME transition, we know thatv
cannot be changed during the moment.

Lastly, if r is a physical resource, then the transition fr§no S, 1 is FT-RSk, and
the valuex is determined uniquely by the state of the resoutc€&his conclusion follows

similarly to that for whiteholes. O
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