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Abstract

Functional Reactive Programmin@RP) provides a method for
programming continuous, reactive systems by utiliziggal func-
tionsthat, abstractly, transform continuous input signals into con-
tinuous output signals. These signals may alsstiEams of events
and indeed, by allowing signal functions themselves to be the val-

ues carried by these events (in essence, signals of signal functions)
one can conveniently make discrete changes in program behavio

by “switching” into and out of these signal functions. This higher-
order notion of switching is common among many FRP systems, in
particular those based on arrows, such as Yampa.

Although convenient, the power of switching is often an overkill
and can pose problems for certain types of program optimization
(such azausal commutative arrow$4]), as it causes the structure
of the program to change dynamically at run-time. Without a notion
of just-in-time compilation or related idea, which itself is beset with
problems, such optimizations are not possible at compile time.

This paper introduces two new ideas that obviate, in a pre-
dominance of cases, the need for switching. The first i@a-
interference lawfor arrows with choice that allows an arrowized
FRP program to dynamically alter its own structure (within stati-
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defined at particular moments. The FRP model allows one to es-
sentially define behaviors for these streams, using signal functions
that react as the streams change over time.

A problem with classic FRP systems (such as Fran [6]) is their
propensity toward space and time leaks [15]. One method for ad-
dressing these leaks is by usiagows [12, 13] in so calledar-
rowizedFRP (AFRP), which has been usedYampa[3, 11] (for

ré\nimation, robotics, GUI design, and morslettle [18] (for net-

working), andEuterped[10] (for audio processing and sound syn-
thesis). In AFRP, instead of treating the signal as a first class value,
one treats thesignal functionas the core component. The arrow
structure then allows the signal functions to be composed quite nat-
urally.

Furthermore, the arrow abstraction lends itself well to aggres-
sive optimizations. An arrow’s structure must be defined statically,
and once defined, it cannot be altered mid-computation. Therefore,
regardless of what data the signals contain, the arrow’s overall be-
havior is fixed. For example, CCA [14] relies on this restriction
to optimize an FRP program and often improve its performance in
GHC by an order of magnitude.

cally limited bounds) as well as abandon unused streams. The other )

idea is a notion of aettable signal functiothat allows a signal 1.1 Switch

function to capture its present state and later be restarted from somepne problem with arrows is that they do not naturally have the full

previous state. With these two features, canonical uses of higher-capabilities that classic FRP provides. As mentioned, an arrow’s
order switchers can be replaced with a suitable first-order design, structure must be fixed at compile-time, but classic FRP provides
thus enabling a broader range of static optimizations. behavior-switching mechanisms. Thus, arrows are typically aug-
mented with a higher-ordewitchoperator to recover this ability.

Switching allows a program to accept and utilize a stream of
signal functions, thus allowing for higher-order signal function
expression in which the program can update its own structure
during execution. Additionally, in the realm of signal functions, a
higher-order ability like this provides the only means of starting
. and stopping signals mid-computation, which is often a necessity
1. Introduction for good performance. For instance, new signal functions can be
Functional Reactive Programming (FRP) is based on the idea of provided at runtime and “switched on” to augment the current
programming withsignals or time-varying values. Signals can be behavior of a program. Likewise, given an event that a certain
continuous, in which case they are defined for every moment in signalis no longer needed, the program can “switch off” the portion
time, or they can be discrete event streams, in which case they areof itself that is computing values for that signal, thus preventing
unneeded computations from being performed. In fact, arrows with
switch are as powerful asrrowApplyarrows, which are equivalent
to monads [12].

Unfortunately, this power comes at a cost: the inherent higher-
order nature of switch that allows it to run arbitrary signal func-
tions from a stream makes certain compile-time optimizations and
static guarantees much more difficult or even impossible. For ex-
ample, arrows with switch cannot undergo the CCA optimizations.
Likewise, in the realm of embedded systems, where static code is
required due to strict time and resource constraints, switch can be
an intolerable hole in a static guarantee.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guage§ Language Constructs and Features
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1.2 An Alternativeto Switch

The motivation of this research is to ask whether switch is really
necessary. Most FRP programmers would be reluctant to give it
up — indeed, some FRP programs would be inexpressible with just
first-order arrows — but perhaps there is an operator that is pawerfu
enough to replace switch in most cases while still being weak
enough to allow for CCA-like optimizations. In order to consider
this, we first must examine more closely exactly what switching
provides.

Switch allows one to express two fundamental behaviors that
are otherwise impossible with just arrows. First, it provides a way
for signal functions to dynamically start and stop mid-computation,
which is useful not just for expressing certain programs but also
for obtaining high performance. Second, it allows for higher-order
signal expression, essentially providing a way to flatten a stream of
streams into a single stream or insert a dynamic signal function into
the arrow structure itself.

The first of these effects is similar to what is providedaosow

arr i (a—B)—(a~p)

first :(a~B)—((a,y)~ (B.Y))

(>>) n(a~B) = (B~y) = (a~y)

() =(a~y) =B~y = ((a+B)~y)
loop :: ((v.a) ~ (v, B)) = (a ~B)

delay :: B — (B~ B)

Figure 1. The types of the arrow operators.

general as well as a comparison of this work to related work in
Sections 8 and 9.

2. Arrows
2.1 Signal Processing

choice which allows an arrow to choose between statically defined Programming with AFRP is a lot like expressing signal processing
branches based on a dynamic argument. However, although thediagrams. Where signal processing diagrams have lines, AFRP

streaming argument will only be processed by one branch of an
arrow choice conditional, every effect from the arrows from every
branch will be executed. This means that arrow choice cannot
be used to entirely suspend a branch in the way that switch can
suspend a “switched out” signal function.

To address this, we can modify arrow choice by adding a new
law in order to make inon-interfering Non-interfering choice
asserts that effects from only one branch of the choice will happen,
and so if one branch is taken, it is as if the other does not exist.

Technically, non-interfering choice allows us only to pause sig-
nal functions and not actually start or stop them. For this reason,
we additionally provide a method for making an arrsettable a
settable arrow’s state can be saved, reloaded, and even reset.

Combining settability with non-interfering choice gives us the
full power of the first effect of switch. That is, we can “start” a
signal function by using choice and then resetting its state, and we
can “stop” a signal function by indefinitely pausing it.

Interestingly, non-interfering choice allows for another unfore-

seen benefit: arrowized recursion. Because only one branch’s ef-

fects can take place, we can do a form of recursion that allows be-
haviors that were previously only possible with switch. Combining
this with settability allows for some surprising power.

1.3 Contributions

In this paper, we aim to show that switch is not essential to AFRP
and that many powerful FRP programs that were previously be-
lieved to require switch may not actually need it. Indeed, we will

take a number of example programs that utilize various forms of

switchers in standard ways and show that our system is just as ex-
pressive. With this conclusion, we hope that we can open the doors

to new and improved optimization techniques for arrows; we begin
this process by demonstrating an extension to the CCA optimiza-
tion that takes non-interfering choice and settability into account.
In the next section we will discuss arrows in general along with
some details about the switch operators that we will be comparing
our work against. Following that, we will make cases for both non-
interfering choice and settability in Sections 3 and 4, in which we
will show leading examples and present our first-order solutions.
In Section 5, we will culminate our examples with a parallel choice
example in the music domain that will bring together all of the top-
ics so far discussed. From there, we will move into some imple-
mentation details, first describing our implementation of settability
in Section 6 and then detailing an optimization for non-interfering
choice in Section 7. Finally, we will present a brief, concluding
discussion of the differences between our work here and switch in

has signals and where diagrams have boxes that act on those
lines, AFRP hasignal functionsThese signals can represent either
continuously-defined time-varying values or streams of discrete
events.

Because AFRP is based on arrows, we can use Patessong
syntax[17] to make programming with it easier. For example, we
can turn this simple signal processing diagram:

ya:

into just as simple a code snippet:

y < sigfun— x

In this example sigfunis a signal function that takes the input
streanx and produces the output stregm

For this paper, we will use Haskell's arrow syntax and operators
to express code examples. Thus, the above code fragment cannot
appear alone, but instead must be part girac construct. The
expression in the middle must be a signal function, whose type we
write asa ~~ 3 for some typesr andf. The expression on the right
may be any well-typed expression with tygeand the expression
on the left must be a variable or pattern of type

The purpose of the arrow notation is to allow the programmer
to manipulate the instantaneous values of the signals. For example,
the following is a definition fosigfunthat integrates a signal and
adds one to the output:

sigfun= proc x — do
y < integral < x
returnA—y+1

The notation proc x — do...” introduces a signal function, binding
the namex to the instantaneous values of the input. The second line
sends the input signal into an integrator, whose output is ngmed
Finally, we add one to the value and feed it into the signal function
returnA that returns the result. The last line of this notation has no
binding component — instead, whatever value is produced in the last
line is returned in total.

Of course, one can use arrows without Haskell's arrow syntax.
Arrows are made up of three basic operators: construcaan),
partial applicationfirst), and composition¢s>). Furthermore, we
extend our arrows with choice||) [12] to allow dynamic control
flow, looping (oop) [17] to allow value-level recursion, and delay
(delay). The types of these operators are shown in Figure 1.



For example, the signal functisigfun defined earlier can be
written without arrow syntax as follows:

sigfun= integral>=>arr (Ay.y+1)

Note thatreturnAis defined simply asurr id, which is why it is
used for clarity to return values in the last line of arrow syntax but
is omitted from the above definition &igfun We will also use
the functionconstA:: 8 — (a ~ B) in this paper, which takes one

static argument and returns a signal function that ignores its input

stream and returns a constant stream of the given value.

Events and Event Streams

The classical interpretation of a signal of typeis that it is a
function from time toa defined for all points in time. We call this
a continuoussignal. However, we frequently require the ability to

define a signal that has values at only discrete points in time and is

undefined elsewhere. These so-cadednt streamare represented
by encapsulating the signal's type with an option type. For this
paper, we will use the following:

data Eventa = Eventa | NoEvent

Note that we are overloading the nafeentsuch that it is both the

general type as well as the constructor for an event. Thus, if a signal

has typeEventa, then we know that it is defined when it provides
anEventand undefined when it providésoEvent

In this paper, we will make use of the fact tfatentis a functor
in the obvious way and freefynapfunctions ovelEventvalues.

2.2 Statevialoop and delay
A key component of FRP systems (AFRP included) is the ability

to perform stateful computation. For example, Yampa includes the
integral function that integrates its input signal, a process impossi-

ble without some form of internal state.

Although stateful signal functions can be achieved in a variety

of ways, we follow Liu et al. [14] in the use of @elay' operator
along with loop. In this model, we use the loop as a feedback

parallel, batch-input, delayed switch. We will briefly examine three
of these switchers.

Switch
The most basic switch function has the following type:

switch:: (a ~ (B, Eventy))

= (y—(a~pB))

— (o~ B)
The first argument is the initial signal function that the result will
behave as. When that signal function produces an event, the switch
will use the data from that event along with its second argument to
produce a new signal function. From then on, it will behave as that
new signal function.

Recursive Switch

A slightly more advanced version of switching allows for the signal
function to be switched out more than once:
rSwitch:: (o ~ )
— ((a,Event(a ~ B)) ~ B)

Here, the resulting signal function takes an event stream of signal
functions along with the stream of inpatvalues. When the event
stream contains an event, it switches into the signal function con-
tained in the event.

Parallel Switch

The parallel version of switch is significantly more intimidating
from its type signature but also quite powerful:

pSwitch:: Functor col
= col(a ~ B)
— ((a,col B) ~ Eventy)
— (col (a ~ B) — y— (a ~ col B))
— (o~ col B)

The parallel switcher works onollections of signal functions,
where a collection must be Bunctor. First, it is given an initial

mechanism, allowing an auxiliary output containing the state to be collection of signal functions to run and a signal function that pro-
fed back as an input, and we use the delay to prevent an infinite duces update events. The third argument takes the current collection

feedback loop. Indeed, Liu et al. [14] even demonstratettegral
can be defined using this method:

integral= proc x — do
recv <« delay0 —< v+ dtxx
returnA—v

Note here that theec keyword in arrow syntax invokes tHeop
operator and that we assumis a global time step.

2.3 Switch
As discussed in the introduction, the ability to dynamicalyitch

of signal functions and the value from an event in order to produce
a new collection of signal functions. In tot@lSwitchwill run every
signal function in its collection and produce as output a collection
of their results.

Note that any one of these versions of switch is strong enough
to implement the others. The reason for Yampa's many varieties of
switch is not due to power differences, but rather due to ease of use.
That is, for example, usingwitchto do an operation that requires
rSwitchis tedious, so both varieties are provided.

3. A Casefor Non-Interfering Choice

one signal function for another during the execution of a programis We will begin this section by exploring one of the main uses of
a stap!e of most FRP systems. Cons!derllng that one of our primary switchers: as a method to allow the dynamic starting and stopping
goals is to show an alternative to switching, we will here describe of signal functions. We will present our first-order alternative and

switch’s capabilities.
The idea of switching was introduced along with the earliest

then demonstrate it in a few practical settings.

models of FRP [6]. These non-arrowized FRP implementations 3.1 Pausable Signal Functions

had the ability to sequence periods of signal function execution, a At a basic level, switch is often used to improve performance of
process that is inherently monadic in nature. However, the move to an AFRP program. Without switch, signal functions will last for-
the arrow abstraction would not allow this behavior, and to prevent ever, and this typically means that they will compute future values

any loss in expressiveness, Hudak et al. [11] introducedwhiteh
function in Yampa.

Actually, Yampa includes some 14 different variations on the
switch function ranging from the simplest switch to the recursive,

1 Note that in [14], this operator is referred toiai.

indefinitely. Using switch, one can “turn off” signal functions that
are not currently necessary and even turn them back on if they are
required again in the future.

For example, consider the scenario where we would like to
integrate a stream only when a certain condition holdsvélg,
we can write the following program:



Extension left (arr f) = arr (left f)

integralWheRaive :: (Double Bool) ~- Double Functor left (f >>g) = left f>>leftg
integralWheRaive = Proc (i,b) — do Exchange left f>>arr (rightg) = arr (right g) > left f
v« integral—i Unit f>>arr Left = arr Left>>> left f
Vprev < delay0 —v Assoc. left (left f) > arr assoc. = arr assoc. > left f
let VAo =V — Vprev
rec result « delay0 — if b then result+ v, elseresult assoq. (Left(Lefty) = Leftx
returnA— result assoq- (Left(Righty)) = Right(Lefty)
assog (Right 2 = Right(Right 2

This program will only update the result when the booleafris,
but it is still unsatisfying that the integral is being computed at all Non-interference arr Right>>>left f = arr Right
when it is not being used. If integral were instead a costly signal
function and the boolean were usudfigise, this could be seriously  Figyre 2. The standard laws for arrow choice with our new non-
problematic to performance. interference law below.

In cases like this, switch can be employed to prevent the integral
from running when it is not needed:

In order to give choice the extra power it needs to be an adequate

integralWhem,yjc 1 (Double Event Boo) ~~ Double replacement for switch, we strengthen thechangdaw into the
integralWheR,yjich = proc (i, e,) — do more powerful:
rec v « rSwitch(constA0) —< (i, . . .
fmap(Ab — if b Non-interference arr Right>>>left f = arr Right
then (integral>>arr (+v)) Indeed non-interferencémplies exchange and even commutativity
else (constAY) &) as it is stronger than either (see Appendix A for details). It states
returnA—=v that once the streaming value is tagged &Right value, then it

will not be applicable tdeft f, and so it should behave as if the
left f is not even there. Thus, by including the non-interference law
for choice, we assert that either signal functions cannot have static
effects or that the choice operation has the power to dynamically
choose which effects to perform.

For this version, we modified the type to make it more amenable
to switching by converting the streaming boolean value to an event
stream that will send events only when the stream would change
from Trueto Falseor back. Internally, we use thr&witchfunction

that we introduced in Section 2.3 to switch betwésategral and

a constant function. Each time we switch iritdegral, it is fresh 3.3 Pausable Signal Functions Revisited
and has no history from the last time we were usiniggral, so we

additionally compose it witarr (+V) so it can maintain its history. ~ With non-interfering choice in our arsenal, we can define a new ver-
sion ofintegralWherin an even more intuitive and straightforward

way:
3.2 Non-interfering Choice integralWheggice:: (Double Bool) ~ Double
Although the above example is a fairly common use for switch, integralWhegpgice= proc (i,b) — do

careful examination of the problem reveals that switch is far more rec v « if bthen integral <

powerful that necessary. That is, while switch allows us to dynam- else returnA—<v

ically incorporate new signal functions into the running compu- V < delay0 —<v

tation, here, we are simply makingchoiceof whether to run a returnA— v

component signal function based on a dynamic value. Our solution
to this problem will thus be built around arrow choice, so we will
begin by examining it more closely.

The general choice operator we ugéif Figure 1) can actually
be built from a simpler component:

Because we are not actually switching out of theegral signal
function, it will retain its state internally. When it is executed, it
will calculate and add the latest delta of integral, and otherwise, it
will simply wait by returning the stored value.

34 A SingleFirst-Order Switch

The most basic switching operation is to non-recursively switch
whereleft f calls f when the input signal containseft values and out one signal function for another dynamically. For example, we

left:: (a ~ B) = ((a+y)~ (B+Y))

acts as the identity function otherwise. With tledt function, we could write a simple guessing game that accepted an event stream
can also define an analogoright function and then use the two  of guesses, and when the correct answer was provided, it would
together to defing|. switch into a signal function that ignored its input and declared that

Choice also comes with a set of laws that we show in Figure 2. the game was over:
For us, the most notable law is tleechangdaw, which acts as a
weak form of commutativity betwednft functions andight func-
tions. One may ask why choice does not demand full commutativ- Sy " —_—
ity (i.e. left f > right g = right g>>>left f), and in the context of where ]]: (Bvent)|(i ==3) — ((), Bvent’You Wint")

) . . A ; . _ = ((), NoEvent
signal processing, this question is very sensible. After all, it seems
intuitively obvious that either thieft function or theright function wherelabel is a signal function widget that ignores its streaming
will run, but in no case will both run. However, because arrows can input and displays the text it was given as its static argument. Note
have effects regardless of their dynamic inputs, and the composi-that we are using the plain, non-recursive, non-parallel version of
tional order of these effects can alter the program itself, choice is switch that we presented in Section 2.3.glmess when the event
weakened. It is precisely this leniency that makes switching neces-containing 3 is processed, the string “You win!” is given to the
sary in cases such as the above example. label, and the guessing is switched out for that label.

guess: Event Int~ ()
guess= switch(arr f) (A t — label t)



runNTimes: Int — (o ~ B) — ([a] ~ [B]) runDynamic: (a ~ B) — ([a] ~ [B])

runNTimes) _ = constA| | runDynamic st= proc Ist— do
runNTimes n s& proc (b: bs) — do case st of
c+sf<b [] — returnA—[ |
cs< runNTimegn—1) sf< bs (b:bs) — doc+«+ sf<b
returnA— (c: cs) €S« runDynamic sf< bs

returnA— (c: cs)

Figure 3. The implementation ofunNTimesusing structural re-
cursion. Figure 4. The implementation of the choice-basathDynamic
function using arrowized recursion.

For this example again, switch is too strong. Notice that the
argument given to the switched-in signal function is not itself a
signal function. In fact, it's just a constant! We can rewrite this with
non-interfering choice:

guESghgice:: INt~~ ()

Second, there istructural recursion. Structural recursion hap-
pens when the host language’s recursion is used to create an arrow
in a recursive way. For instance, we might have a function like:

QUESSHoice= Proci — do runNTimes: Int — (o ~ ) — ([a] ~ [B])
rec haveWon— delay False< havewory| (i == 3) When defining this function, we use Haskell's conditional syntax to
it haveWorthen label “You Win!" — () recur on the value of the first argument: while it is greater than zero,
else returnA— () we run the signal function and recur, and when it is equal to zero,

Note that we changed the input stream to a continuous stream agVe return a constant stream of the empty list. We show a definition

opposed to an event stream simply to make the example clearer.  Of runNTimesusing this form of recursion in Figure 3. _
A key frustration with structural recursion is that the recursive

Reacting to dynamic events argument is static as opposed to streaming. Thus, structural recur-

The above versions afuessare quite primitive, and although we sion is often performed in tandem with higher-order switching to
use switching in the first one, we are far from using its full power, 2llow & streaming value to be used in place of the static argument.
We can make the example slightly more complex by adding an With, non-interfering choice, we extend arrows with a new kind

additional component to the input such that the program is actually pf recurs_ior_l that we calirrowizedre_cursion. Arrowi_zed recursion_
reactive: is very similar to structural recursion except that instead of using

the host language’s conditional, we use arrow choice. Ordinarily,

this would be impossible: because all branches of an arrow choice

. ) must be executed for their effects, if one were recursive, then
where f (Event(i,s))|(i == 3) = ((), Event$ it would cause an infinite loop. However, non-interference gets

f- = ((), NoEvent around this by restricting arrow effects dynamically.

In gues§ the text to put in the label is no longer static and instead Thus, with arrowized recursion, we can write a function similar

is part of the guess event, and in its current form, switching is a to the aboveunNTimesbut that needs no static argument to per-

necessity as it is the only way to provide the dynamically streaming form its recursion. In fact, we can make the input stream of lists the

string to the statidabel function. However, we could once again recursive argument and eliminate the need for an “N” altogether.

lift the need for switching if we could redesign the label to instead We call this functiorrunDynamicand show it in Figure 4.

take animpulse An impulse is a one time event that initializes a

signal function, so in this case, the type fabel would change 3.6 Dynamic GUI

guess:: Event(Int, String) ~ ()
guess=switch(arr f) (A t — label t)

from String— (a ~ ()) to (Event String ~ (). . One power of switch, showcased particularlyFinuit [2], is the
With an impulse driven label widget, we can once again convert gpjlity to allow a dynamic number of signal functions to execute.
thegues$function to a switch-free alternative: That is, by default, arrows have a fixed structure, and the streaming
gues,gice:: (It, String) ~ () values moving through an AFRP program cannot affect that struc-
guesg:oice: proc (i,s) — do ture. However, switch allows one to dynamically alter the arrow at
rec haveWon— delay False< haveWor| (i == 3) runtime based on the streaming values.
let imp = if not haveWor&& i == 3 For example, one may desire a GUI that gathers the names of
then Event s8lse NoEvent an unknown group of people. If the size of the group were fixed or
if haveWorthen label < imp at least known at compile time, then this is achievable trivially with
dse returnA— () arrows, but if the size is a parameter that is filled in by the user of
the GUI, then standard arrows are stymied. One approach is to use
3.5 Arrowized Recursion a switching mechanism.

As we have shown in the previous two examples, there is a direct ~ OF this example, we will assume a few GUI widgets:

usage for non-interfering choice, but the non-interference law also label = string— (() ~ ()
gives us a less obvious benefit. By restricting the arrow effects to etinteger :: () ~ Int
only one branch, we open the door to the possibility of a new kind 9 ger -
of recursion. getintegerE:: () ~~ Event Int
Typically, arrows can perform recursive behaviors in one of two getName :: () ~» String
ways. First, arrows can use tlewp functionality to perform a value
level recursion, or a sort of fix point recursion. After all, one of the
laws forloopis:

Note that we have both a regular and event-based version of
getintegerthe event-based one, which produces an event each time
the value changes, is useful for our example with switch, and we
loop (arr f) =arr (A b—fst(fix (A(c,d) — f (b,d)))) will use the regular one with choice.



We can use these widgets in combination with t$svitch
function to make our GUI:

getNames: () ~ [String
getNames= proc () — do
_ < label"How many people?*<
en < getintegerE< ()
rSwitch(constA[ ) — (repeat(),
fmap(A n— runNTimes n getName,)

0

where theunNTimedunction is the one we discussed in the previ-

ous subsection (that uses structural recursion to run the given signa

function the given number of times, as shown in Figure 3).

The above definition ofetNamesalthough correct, is using
the higher order nature of switch when it is not truly necessary.
Switching gives the power to substitute in any new signal function
for the currently running one, but here, the nature of the new signa
function is already known: it will be some number gétName

widgets. Because this fact is known at compile time, we can use

arrowized recursion instead to create a simpler, switch-free GUI.

getNames: () ~» [String
getNames= proc () — do

_+ label“How many people?*< ()

n < getinteger— ()

runDynamic getNamex replicate n()

BecauseunDynamicuses arrow choice to do arrowized recursion,
we do not need to use any switching.

4. A Casefor Settability

In this section, we will explore a second main use of switchers:
the ability to start a signal function mid-computation with no prior
state. Once again, we will begin with a simple yet canonical exam-
ple before describing our first-order alternative and some further
usage examples.

4.1 Restartable Computation
Although pausing signal functions is useful (as inititegralWhen

Although this is a valid solution to this particular situation, it is a
technique that does not scale well to more complicated problems.

42  Settability

At this point, the idea of lifting a signal function into the event
stream, as we did imtegralResey, ., above, should seem unnec-
essary. Indeed, we are not even switching into some dynamically
given new signal function but rather just using a new instance of
the same signal function again. Rather than switching, our first-
prder approach is to develop a notion of signal functettability,

or a way to change the internal state of a signal function at arbitrary
points.

Because we are dealing with state, we will begin with an even

' more primitive example and examine ttelayoperator directly. At
| first glance, it seems to suffer from the same problenmigral —

thedelaywill always output old values, so what can we do to reset
it? However, modifying it to be resettable requires only the addition
of a single input event stream:

resettableDelay. 8 — ((3,Event()) ~~
resettableDelay i proc (b,e) — do
out<+ delay i<b
returnA— case e of
NoEvent— out
Event() —

WheneverresettableDelays given an event, it will immediately
output its initial value again, essentially behaving as if it has only
just started. In fact, we can take this one step further and construct
a version ofdelaythat can be set to any value of our choosing:

settableDelay: B — ((8,Event(Maybef3)) ~~ )
settableDelay + proc (b,e) — do
out«+ delay i<b
returnA— case e of
NoEvent — out
Event Nothing- i
Event(Justg — s

B)

example of Sections 3.1 and 3.3), there are times when we really With settableDelaythe event stream can potentially carry a new

do want to restart a signal function, resetting its state to its initial
defaults. In fact, with switching, this is even easier than pausing
considering that switch naturally starts its new signal function from
the beginning.

For instance, let us consider the scenario where we would like

value to set the internal state, and if there is no value, we perform
a reset. It may seem superfluous to have an event of an option, but
adding the ability to set the state does not make resetting the state
obsolete.

A fortuitous bonus to this function is that, in addition to being

to take the integral of a stream, but at any moment, we may be able to set the state, we can also capture the current state. That
given an event that indicates that we should reset the integral’s iS, because the input stream is necessarily setting the new current

accumulation to its initial default. With switch, this is actually
trivial: we simply lift theintegral function into the resetting event,
and send everything into a recursive switcher:

integralReseditch:: (Double Event()) ~
integralResed,itch= proc (i,e) — do
rSwitch integral= (i, fmap(const integra) e)

Double

Without switch, this seems like a tough problem, and nothing about
non-interfering choice lends any help.

One idea is to try to simulate the behavior of a restart without
actually touchingntegral itself. That is, because the function we
are lifting is just an integral, we could take a snapshot of its output

state, it can also be made to provide it directly. Thus, we can use
settableDelayo both “store” and “load” state.

General Settability

Although a settable version alelaymay be useful on its own, it
would be much more useful to have any arbitrary signal function
be settable. However, this would require manually changing every
internaldelayoperator to its settable alternative and then properly
routing the state-setting events to the appropriate places. Addition-
ally, if capturing the state at a given moment were important, all
of the inputs to thelelayfunctions would also need to be grouped
and appropriately routed to the output. This would be exceptionally

at the restarting moment and then continuously subtract that valuecumbersome and not at all feasible. What we want is a function

from future outputs:

integralResei,sic:: (Double Event()) ~ Double
integralReseg,sic= proc (i,e) — do
0 < integral <
rec let k= if isEvent ehen o else K
K « delay0—<k
returnA—<o—k

like:

settable: (a ~ B) — ((a,Event Statg~ (B, Statg)

that will automatically take a signal function and allow us to both

pass in an optional new state as well as save its current state.
This settablefunction should hold to certain principles of be-

havior. For example, if it is never provided with a state, then it



settable: (a ~ ) — ((a,Event State~ (B, State) guiz ()~ ()
gui=proc () — do
€dup < button“Duplicate pane?”< ()

Identity egel < button“Delete pane?’< ()
i < choosePane< ()
rec stateLsk— delay[resef < stateLsfew
~ ((), stateyew) + settable drawing= ((), stateLst! i)

let stateLstew = case (€yup: €del) Of
(Event(),.) — seti stateLst stafew+ [Stat@ew]
Uniformity (NoEventEvent()) — delete i stateLst
- _— setistateLst stafRw
returnA— ()

settable sf
- ~ Figure 6. The implementation of the GUI from Section 4.4.
delay NoEvent ]4—[ arr Event

Default cally, freezing is the process of stopping a running signal function
mid-execution and providing it as a piece of data to reuse. Later, it
can be resumed by using a switcher to reintegrate it into the struc-

settable < @ ture of the program.
(delay i) Rather than providing a copy of itself, a function made settable

will provide a stream of itessencdi.e. its current state), which
can then be reinserted at any time later. Thus, we gain the ability to
freeze and resume without actually resorting to switch.

Figure5. Thesettablefunction and its laws.
Example

For this example, we will construct a GUI for drawing. The main
window will feature a drawing pane, but the user will be able to
create new panes and switch between them. When a new pane is
created, it is automatically populated with a copy of whatever is

¢ currently on the current pane.

For this example, we will assume a few widgets:

should do nothing. Similarly, if the state it produces is used to
set it, then there should be no observable difference in behavior.
Additionally, there should be a particular value Statethat acts
as areset(in our settableDelayfunction from earlier, this was
Event Nothiny Thus, if one were to feed a constant stream of rese
states, the output would always use the default values. We declare
these principles as laws of behavior mttableand show them di- drawing 1 ()~ ()
agrammatically in Figure 5. choosePane: () ~ Int
In fact, with an appropriate code transformation, any arrow can ) .

be extended with aettablefunction. We will explore the details of button 1 String— (() ~~ Event())
this transformation in Section 6, but for now, it suffices to state that The drawing widget is a stateful, effectful widget that provides a
itis possible and available in our examples. canvas and allows the user to draw; th@osePanaidget returns

. . an Int stream that represents the currently selected pane; and the
43 Redtartable Computation Revisited buttonwidget takes agtatic label and proda/ces an eveFr)lt stream that

With the settablefunction, definingintegralResets just as trivial indicates when the button is depressed.
as with switch: With these widgets, we can create the GUI we described (shown
integralReset: (Double Event()) ~ Double in Figure 6). The state for the GUI is kept as a list of drawing
integralReset= proc (i,e) — do states, initialized in the sixth line as a one element list containing
(v,s) « settable integral< (i, fmap(const resete) aresetstate. This initial list describes a GUI with a single pane
returnA— v that has a blank drawing canvas. When a user wishes to duplicate

. L . . . the current pane, the current state is added to the list allowing the
Rather than lifting a dynamic signal function to the signal level just s to “save” the original pane while providing a duplicate state

to be activated by switch as we did previously, we lift only areset ¢ the new one. The key here is that instead of keeping track of
signal. The difference in the amount of code between this function yifrerent instances of the signal function, each with its own state,

and integralResef,ic, is negligible (it basically comes down t0 \ye keep track of multiple states themselves and use them with a
ignoring the state output of the settable signal function), but the single signal function.

conceptual difference is quite important: rather than needing to stop  \we omit a version of this GUI that utilizes switching because it

a currently running signal function to replace it with a new, fresh s g prisingly complicated, and it is not particularly necessary to
instance of itself, it is possible to refresh it while leaving it active.  gntrast it with the GUI we present in Figure 6.

4.4 Freezing and Duplicating

This settablefunction has applications beyond just resetting ar- 5. An Alternative to pSwitch

bitrary, stateful signal functions. By separating the state from the Here, we will pull together the ideas of both settability and non-

signal function, we are essentially separating the current behaviorinterfering choice that we have highlighted in the previous sections

from the structure. That is, treettablefunction gives us the power  to present a high power yet first-order version of a parallel switcher.

to freezesignal functions. As we mentioned in Section 2.3, parallel switchers allow for
Typically freezing a signal function is thought of as a higher- whole collections of signal functions to be managed and switched

order operation achievable only with a switch operator. Specifi- in or out at once. One example of the usefulness of this kind



of switcher can be seen in the musical realm where one might
have a program that plays music with software “instruments” that
are actually themselves signal functions. The music is given as a
sequence of “On” and “Off” events, where the “On” events provide
the instrument to play and some initializing data about what note to
play, and the “Off” events tell which instrument to stop:

data NoteEvt= NoteOn UID Instr InitData
| NoteOff UID Instr

type Instr = InitData — (() ~ Sound

sumSound [Sound ~ Sound

Note that theJID type is a unique identifier that is used to connect
a givenNoteOnevent with itsNoteOffcounterpart, and th8ound

The type ofpChoiceis:

pChoice:: Eq key= [(key, Eventa ~- )] —
([(key, (UID, Eventa))] ~ [B])

and as itis somewhat complicated, we leave its implementation and
a more detailed description of its inner-functioning to Appendix B.

We can us@Choiceto reimplement our music program without
switch:

maestro: [NoteEv} ~~ Sound
maestro= arr (map f) >>> pChoice Ists>> sumSound
wherelst=map(A i — (i,tolnstrument)) allinstrs
f (NoteOn uiimp = (i, (u,Eventimp)
f (NoteOffu ) = (i, (u,NoEveny)

data type represents the sound that an instrument produces. Thavhereallinstrs is a complete list of all of thénstrs that might

sumSoundgignal function is for summing dynamic lists of sounds
together.

Although we will use the sampSwitchthat we introduced in
Section 2.3, for clarity, we will show its type signature again, this
time with a few of the type variables instantiated for our example.

pSwitch:: [UID, () ~ ]

() ~ Eventy)

[UID, () ~ B] = y— [UID, () ~ B])
0~ [B))

For our collection, we use a mapping 01D to signal function
(which we implement as a list for simplicity), and we seto ().

For this musical example, the initial list of signal functions will
be empty, the events to change that list willideteEvs, and the
function will use theNoteEvidata to add or remove signal functions
from the list as necessary:

=
= (
=

maestro: (() ~ Event]NoteEv}) — (() ~ Sound
maestro musie= pSwitch[ | music f>>>sumSound
where f Ist[] = Ist
f Ist (NoteOn uiimprst) = f ((u,iimp) :Ist) rst
f Ist (NoteOff u i: rst) = f (filter ((# u) . fst) Ist) rst

In order to remove our reliance on switch, we need to make a
few small changes to the layout of the problem. First, as we did in
Section 3.4, we will need to change the instruments from functions
that take a “static” initializing argument to functions that take that
argument as an impulse. Second, we need to know statically what
the different signal functions are, so we make use of a finite data
type and add one layer of indirection:

data Instr = Trumpet| FHorn | Trombong Tuba
type Instrument= Event InitData~ Sound
tolnstrument: Instr — Instrument

Because thénstr type is finite, we know exactly whiclmstrument
signal functions can possibly be called. This is critical because
choice is not actually higher order. Fortunately, in most situations
where parallel switching is used, the possibilities of signal func-
tions are known statically, so a transformation like this one is not
difficult.

With these changes made, we can utilize pioicefunction.
The idea behingbChoiceis that as long as we know the possible
signal functions that we may use, we can run each one a dynamic
number of times. So, rather than keep a dynamic list of signal
functions, we keep a static list of signal functions and a dynamic list
of signal functionstates We then use a combination of structural
and arrowized recursion: structural recursion to provide access to
each possible signal function and arrowized recursion to allow a
dynamic number of runs per possibility.

be played. In fact, one notable difference between this version
of maestroand the switch-based alternative from earlier is this

allinstrs list: the reason that we can write this program at all is

becausallinstrs can be defined statically.

6. Implementing Settability

As we mentioned in Section 4.2, we can achieve settability of any
arrow with a code transformation. Here, we will provide a detailed
description of the transformation process before presenting Haskell
code that implements it.

6.1 Design

In essence, the idea of settability is the idea of having access to the
internal state of an arrow. Thus, as we discussed previously, it is
encapsulated by a function like:

settable: (a ~ ) — ((a,Event Statg~ (83, Statg)

that will automatically take a signal function and allow us to both
pass in an optional new state as well as save its current state. How-
ever, in order to achieve this, we will need to rewrite the under-
lying arrow to support this behavior. Therefore, we will describe
a recursive transformation that will provide settable capabilities to
ordinary arrows.

Intuitively, this settability transformation is a simple process
of routing state update information in through the various arrow
combinators so that it can be easily accessed by any internal delay
operators and then routing current state data back out through the
combinators to the level of theettablecall. For each combinator,
there is a transformation that achieves exactly this goal; we show
circuit diagrams for these transformations in Figure 7 and describe
them in detail below. Note that we use the notatibto denote the
signal functionsf after having been transformed, and we assume
that theEvent Staténput stream an@tateoutput stream are always
the lower input and output.

¢ We will begin at the lowest level by examining thielay op-
erator itself. In Section 4.2, we showed a design for a settable
version of delay, but we need to modify it just slightly in order
for it to be general enough for ogettabletransformation: in
addition to taking in afEvent Statstream, it also needs to emit
its currentStateas a stream. This is rather trivial as its current
state is identical to its own input stream, but this is important to
the transformation as a whole. Thus, our circuit diagram shows
the input stream both being sent to the embedtiayoperator
as well as being duplicated to tB¢ateoutput, and the output is
determined by a case analysis of theent Staténput with data
from thedelays output.

e The simplest transformation is that of ther operator, which
has no state and should essentially remain unaffected. In this



delay i
arr f
sh >>sh
first sf
loop sf
left sf ﬁd@la ,
(with Rightinput) )
merge dela), | 5
N J
left sf - —
(with Leftinput)
~ —
N J

Figure 7. The circuit diagrams showing the settability transforma-
tions for the various arrow combinators.

case, we ignore the inplvent Stateand return a constant
stream of the null, oreset state.

The composition of two functions is a little more interesting.
Each of the two composed signal functions may have state, so
we need to split the incomingvent Stateénto two pieces and
pass the first to the first signal function and the second to the

second. We gather the resulting states together and join them

into a single output state.

Applying a partial applicatiorfifst) is a simple matter of rerout-
ing the state data and the unused input stream properly.

Looping is handled similarly to partial application with a simple
rerouting of streams.

The most complicated transformation is for our non-interfering
choice’sleft operator. This is because there are two difficult
questions that we must address in designing this transformation.
First, in the case of an inptRightvalue, the embedded signal
function is not executed, so where can we g8tatevalue for

the outputStatestream? And second, again in the case of an

input Rightvalue, if we are given akvent Stateéhat requires
updating the embedded signal function, how can we get that
event where it needs to go? The way to address both of these
questions is to allow the transformed choice operator to contain
some internal state, which we achieve witbp anddelay.

Furthermore, in an effort to clarify the behavior of the trans-
formed choice, we provide two diagrams to describe its behav-
ior: one that shows how it behaves when givdRightvalue and

the other for when it is given leeftvalue. Thedelays are shared
between both diagrams: the upmliayshould be assumed to
be initialized with aNoEventvalue and the lower with a null, or
reset state value. Thenergefunction is a standard overwriting
event merge that favors the left (newly incoming) event in the
case of two events.

When given aRightinput, the input stream is identical to the
output stream. Th&vent Staténput is merged with the stored
Event Statend stored once again, thus updating the store with
any new setting events. The out&tateis the stored one.

When given a_eftinput, we will execute the embedded signal
function. We still merge th&vent Staténput with the stored
one, but the result goes directly into the embedded signal func-
tion, and the store is instead updated witi@Eventindicating

that there are no paBivent State waiting to be delivered. The
output of the transformed, embedded signal function, both the
streamingLeft value as well as the outp@tate become the
output of the overall transformed signal function, but the out-
put Stateis also stored for potential future use. The stdgate
value is discarded outright as it is now obsolete.

6.2 Haskell Implementation

Rather than relying on Haskell's rewrite rules or Template Haskell,
we can perform the entire transformation with only type classes.
Our method involves creating a wrapper for a generic arrow that
itself instantiates the arrow classes. Then, any code that is an
arbitrary arrow could just as well be this wrapper.

Thus, our goal will be to concretely define our types and then
instantiate the arrow classes using them.

Data Types

The first type we must choose a concrete representation for is the
Statedata type. Although we could use Haskell’s type families and
other features to make a type-safe solution, its complexity would
detract from the point. Therefore, to keep the types simple, we will
make use of Haskel'®ynamicdata type to store arbitrary state
information from individuauelayfunctions.2 Also, rather than use

an auxiliary option type to represent a default state or an absence
of state (as we did in theettableDelayunction in Section 4.2), we

will build this directly into the type.

We show the definition of th8tatedata type along with the few
helper functions we need in Figure 8. Note that becals8tate
represents an absence of state information, trying to split it returns
a similar lack of information.

With the Statetype defined, we next build our wrapper for a
general arrow:

data SA(~) a B = SA((a,Event Statg~ (3, Statg)

Already, we can see that tH&Adata type is merely hiding the extra
piping that will be required to store and load the state.

2Technically, usingDynamicin this way enforces dypeablerestriction
to the types of the individual state components, but this ikttté conse-
quence.



data State = NoState
| DState Dynamic
| PairState State State

reset= NoState

split:: Event State (Event StateEvent State

split NoEvent = (NoEventNoEvent

split (Event NoState = (Event NoStaté&vent NoState
split (Event(PairState | ) = (Event|Eventr

join :: State— State— State
join I r = PairState | r

merge:: Event— Event— Event
merge NoEvent e-e
merge e _=e

Figure 8. The Statedata type and its two accessor functions.

Instantiating Arrow

Next, we show howSA (~) can instantiate the arrow operators
themselves. If it can, then any program written using the arrow op-
erators could just as well be written for the generic arfew) as for
SA(~»). Thus, this instantiation will essentially provide a method
to perform a code transformation to allow any arrow to behave as
if it could be made settable. In fact, it will not even matter if this
instantiation actually obeys the arrow laws; because the arrow it is
built atop does, we can always strip off the wrapper and be left with

an arrow that does satisfy the laws. The implementations are shown

in Figure 9.

The implementations follow directly from the circuit diagrams
from Figure 7, and thus we will omit any further description of how
they function.

Settable

It feels like we could make aBA(~) settable merely by removing
the SAwrapper — after all, the underlying arrow will be of the ap-
propriate type. However, this approach limits modularity by forcing
the input and output arrows of tlsettablefunction to be different.
Therefore, we instead writesettablefunction for SAdirectly:

settable(SA f) = SA$ proc ((b, es), &) — do
(c,s) « f —<(b,merge g €,)
returnA— ((c,s),s)

This settablefunction is straightforward with one exception. If

arr f =SAS$arr (A (b,-) — (f b,NoStat¢)

first (SA f) = SA$ proc ((b,d), es) — do
(c,s) « f —<(b,es)
returnA— ((c,d),s)

(SA f)>> (SA 9 = SA$proc (b,es) — do
let (&, &) =split e
(c,5)« f=(b @)
(d,sr) g —=(c, &)
returnA—<(d, joing s

)
loop (SA f) = SA$ proc (b,es) — do
rec((c,d),s) < f <((b,d),e)

returnA— (c,s)

delay i= SA$ proc (Shew &) — do
Sold < delay i— snew
returnA— (f spig €s, DState(toDyn Siew))
where f s NoEvent s
f _ (Event NoState= i
f _ (Event(DState d) = fromDyn d

left ~(SA f) = SA$ proc (bd, es) — do
rec (Sold, €old) < delay (NoState NoEven} — (Snow, €next)
let enow = Merge ¢ &g
(Snow, Enext €d) < case bd of
Left b— do
(c,s) <= f =< (b,enow)
returnA— (s,NoEventLeft ¢)
Right d— returnA— (So|d, €now, Right d)
returnA— (cd, Show)

Figure9. SAimplementations of the Arrow class functions.

7.1 Causal Commutative Arrows

Causal Commutative Arrows are arrows that have two additional
laws: a commutativity law that essentially states that signal function
effects can be reordered at will, and a product law that governs
the behavior of the causal operator (timt or delay operator).

With these two laws at their disposal, Liu et al. [14] describe a
transformation that allows an arrow to be reduced to a normal form,
which they call the Causal Commutative Normal Form (CCNF),
and then even stream fused into a standard function. The authors

there is already a state-update event that is propagating a new statédemonstrate that GHC can then aggressively optimize this, yielding

(shown here as), and the settable signal function is also given
a state-update evergsf, which one takes precedence? In fact, the

performance increases of orders of magnitude.
The CCA transformation is of particular interest to us as it

new one must take precedence in order to guarantee the laws we sé8 What we will be extending to add support for non-interfering

out in Figure 5.

7. Optimizations

Providing such an expressive, first-order alternative to the higher-
order switch function is a boon for optimizations as it allows the
arrow structure to be fully determinable at compile time. For in-

stance, Causal Commutative Arrows (CCAs) are a particular sub-

class of arrows that have been shown to be highly optimizable [14],

choice, but first, we must describe the CCNF. The CCNF of an
arrow is either of the form:

arr f
or
loop (arr f >>>seconddelay )

where f is a pure function and is a state. We can express these
more simply by calling therArr f andLoopD i f. The transforma-

but they are restricted to be only first-order. As a demonstration tion, then, is the process of reducing an arrow built with the arrow
of the optimization capabilities of our work, we extend the Haskell operators into one of these two forms. It is a recursive transforma-
CCA transformation to include non-interfering choice and show the tion that applies a set of reduction rules until the normal form is

promising results. We begin with a brief overview of CCAs. produced.



For instance, if the transformation comes across an arrow of the
form first sf then it will recursively reducefand then choose one
of the following two rules based on the result:

first (Arr f) — Arr (f xid)
first (LoopDi f) — LoopDi(juggle. (f xid) . juggle)

wherejuggle is a pure helper function to reorder the inputs and
outputs as necessary.

7.2 Extending CCA

CCAs already have a mechanism for dealing with choice, and at
first glance, it appears to work with non-interfering choice too.
However, it is the arrowized recursion that non-interfering choice
allows, and not the choice operator directly, that actually poses a
problem for the CCA transformation.

As is, the CCA transformation does not support recursion. Of

course, as we mentioned when we introduced arrowized recursion
in Section 3.5, arrows themselves are not guaranteed to support it,
so its absense is perfectly sensible as it serves no purpose withou

non-interfering choice. However, the absense of recursion stippor
is not due to inability — indeed, we can add that functionality in a
straightforward manner.

Intuitively, the presense of arrowized recursion will present us
with the following two scenarios:

Arr f =Arr (g f)

LoopDi f=LoopD(ji) (g f)
In the first case, we find that a signal function of the fom f
is defined based on that same functibnand the second is the
same except for botl and its state. However, becausé andg
(andj) are pure functions, this is a trivial relation to solve: indeed
the solution to the first form is as simple as applying a fix point
operator:
f =fixg

The second form is slightly more complicated as it requires the
use of a coinductive data type foWe would need a data type such
as:

data StateCCA k= S (k (StateCCAK)

and with it, we can solve farand f:

i =s wheres=S(js)
f =fixg

7.3 Haskell Implementation

We model the Haskell implementation off of the original CCA
transformation design. We use Template Haskell along with a
clever use of the Arrow type classes to perform a preprocessing
step on only the arrowized components. Thus, rather than try to
interfere with Haskell's native recursion support, we introduce a
new type class to capture it only where we need it:

class ArrowFix (~) where
afix::(b~»c—b~c)—b~c

The ArrowFix type class introduces ttedix function that acts as a
fix point function particularly for arrowized recursion. In practice,
we could merely definafixto be equivalent to the regular fix point
operator, but we will make better use of it for the transformation.
Specifically, when the recursive transformation encounters an

arrow of the formafix f, the first thing it will do is to produce a
fresh, unique “hole”. The hole (which we represent withis a
special internal data structure that acts like or LoopD except
that instead of holding the functiohand statae, it keeps track of
the modifying functiong andj. That is, if the hole is airr form,
then we know that we will eventually come to a scenario such as

Arr f =Arr (g f)

Name [[ GHC [ arrowp [ CCNF [ Stream
Dynamic Counters| 1.0 1.66 10.91 | 12.73
Chained Adder 1.0 191 4.06 4.29
Chained Integral 1.0 2.17 13.27 | 15.40

Figure 10. Performance Ratio (higher is better)

and sincef is unknown and will be deduced via the fix point
operation, the hole instead keeps traclgofpplying this hole as

the argument td and then recursively running the transformation
will reduce the result to one of the two forms we identified in the
previous subsection, which we have already shown can be solved
easily.

To facilitate this, we create a second set of transformation rules
that are nearly identical to the original except that they expect
an additional argument. For instance, if the transformation comes

cross a partial application of a hole, then it will follow one of the
ollowing two rules:

first (earr @) — oar (A f — (g f xid))
first (eLoopp j 9) > eLoopp (A f—
(juggle. (g f xid) . juggle))
Note the similarities between this and the description for the non-
hole version at the end of Section 7.1. They are almost identical
except for the fact that the hole’s arguments are functions of func-
tions.

Coinductive State

We mentioned in the previous subsection that taking a fix point of
the statd would require a coinductive data type, but we make no
mention of that. Indeed, because Haskell makes it difficult to dy-
namically create new types and adding that behavior to the existing
CCA Template Haskell transformation would involve completely
rewriting it, we instead utilize HaskellBynamicdata type as an
all-purpose coinductive wrapper. Although not the most elegant so-
lution, it gets the job done.

7.4 Performance Results

We followed the same procedure for performance testing that Liu
et al. [14] use. That is, for each program, we:

1. Compiled with GHC, which has a built-in translator for arrow

syntax.

2. Translated the arrow syntax to arrow combinators using Pater-

son’sarrowp pre-processor [17] and then compiled with GHC.
3. Normalized into CCNF combinators and compiled with GHC.

4. Normalized into CCNF combinators, rewrote in terms of

streams, and compiled with GHC using stream fusion.

The three benchmark programs we used are based on the examples
from this paper but are simplified. The first uses theDynamic
function to run multiple stateful counters at the same time. The
second and third use a function similarrtomDynamicthat runs a
signal function multiple times but chains the output from one run
to the input of the next, essentially linking them together. For the
second, we link together a basic, stateless adder, and for the third,
we link an integral function.

The programs were compiled and run on an Intel Core i7 ma-
chine with GHC version 7.6.3, using theO2 optimization. The
results are shown in Figure 10, where the numbers represent nor-
malized speedup ratios.

In general, the results show a similarly dramatic performance
improvement compared with standard CCA. Notably, the perfor-
mance of the chained adder, although improved in CCNF, does not



show nearly the speedup that the others show. We believe this isAcknowledgments

because the chained adder has no internal state whatsoever, makin

the pre-processed performance better.

8. Other effectsof switching from switch

As stated earlier, arrows with switch are fundamentally more pow-
erful than those without. Thus, it was never our goal to demonstrate
that non-interfering choice and state settability could provide the
tools to replace switch outright, but rather that switch’s power is

often underutilized, and in those cases, switch can be replaced.

8.1 Firstorder

The primary and most important difference between switch and
non-interfering choice is that switch is truly higher order while
choice is not. This means that while programs with switch can ac-
cept streams of signal functions and then run those signal functions,
programs with only choice cannot.

8.2 Memory Use

One of the main reasons to use switch in a program is to improve
performance. Rather than run a signal function when its results are
not being used, we can switch it off, reducing unneeded compu-
tation. Signal functions that have been switched out will never be
restarted and so can be garbage collected to free memory.

With non-interfering choice, we can similarly stop a signal
function, but because it might be restarted, it cannot be garbage
collected. Rather, once started, it will remain in memory forever.
This is a fundamental reason for demonstrating state settability of
signal functions: a signal function that is waiting in memory can

have its state re-set so that it can behave as a fresh instance of

itself. Thus, with proper management of state, we should never
be creating new signal functions while others are left for dead but
stranded in memory. Therefore, though our system will always use
at least as much memory as a version with switch and often times
more, it should be capped by the maximum amount of memory that
a comparable switch-based version would use at any one time.

9. Redated Work

The idea of using continuous modeling for dynamic, reactive be-
havior (now usually referred to as “functional reactive program-
ming,” or FRP) is due to Elliott, beginning with early work on
TBAG, a C++ based model for animation [7]. Subsequent work
on Fran (“functional reactive animation”) embedded the ideas in
Haskell [6, 9], and other embeddings were explored in [5].

After the Arrow framework was proposed by Hughes [12], it
was quickly adopted for use in FRP in the GUI language Fruit
[1, 2], which also introduced the first arrowized switch function
(before then, higher-order signals were dealt with by a function
typically calleduntil). The design of Yampa [3, 11] built off of this
and expanded the idea of switching into fourteen distinct switch
operators.

As mentioned, Liu et al. [14] proposed causal commutative ar-
rows, which provide an optimization strategy for first-order arrow-
ized FRP, but which cannot handle higher-order switching. Addi-
tionally, some work has minimally explored a restricted form of
switch [19], although there is no evidence that this provides any ac-

tionable benefits. Patai [16] presents an alternative approach of em-

bracing the higher-order mentality and shows a method for dealing
with higher-order streams directly and efficiently using a monadic
interface.

Other attempts at optimizing FRP (such as Reactive [8] and
Elm [4]) have focused on avoiding recomputation of values when
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A. Proof That Non-Interference Implies
Commutativity (and Exchange)
Theorem (Commutativity)
right f > left g=left g>>>right f

Proof. This proof is straightforward. We will begin by assuming
Rightinputs only, and thus we can modify our assertion to:

arr Right>s>right f >>> left g= arr Right>s>> left g>>>right f
Starting with the left hand side,

arr Right>s>right f >>>leftg

{ Unit backwards

f >> arr Right>>> left g

{ Non-Interferenceg

f >> arr Right

{Unit}

arr Right>s>right f

{ Non-Interference backwards
arr Right>>> left g>>>right f

pChoice:: Eq key= [(key Eventa ~ 3)] —
([(key, (UID, Eventa))] ~ [B]
pChoice[ ] = constA[ ]
pChoice((key; sf) : rst) = proc es— do
rec states— delay| | < stategew
let espis = map sndb filter ((== key) . fst) es
stategp = update states gg
output« runDynamic(first (settable sf) < stateg,
let stategew= map(A ((-,s),uid) —
((NoEveniEvent g, uid)) output
rs +— pChoice rst<es
returnA— (map(fst. fst) outpud +-rs

where update:: [((Eventa, Event Statg UID)]
— [(UID, Eventa)]
— [((Eventa, Event Statg UID))]
update § | =s
update §(uid, NoEven} : rst) =
update(filter ((# uid) . snd) s) rst
update §((uid,i) : rst) =
update(((i,Event reset uid) : s) rst

For Leftinput values, the proof works in exactly the same way
except that we must use non-interference’s mirror:

arr Left>>>right f = arr Left

which follows directly from non-interference and the definition of
right. O

B. Choice-Based Implementations of First-Order
Switch

Although using non-interfering choice and settability allows for a
different paradigm for designing FRP programs, we can also use
these tools to implement operators that are similar to the classic
switchers. We show two such implementations in this appendix.

B.1 Standard Switch

The standardswitch function can be implemented with non-
interfering choice in a straightforward manner:

switChnoice:: (0 ~~ (B,Eventy)) — ((Eventy,a) ~ B)
= (a~ B)
SwitChinoice St Sh = proc a — do
rec onOne+ delay True< not onTwo
(b,et) «if onOne
thensf; < a
else returnA— (undefinedNoEven
let onTwo= (isEvent et || (not onOng
if onTwothen sf, < (et a)
else returnA— b

Here, we keep track of two internal state variables catla®ne
andonTwothat indicate whether we should be running the first or
the second signal function. When the first produces an event, we
setonOneto False so that we stop running it, and we s&iTwo

to True Then, we pass the impulse generated from the first signal
function to the second one, and for the future, the impulse stream
contains onlyNoEventvalues.

Figure 11. The implementation gpChoice

B.2 Parallel Switch

ThepChoicefunction is somewhat more complicated and is shown
in Figure 11.pChoicetakes a mapping of keys to signal functions
(implemented here as a list for simplicity) as its static argument.
For each element of this static list, we keep a dynamic list of
states (thestatesvariable in the figure). We check the input events
for any that are keyed to the signal function we are currently
processing and update the state list accordingly (by either adding
or removing elements), and then we run the signal function for
each state and recur. Note that the static signal functions are all
impulse driven; thus, when new states are first added to the state
list (which is done in thaipdatehelper function), they are given
an impulse event, but otherwise, they are giaEven(i.e. in the
definition of stategey). This restriction to strictly impulse driven
signal functions is not fundamental — indeed, we could write a
version ofpChoicethat accepts signal functions that also take a
streaming input — but making it more generic would needlessly
complicate this already dense definition.

It is also worth noting that there is a subtle difference in per-
formance betweepChoiceandpSwitch When the finite data type
is large but rarely useghSwitchmay outperfornmpChoicebecause
pChoicestill has to iterate through its entire static list on each step
while pSwitcts dynamic list will be just the relevant signal func-
tions. That said, their performance should be comparable when the
finite data type is small compared to the number of currently run-
ning signal functions.



