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Abstract
Functional Reactive Programming(FRP) provides a method for
programming continuous, reactive systems by utilizingsignal func-
tions that, abstractly, transform continuous input signals into con-
tinuous output signals. These signals may also bestreams of events,
and indeed, by allowing signal functions themselves to be the val-
ues carried by these events (in essence, signals of signal functions),
one can conveniently make discrete changes in program behavior
by “switching” into and out of these signal functions. This higher-
order notion of switching is common among many FRP systems, in
particular those based on arrows, such as Yampa.

Although convenient, the power of switching is often an overkill
and can pose problems for certain types of program optimization
(such ascausal commutative arrows[14]), as it causes the structure
of the program to change dynamically at run-time. Without a notion
of just-in-time compilation or related idea, which itself is beset with
problems, such optimizations are not possible at compile time.

This paper introduces two new ideas that obviate, in a pre-
dominance of cases, the need for switching. The first is anon-
interference lawfor arrows with choice that allows an arrowized
FRP program to dynamically alter its own structure (within stati-
cally limited bounds) as well as abandon unused streams. The other
idea is a notion of asettable signal functionthat allows a signal
function to capture its present state and later be restarted from some
previous state. With these two features, canonical uses of higher-
order switchers can be replaced with a suitable first-order design,
thus enabling a broader range of static optimizations.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Functional Reactive Programming; Arrows; Arrow-
Choice; Switch

1. Introduction
Functional Reactive Programming (FRP) is based on the idea of
programming withsignals, or time-varying values. Signals can be
continuous, in which case they are defined for every moment in
time, or they can be discrete event streams, in which case they are
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defined at particular moments. The FRP model allows one to es-
sentially define behaviors for these streams, using signal functions
that react as the streams change over time.

A problem with classic FRP systems (such as Fran [6]) is their
propensity toward space and time leaks [15]. One method for ad-
dressing these leaks is by usingarrows [12, 13] in so calledar-
rowizedFRP (AFRP), which has been used inYampa[3, 11] (for
animation, robotics, GUI design, and more),Nettle [18] (for net-
working), andEuterpea[10] (for audio processing and sound syn-
thesis). In AFRP, instead of treating the signal as a first class value,
one treats thesignal functionas the core component. The arrow
structure then allows the signal functions to be composed quite nat-
urally.

Furthermore, the arrow abstraction lends itself well to aggres-
sive optimizations. An arrow’s structure must be defined statically,
and once defined, it cannot be altered mid-computation. Therefore,
regardless of what data the signals contain, the arrow’s overall be-
havior is fixed. For example, CCA [14] relies on this restriction
to optimize an FRP program and often improve its performance in
GHC by an order of magnitude.

1.1 Switch

One problem with arrows is that they do not naturally have the full
capabilities that classic FRP provides. As mentioned, an arrow’s
structure must be fixed at compile-time, but classic FRP provides
behavior-switching mechanisms. Thus, arrows are typically aug-
mented with a higher-orderswitchoperator to recover this ability.

Switching allows a program to accept and utilize a stream of
signal functions, thus allowing for higher-order signal function
expression in which the program can update its own structure
during execution. Additionally, in the realm of signal functions, a
higher-order ability like this provides the only means of starting
and stopping signals mid-computation, which is often a necessity
for good performance. For instance, new signal functions can be
provided at runtime and “switched on” to augment the current
behavior of a program. Likewise, given an event that a certain
signal is no longer needed, the program can “switch off” the portion
of itself that is computing values for that signal, thus preventing
unneeded computations from being performed. In fact, arrows with
switch are as powerful asArrowApplyarrows, which are equivalent
to monads [12].

Unfortunately, this power comes at a cost: the inherent higher-
order nature of switch that allows it to run arbitrary signal func-
tions from a stream makes certain compile-time optimizations and
static guarantees much more difficult or even impossible. For ex-
ample, arrows with switch cannot undergo the CCA optimizations.
Likewise, in the realm of embedded systems, where static code is
required due to strict time and resource constraints, switch can be
an intolerable hole in a static guarantee.



1.2 An Alternative to Switch

The motivation of this research is to ask whether switch is really
necessary. Most FRP programmers would be reluctant to give it
up – indeed, some FRP programs would be inexpressible with just
first-order arrows – but perhaps there is an operator that is powerful
enough to replace switch in most cases while still being weak
enough to allow for CCA-like optimizations. In order to consider
this, we first must examine more closely exactly what switching
provides.

Switch allows one to express two fundamental behaviors that
are otherwise impossible with just arrows. First, it provides a way
for signal functions to dynamically start and stop mid-computation,
which is useful not just for expressing certain programs but also
for obtaining high performance. Second, it allows for higher-order
signal expression, essentially providing a way to flatten a stream of
streams into a single stream or insert a dynamic signal function into
the arrow structure itself.

The first of these effects is similar to what is provided byarrow
choice, which allows an arrow to choose between statically defined
branches based on a dynamic argument. However, although the
streaming argument will only be processed by one branch of an
arrow choice conditional, every effect from the arrows from every
branch will be executed. This means that arrow choice cannot
be used to entirely suspend a branch in the way that switch can
suspend a “switched out” signal function.

To address this, we can modify arrow choice by adding a new
law in order to make itnon-interfering. Non-interfering choice
asserts that effects from only one branch of the choice will happen,
and so if one branch is taken, it is as if the other does not exist.

Technically, non-interfering choice allows us only to pause sig-
nal functions and not actually start or stop them. For this reason,
we additionally provide a method for making an arrowsettable: a
settable arrow’s state can be saved, reloaded, and even reset.

Combining settability with non-interfering choice gives us the
full power of the first effect of switch. That is, we can “start” a
signal function by using choice and then resetting its state, and we
can “stop” a signal function by indefinitely pausing it.

Interestingly, non-interfering choice allows for another unfore-
seen benefit: arrowized recursion. Because only one branch’s ef-
fects can take place, we can do a form of recursion that allows be-
haviors that were previously only possible with switch. Combining
this with settability allows for some surprising power.

1.3 Contributions

In this paper, we aim to show that switch is not essential to AFRP
and that many powerful FRP programs that were previously be-
lieved to require switch may not actually need it. Indeed, we will
take a number of example programs that utilize various forms of
switchers in standard ways and show that our system is just as ex-
pressive. With this conclusion, we hope that we can open the doors
to new and improved optimization techniques for arrows; we begin
this process by demonstrating an extension to the CCA optimiza-
tion that takes non-interfering choice and settability into account.

In the next section we will discuss arrows in general along with
some details about the switch operators that we will be comparing
our work against. Following that, we will make cases for both non-
interfering choice and settability in Sections 3 and 4, in which we
will show leading examples and present our first-order solutions.
In Section 5, we will culminate our examples with a parallel choice
example in the music domain that will bring together all of the top-
ics so far discussed. From there, we will move into some imple-
mentation details, first describing our implementation of settability
in Section 6 and then detailing an optimization for non-interfering
choice in Section 7. Finally, we will present a brief, concluding
discussion of the differences between our work here and switch in

arr :: (α → β )→ (α  β )
first :: (α  β )→ ((α ,γ) (β ,γ))
(>>>) :: (α  β )→ (β  γ)→ (α  γ)
(|||) :: (α  γ)→ (β  γ)→ ((α +β ) γ)
loop :: ((γ,α) (γ,β ))→ (α  β )
delay :: β → (β  β )

Figure 1. The types of the arrow operators.

general as well as a comparison of this work to related work in
Sections 8 and 9.

2. Arrows
2.1 Signal Processing

Programming with AFRP is a lot like expressing signal processing
diagrams. Where signal processing diagrams have lines, AFRP
has signals, and where diagrams have boxes that act on those
lines, AFRP hassignal functions. These signals can represent either
continuously-defined time-varying values or streams of discrete
events.

Because AFRP is based on arrows, we can use Paterson’sarrow
syntax[17] to make programming with it easier. For example, we
can turn this simple signal processing diagram:

sigfun xy

into just as simple a code snippet:

y← sigfun−≺x

In this example,sigfun is a signal function that takes the input
streamx and produces the output streamy.

For this paper, we will use Haskell’s arrow syntax and operators
to express code examples. Thus, the above code fragment cannot
appear alone, but instead must be part of aproc construct. The
expression in the middle must be a signal function, whose type we
write asα β for some typesα andβ . The expression on the right
may be any well-typed expression with typeα , and the expression
on the left must be a variable or pattern of typeβ .

The purpose of the arrow notation is to allow the programmer
to manipulate the instantaneous values of the signals. For example,
the following is a definition forsigfunthat integrates a signal and
adds one to the output:

sigfun= proc x→ do
y← integral−≺x
returnA−≺y+1

The notation “proc x→ do ...” introduces a signal function, binding
the namex to the instantaneous values of the input. The second line
sends the input signal into an integrator, whose output is namedy.
Finally, we add one to the value and feed it into the signal function
returnA, that returns the result. The last line of this notation has no
binding component – instead, whatever value is produced in the last
line is returned in total.

Of course, one can use arrows without Haskell’s arrow syntax.
Arrows are made up of three basic operators: construction (arr),
partial application (first), and composition (>>>). Furthermore, we
extend our arrows with choice (|||) [12] to allow dynamic control
flow, looping (loop) [17] to allow value-level recursion, and delay
(delay). The types of these operators are shown in Figure 1.



For example, the signal functionsigfundefined earlier can be
written without arrow syntax as follows:

sigfun= integral>>>arr (λy. y+1)

Note thatreturnA is defined simply asarr id, which is why it is
used for clarity to return values in the last line of arrow syntax but
is omitted from the above definition ofsigfun. We will also use
the functionconstA:: β → (α  β ) in this paper, which takes one
static argument and returns a signal function that ignores its input
stream and returns a constant stream of the given value.

Events and Event Streams

The classical interpretation of a signal of typeα is that it is a
function from time toα defined for all points in time. We call this
a continuoussignal. However, we frequently require the ability to
define a signal that has values at only discrete points in time and is
undefined elsewhere. These so-calledevent streamsare represented
by encapsulating the signal’s type with an option type. For this
paper, we will use the following:

data Eventα = Eventα | NoEvent

Note that we are overloading the nameEventsuch that it is both the
general type as well as the constructor for an event. Thus, if a signal
has typeEventα , then we know that it is defined when it provides
anEventand undefined when it providesNoEvent.

In this paper, we will make use of the fact thatEventis a functor
in the obvious way and freelyfmapfunctions overEventvalues.

2.2 State via loop and delay

A key component of FRP systems (AFRP included) is the ability
to perform stateful computation. For example, Yampa includes the
integral function that integrates its input signal, a process impossi-
ble without some form of internal state.

Although stateful signal functions can be achieved in a variety
of ways, we follow Liu et al. [14] in the use of adelay1 operator
along with loop. In this model, we use the loop as a feedback
mechanism, allowing an auxiliary output containing the state to be
fed back as an input, and we use the delay to prevent an infinite
feedback loop. Indeed, Liu et al. [14] even demonstrate thatintegral
can be defined using this method:

integral= proc x→ do
rec v← delay0−≺v+dt∗x
returnA−≺v

Note here that therec keyword in arrow syntax invokes theloop
operator and that we assumedt is a global time step.

2.3 Switch

As discussed in the introduction, the ability to dynamicallyswitch
one signal function for another during the execution of a program is
a staple of most FRP systems. Considering that one of our primary
goals is to show an alternative to switching, we will here describe
switch’s capabilities.

The idea of switching was introduced along with the earliest
models of FRP [6]. These non-arrowized FRP implementations
had the ability to sequence periods of signal function execution, a
process that is inherently monadic in nature. However, the move to
the arrow abstraction would not allow this behavior, and to prevent
any loss in expressiveness, Hudak et al. [11] introduced theswitch
function in Yampa.

Actually, Yampa includes some 14 different variations on the
switch function ranging from the simplest switch to the recursive,

1 Note that in [14], this operator is referred to asinit.

parallel, batch-input, delayed switch. We will briefly examine three
of these switchers.

Switch

The most basic switch function has the following type:

switch:: (α  (β ,Eventγ))
→ (γ → (α  β ))
→ (α  β )

The first argument is the initial signal function that the result will
behave as. When that signal function produces an event, the switch
will use the data from that event along with its second argument to
produce a new signal function. From then on, it will behave as that
new signal function.

Recursive Switch

A slightly more advanced version of switching allows for the signal
function to be switched out more than once:

rSwitch:: (α  β )
→ ((α ,Event(α  β )) β )

Here, the resulting signal function takes an event stream of signal
functions along with the stream of inputα values. When the event
stream contains an event, it switches into the signal function con-
tained in the event.

Parallel Switch

The parallel version of switch is significantly more intimidating
from its type signature but also quite powerful:

pSwitch:: Functor col
⇒ col (α  β )
→ ((α ,col β ) Eventγ)
→ (col (α  β )→ γ → (α  col β ))
→ (α  col β )

The parallel switcher works oncollectionsof signal functions,
where a collection must be aFunctor. First, it is given an initial
collection of signal functions to run and a signal function that pro-
duces update events. The third argument takes the current collection
of signal functions and the value from an event in order to produce
a new collection of signal functions. In total,pSwitchwill run every
signal function in its collection and produce as output a collection
of their results.

Note that any one of these versions of switch is strong enough
to implement the others. The reason for Yampa’s many varieties of
switch is not due to power differences, but rather due to ease of use.
That is, for example, usingswitchto do an operation that requires
rSwitchis tedious, so both varieties are provided.

3. A Case for Non-Interfering Choice
We will begin this section by exploring one of the main uses of
switchers: as a method to allow the dynamic starting and stopping
of signal functions. We will present our first-order alternative and
then demonstrate it in a few practical settings.

3.1 Pausable Signal Functions

At a basic level, switch is often used to improve performance of
an AFRP program. Without switch, signal functions will last for-
ever, and this typically means that they will compute future values
indefinitely. Using switch, one can “turn off” signal functions that
are not currently necessary and even turn them back on if they are
required again in the future.

For example, consider the scenario where we would like to
integrate a stream only when a certain condition holds. Naı̈vely,
we can write the following program:



integralWhenNaive :: (Double,Bool) Double
integralWhenNaive= proc (i,b)→ do

v← integral−≺ i
vprev← delay0−≺v
let v∆ = v−vprev
rec result← delay0−≺ if b then result+v∆ else result
returnA−≺ result

This program will only update the result when the boolean isTrue,
but it is still unsatisfying that the integral is being computed at all
when it is not being used. If integral were instead a costly signal
function and the boolean were usuallyFalse, this could be seriously
problematic to performance.

In cases like this, switch can be employed to prevent the integral
from running when it is not needed:

integralWhenSwitch:: (Double,Event Bool) Double
integralWhenSwitch= proc (i,eb)→ do

rec v← rSwitch(constA0)−≺ (i,
fmap(λb→ if b

then (integral>>>arr (+v))
else (constA v)) eb)

returnA−≺v

For this version, we modified the type to make it more amenable
to switching by converting the streaming boolean value to an event
stream that will send events only when the stream would change
from True to Falseor back. Internally, we use therSwitchfunction
that we introduced in Section 2.3 to switch betweenintegral and
a constant function. Each time we switch intointegral, it is fresh
and has no history from the last time we were usingintegral, so we
additionally compose it witharr (+v) so it can maintain its history.

3.2 Non-interfering Choice

Although the above example is a fairly common use for switch,
careful examination of the problem reveals that switch is far more
powerful that necessary. That is, while switch allows us to dynam-
ically incorporate new signal functions into the running compu-
tation, here, we are simply making achoiceof whether to run a
component signal function based on a dynamic value. Our solution
to this problem will thus be built around arrow choice, so we will
begin by examining it more closely.

The general choice operator we use (||| in Figure 1) can actually
be built from a simpler component:

left :: (α  β )→ ((α + γ) (β + γ))

whereleft f calls f when the input signal containsLeft values and
acts as the identity function otherwise. With theleft function, we
can also define an analogousright function and then use the two
together to define|||.

Choice also comes with a set of laws that we show in Figure 2.
For us, the most notable law is theexchangelaw, which acts as a
weak form of commutativity betweenleft functions andright func-
tions. One may ask why choice does not demand full commutativ-
ity (i.e. left f >>> right g= right g>>> left f), and in the context of
signal processing, this question is very sensible. After all, it seems
intuitively obvious that either theleft function or theright function
will run, but in no case will both run. However, because arrows can
have effects regardless of their dynamic inputs, and the composi-
tional order of these effects can alter the program itself, choice is
weakened. It is precisely this leniency that makes switching neces-
sary in cases such as the above example.

Extension left (arr f ) = arr (left f)
Functor left ( f >>>g) = left f >>> left g
Exchange left f >>>arr (right g) = arr (right g)>>> left f
Unit f >>>arr Left = arr Left>>> left f
Assoc. left (left f)>>>arr assoc+ = arr assoc+>>> left f

assoc+ (Left (Left x)) = Left x
assoc+ (Left (Right y)) = Right(Left y)
assoc+ (Right z) = Right(Right z)

Non-interference arr Right>>> left f = arr Right

Figure 2. The standard laws for arrow choice with our new non-
interference law below.

In order to give choice the extra power it needs to be an adequate
replacement for switch, we strengthen theexchangelaw into the
more powerful:

Non-interference arr Right>>> left f = arr Right

Indeed,non-interferenceimplies exchange and even commutativity
as it is stronger than either (see Appendix A for details). It states
that once the streaming value is tagged as aRight value, then it
will not be applicable toleft f , and so it should behave as if the
left f is not even there. Thus, by including the non-interference law
for choice, we assert that either signal functions cannot have static
effects or that the choice operation has the power to dynamically
choose which effects to perform.

3.3 Pausable Signal Functions Revisited

With non-interfering choice in our arsenal, we can define a new ver-
sion of integralWhenin an even more intuitive and straightforward
way:

integralWhenChoice:: (Double,Bool) Double
integralWhenChoice= proc (i,b)→ do

rec v ← if b then integral−≺ i
else returnA−≺v′

v′← delay0−≺v
returnA−≺v

Because we are not actually switching out of theintegral signal
function, it will retain its state internally. When it is executed, it
will calculate and add the latest delta of integral, and otherwise, it
will simply wait by returning the stored value.

3.4 A Single First-Order Switch

The most basic switching operation is to non-recursively switch
out one signal function for another dynamically. For example, we
could write a simple guessing game that accepted an event stream
of guesses, and when the correct answer was provided, it would
switch into a signal function that ignored its input and declared that
the game was over:

guess:: Event Int ()
guess= switch(arr f ) (λ t→ label t)

where f (Event i)|(i == 3) = ((), Event“You Win!” )
f = ((), NoEvent)

wherelabel is a signal function widget that ignores its streaming
input and displays the text it was given as its static argument. Note
that we are using the plain, non-recursive, non-parallel version of
switch that we presented in Section 2.3. Inguess, when the event
containing 3 is processed, the string “You win!” is given to the
label, and the guessing is switched out for that label.



runNTimes:: Int→ (α  β )→ ([α ] [β ])
runNTimes0 = constA[ ]
runNTimes n sf= proc (b : bs)→ do

c← sf−≺ b
cs← runNTimes(n−1) sf−≺ bs
returnA−≺ (c : cs)

Figure 3. The implementation ofrunNTimesusing structural re-
cursion.

For this example again, switch is too strong. Notice that the
argument given to the switched-in signal function is not itself a
signal function. In fact, it’s just a constant! We can rewrite this with
non-interfering choice:

guesschoice:: Int ()
guesschoice= proc i→ do

rec haveWon← delay False−≺haveWon|| (i == 3)
if haveWonthen label “You Win!” −≺ ()

else returnA−≺ ()

Note that we changed the input stream to a continuous stream as
opposed to an event stream simply to make the example clearer.

Reacting to dynamic events

The above versions ofguessare quite primitive, and although we
use switching in the first one, we are far from using its full power.
We can make the example slightly more complex by adding an
additional component to the input such that the program is actually
reactive:

guess′ :: Event(Int,String) ()
guess′ = switch(arr f ) (λ t→ label t)

where f (Event(i,s))|(i == 3) = ((), Event s)
f = ((), NoEvent)

In guess′, the text to put in the label is no longer static and instead
is part of the guess event, and in its current form, switching is a
necessity as it is the only way to provide the dynamically streaming
string to the staticlabel function. However, we could once again
lift the need for switching if we could redesign the label to instead
take animpulse. An impulse is a one time event that initializes a
signal function, so in this case, the type forlabel would change
from String→ (α  ()) to (Event String) ().

With an impulse driven label widget, we can once again convert
theguess′ function to a switch-free alternative:

guess′choice:: (Int,String) ()
guess′choice= proc (i,s)→ do

rec haveWon← delay False−≺haveWon|| (i == 3)
let imp= if not haveWon&& i == 3

then Event selse NoEvent
if haveWonthen label−≺ imp

else returnA−≺ ()

3.5 Arrowized Recursion

As we have shown in the previous two examples, there is a direct
usage for non-interfering choice, but the non-interference law also
gives us a less obvious benefit. By restricting the arrow effects to
only one branch, we open the door to the possibility of a new kind
of recursion.

Typically, arrows can perform recursive behaviors in one of two
ways. First, arrows can use theloop functionality to perform a value
level recursion, or a sort of fix point recursion. After all, one of the
laws for loop is:

loop (arr f ) = arr (λ b→ fst (fix (λ (c,d)→ f (b,d))))

runDynamic:: (α  β )→ ([α ] [β ])
runDynamic sf= proc lst→ do

case lst of
[ ] → returnA−≺ [ ]
(b : bs)→ do c← sf−≺b

cs← runDynamic sf−≺bs
returnA−≺ (c : cs)

Figure 4. The implementation of the choice-basedrunDynamic
function using arrowized recursion.

Second, there isstructural recursion. Structural recursion hap-
pens when the host language’s recursion is used to create an arrow
in a recursive way. For instance, we might have a function like:

runNTimes:: Int→ (α  β )→ ([α ] [β ])

When defining this function, we use Haskell’s conditional syntax to
recur on the value of the first argument: while it is greater than zero,
we run the signal function and recur, and when it is equal to zero,
we return a constant stream of the empty list. We show a definition
of runNTimesusing this form of recursion in Figure 3.

A key frustration with structural recursion is that the recursive
argument is static as opposed to streaming. Thus, structural recur-
sion is often performed in tandem with higher-order switching to
allow a streaming value to be used in place of the static argument.

With, non-interfering choice, we extend arrows with a new kind
of recursion that we callarrowizedrecursion. Arrowized recursion
is very similar to structural recursion except that instead of using
the host language’s conditional, we use arrow choice. Ordinarily,
this would be impossible: because all branches of an arrow choice
must be executed for their effects, if one were recursive, then
it would cause an infinite loop. However, non-interference gets
around this by restricting arrow effects dynamically.

Thus, with arrowized recursion, we can write a function similar
to the aboverunNTimesbut that needs no static argument to per-
form its recursion. In fact, we can make the input stream of lists the
recursive argument and eliminate the need for an “N” altogether.
We call this functionrunDynamicand show it in Figure 4.

3.6 Dynamic GUI

One power of switch, showcased particularly inFruit [2], is the
ability to allow a dynamic number of signal functions to execute.
That is, by default, arrows have a fixed structure, and the streaming
values moving through an AFRP program cannot affect that struc-
ture. However, switch allows one to dynamically alter the arrow at
runtime based on the streaming values.

For example, one may desire a GUI that gathers the names of
an unknown group of people. If the size of the group were fixed or
at least known at compile time, then this is achievable trivially with
arrows, but if the size is a parameter that is filled in by the user of
the GUI, then standard arrows are stymied. One approach is to use
a switching mechanism.

For this example, we will assume a few GUI widgets:

label :: String→ (() ())

getInteger :: () Int
getIntegerE:: () Event Int
getName :: () String

Note that we have both a regular and event-based version of
getInteger: the event-based one, which produces an event each time
the value changes, is useful for our example with switch, and we
will use the regular one with choice.



We can use these widgets in combination with therSwitch
function to make our GUI:

getNames:: () [String]
getNames= proc ()→ do
← label “How many people?”−≺ ()

en← getIntegerE−≺ ()
rSwitch(constA[ ])−≺ (repeat(),

fmap(λ n→ runNTimes n getName) en)

where therunNTimesfunction is the one we discussed in the previ-
ous subsection (that uses structural recursion to run the given signal
function the given number of times, as shown in Figure 3).

The above definition ofgetNames, although correct, is using
the higher order nature of switch when it is not truly necessary.
Switching gives the power to substitute in any new signal function
for the currently running one, but here, the nature of the new signal
function is already known: it will be some number ofgetName
widgets. Because this fact is known at compile time, we can use
arrowized recursion instead to create a simpler, switch-free GUI.

getNames:: () [String]
getNames= proc ()→ do
← label “How many people?”−≺ ()

n← getInteger−≺ ()
runDynamic getName−≺ replicate n()

BecauserunDynamicuses arrow choice to do arrowized recursion,
we do not need to use any switching.

4. A Case for Settability
In this section, we will explore a second main use of switchers:
the ability to start a signal function mid-computation with no prior
state. Once again, we will begin with a simple yet canonical exam-
ple before describing our first-order alternative and some further
usage examples.

4.1 Restartable Computation

Although pausing signal functions is useful (as in theintegralWhen
example of Sections 3.1 and 3.3), there are times when we really
do want to restart a signal function, resetting its state to its initial
defaults. In fact, with switching, this is even easier than pausing
considering that switch naturally starts its new signal function from
the beginning.

For instance, let us consider the scenario where we would like
to take the integral of a stream, but at any moment, we may be
given an event that indicates that we should reset the integral’s
accumulation to its initial default. With switch, this is actually
trivial: we simply lift the integral function into the resetting event,
and send everything into a recursive switcher:

integralResetSwitch:: (Double,Event()) Double
integralResetSwitch= proc (i,e)→ do

rSwitch integral−≺ (i, fmap(const integral) e)

Without switch, this seems like a tough problem, and nothing about
non-interfering choice lends any help.

One idea is to try to simulate the behavior of a restart without
actually touchingintegral itself. That is, because the function we
are lifting is just an integral, we could take a snapshot of its output
at the restarting moment and then continuously subtract that value
from future outputs:

integralResetBasic :: (Double,Event()) Double
integralResetBasic= proc (i,e)→ do

o← integral−≺ i
rec let k= if isEvent ethen o else k′

k′← delay0−≺k
returnA−≺o−k

Although this is a valid solution to this particular situation, it is a
technique that does not scale well to more complicated problems.

4.2 Settability

At this point, the idea of lifting a signal function into the event
stream, as we did inintegralResetSwitchabove, should seem unnec-
essary. Indeed, we are not even switching into some dynamically
given new signal function but rather just using a new instance of
the same signal function again. Rather than switching, our first-
order approach is to develop a notion of signal functionsettability,
or a way to change the internal state of a signal function at arbitrary
points.

Because we are dealing with state, we will begin with an even
more primitive example and examine thedelayoperator directly. At
first glance, it seems to suffer from the same problem asintegral –
thedelaywill always output old values, so what can we do to reset
it? However, modifying it to be resettable requires only the addition
of a single input event stream:

resettableDelay:: β → ((β ,Event()) β )
resettableDelay i= proc (b,e)→ do

out← delay i−≺b
returnA−≺ case e of

NoEvent→ out
Event() → i

WheneverresettableDelayis given an event, it will immediately
output its initial value again, essentially behaving as if it has only
just started. In fact, we can take this one step further and construct
a version ofdelaythat can be set to any value of our choosing:

settableDelay:: β → ((β ,Event(Maybeβ )) β )
settableDelay i= proc (b,e)→ do

out← delay i−≺b
returnA−≺ case e of

NoEvent → out
Event Nothing→ i
Event(Just s) → s

With settableDelay, the event stream can potentially carry a new
value to set the internal state, and if there is no value, we perform
a reset. It may seem superfluous to have an event of an option, but
adding the ability to set the state does not make resetting the state
obsolete.

A fortuitous bonus to this function is that, in addition to being
able to set the state, we can also capture the current state. That
is, because the input stream is necessarily setting the new current
state, it can also be made to provide it directly. Thus, we can use
settableDelayto both “store” and “load” state.

General Settability

Although a settable version ofdelaymay be useful on its own, it
would be much more useful to have any arbitrary signal function
be settable. However, this would require manually changing every
internaldelayoperator to its settable alternative and then properly
routing the state-setting events to the appropriate places. Addition-
ally, if capturing the state at a given moment were important, all
of the inputs to thedelayfunctions would also need to be grouped
and appropriately routed to the output. This would be exceptionally
cumbersome and not at all feasible. What we want is a function
like:

settable:: (α  β )→ ((α ,Event State) (β ,State))

that will automatically take a signal function and allow us to both
pass in an optional new state as well as save its current state.

This settablefunction should hold to certain principles of be-
havior. For example, if it is never provided with a state, then it



settable:: (α  β )→ ((α ,Event State) (β ,State))

Identity

≈

Uniformity

≈

Default

≈

Figure 5. Thesettablefunction and its laws.

should do nothing. Similarly, if the state it produces is used to
set it, then there should be no observable difference in behavior.
Additionally, there should be a particular value ofStatethat acts
as a reset (in our settableDelayfunction from earlier, this was
Event Nothing). Thus, if one were to feed a constant stream of reset
states, the output would always use the default values. We declare
these principles as laws of behavior forsettableand show them di-
agrammatically in Figure 5.

In fact, with an appropriate code transformation, any arrow can
be extended with asettablefunction. We will explore the details of
this transformation in Section 6, but for now, it suffices to state that
it is possible and available in our examples.

4.3 Restartable Computation Revisited

With the settablefunction, definingintegralResetis just as trivial
as with switch:

integralReset:: (Double,Event()) Double
integralReset= proc (i,e)→ do
(v,s)← settable integral−≺ (i, fmap(const reset) e)
returnA−≺v

Rather than lifting a dynamic signal function to the signal level just
to be activated by switch as we did previously, we lift only a reset
signal. The difference in the amount of code between this function
and integralResetswitch is negligible (it basically comes down to
ignoring the state output of the settable signal function), but the
conceptual difference is quite important: rather than needing to stop
a currently running signal function to replace it with a new, fresh
instance of itself, it is possible to refresh it while leaving it active.

4.4 Freezing and Duplicating

This settablefunction has applications beyond just resetting ar-
bitrary, stateful signal functions. By separating the state from the
signal function, we are essentially separating the current behavior
from the structure. That is, thesettablefunction gives us the power
to freezesignal functions.

Typically freezing a signal function is thought of as a higher-
order operation achievable only with a switch operator. Specifi-

gui :: () ()
gui= proc ()→ do

edup← button“Duplicate pane?”−≺ ()
edel ← button“Delete pane?”−≺ ()
i← choosePane−≺ ()
rec stateLst← delay[reset]−≺ stateLstnew

((),statenew)← settable drawing−≺ ((),stateLst!! i)
let stateLstnew= case (edup,edel) of

(Event(), )→ set i stateLst statenew++[statenew]
(NoEvent,Event())→ delete i stateLst
→ set i stateLst statenew

returnA−≺ ()

Figure 6. The implementation of the GUI from Section 4.4.

cally, freezing is the process of stopping a running signal function
mid-execution and providing it as a piece of data to reuse. Later, it
can be resumed by using a switcher to reintegrate it into the struc-
ture of the program.

Rather than providing a copy of itself, a function made settable
will provide a stream of itsessence(i.e. its current state), which
can then be reinserted at any time later. Thus, we gain the ability to
freeze and resume without actually resorting to switch.

Example

For this example, we will construct a GUI for drawing. The main
window will feature a drawing pane, but the user will be able to
create new panes and switch between them. When a new pane is
created, it is automatically populated with a copy of whatever is
currently on the current pane.

For this example, we will assume a few widgets:

drawing :: () ()

choosePane:: () Int
button :: String→ (() Event())

The drawing widget is a stateful, effectful widget that provides a
canvas and allows the user to draw; thechoosePanewidget returns
an Int stream that represents the currently selected pane; and the
buttonwidget takes a static label and produces an event stream that
indicates when the button is depressed.

With these widgets, we can create the GUI we described (shown
in Figure 6). The state for the GUI is kept as a list of drawing
states, initialized in the sixth line as a one element list containing
a resetstate. This initial list describes a GUI with a single pane
that has a blank drawing canvas. When a user wishes to duplicate
the current pane, the current state is added to the list allowing the
GUI to “save” the original pane while providing a duplicate state
for the new one. The key here is that instead of keeping track of
different instances of the signal function, each with its own state,
we keep track of multiple states themselves and use them with a
single signal function.

We omit a version of this GUI that utilizes switching because it
is surprisingly complicated, and it is not particularly necessary to
contrast it with the GUI we present in Figure 6.

5. An Alternative to pSwitch
Here, we will pull together the ideas of both settability and non-
interfering choice that we have highlighted in the previous sections
to present a high power yet first-order version of a parallel switcher.

As we mentioned in Section 2.3, parallel switchers allow for
whole collections of signal functions to be managed and switched
in or out at once. One example of the usefulness of this kind



of switcher can be seen in the musical realm where one might
have a program that plays music with software “instruments” that
are actually themselves signal functions. The music is given as a
sequence of “On” and “Off” events, where the “On” events provide
the instrument to play and some initializing data about what note to
play, and the “Off” events tell which instrument to stop:

data NoteEvt= NoteOn UID Instr InitData
| NoteOff UID Instr

type Instr= InitData→ (() Sound)

sumSound:: [Sound] Sound

Note that theUID type is a unique identifier that is used to connect
a givenNoteOnevent with itsNoteOffcounterpart, and theSound
data type represents the sound that an instrument produces. The
sumSoundsignal function is for summing dynamic lists of sounds
together.

Although we will use the samepSwitchthat we introduced in
Section 2.3, for clarity, we will show its type signature again, this
time with a few of the type variables instantiated for our example.

pSwitch:: [UID,() β ]
→ (() Eventγ)
→ ([UID,() β ]→ γ → [UID,() β ])
→ (() [β ])

For our collection, we use a mapping ofUID to signal function
(which we implement as a list for simplicity), and we setα to ().

For this musical example, the initial list of signal functions will
be empty, the events to change that list will beNoteEvts, and the
function will use theNoteEvtdata to add or remove signal functions
from the list as necessary:

maestro:: (() Event[NoteEvt])→ (() Sound)
maestro music= pSwitch[ ] music f>>>sumSound

where f lst [ ] = lst
f lst (NoteOn u i imp: rst) = f ((u, i imp) : lst) rst
f lst (NoteOff u i: rst) = f (filter (( 6= u) . fst) lst) rst

In order to remove our reliance on switch, we need to make a
few small changes to the layout of the problem. First, as we did in
Section 3.4, we will need to change the instruments from functions
that take a “static” initializing argument to functions that take that
argument as an impulse. Second, we need to know statically what
the different signal functions are, so we make use of a finite data
type and add one layer of indirection:

data Instr= Trumpet| FHorn | Trombone| Tuba

type Instrument= Event InitData Sound

toInstrument:: Instr→ Instrument

Because theInstr type is finite, we know exactly whichInstrument
signal functions can possibly be called. This is critical because
choice is not actually higher order. Fortunately, in most situations
where parallel switching is used, the possibilities of signal func-
tions are known statically, so a transformation like this one is not
difficult.

With these changes made, we can utilize thepChoicefunction.
The idea behindpChoiceis that as long as we know the possible
signal functions that we may use, we can run each one a dynamic
number of times. So, rather than keep a dynamic list of signal
functions, we keep a static list of signal functions and a dynamic list
of signal functionstates. We then use a combination of structural
and arrowized recursion: structural recursion to provide access to
each possible signal function and arrowized recursion to allow a
dynamic number of runs per possibility.

The type ofpChoiceis:

pChoice:: Eq key⇒ [(key,Eventα  β )]→
([(key,(UID,Eventα))] [β ])

and as it is somewhat complicated, we leave its implementation and
a more detailed description of its inner-functioning to Appendix B.

We can usepChoiceto reimplement our music program without
switch:

maestro:: [NoteEvt] Sound
maestro= arr (map f)>>>pChoice lst>>>sumSound

where lst= map(λ i→ (i, toInstrument i)) allInstrs
f (NoteOn u i imp) = (i,(u,Event imp))
f (NoteOff u i) = (i,(u,NoEvent))

whereallInstrs is a complete list of all of theInstrs that might
be played. In fact, one notable difference between this version
of maestroand the switch-based alternative from earlier is this
allInstrs list: the reason that we can write this program at all is
becauseallInstrscan be defined statically.

6. Implementing Settability
As we mentioned in Section 4.2, we can achieve settability of any
arrow with a code transformation. Here, we will provide a detailed
description of the transformation process before presenting Haskell
code that implements it.

6.1 Design

In essence, the idea of settability is the idea of having access to the
internal state of an arrow. Thus, as we discussed previously, it is
encapsulated by a function like:

settable:: (α  β )→ ((α ,Event State) (β ,State))

that will automatically take a signal function and allow us to both
pass in an optional new state as well as save its current state. How-
ever, in order to achieve this, we will need to rewrite the under-
lying arrow to support this behavior. Therefore, we will describe
a recursive transformation that will provide settable capabilities to
ordinary arrows.

Intuitively, this settability transformation is a simple process
of routing state update information in through the various arrow
combinators so that it can be easily accessed by any internal delay
operators and then routing current state data back out through the
combinators to the level of thesettablecall. For each combinator,
there is a transformation that achieves exactly this goal; we show
circuit diagrams for these transformations in Figure 7 and describe
them in detail below. Note that we use the notationsf to denote the
signal functionsf after having been transformed, and we assume
that theEvent Stateinput stream andStateoutput stream are always
the lower input and output.

• We will begin at the lowest level by examining thedelayop-
erator itself. In Section 4.2, we showed a design for a settable
version of delay, but we need to modify it just slightly in order
for it to be general enough for oursettabletransformation: in
addition to taking in anEvent Statestream, it also needs to emit
its currentStateas a stream. This is rather trivial as its current
state is identical to its own input stream, but this is important to
the transformation as a whole. Thus, our circuit diagram shows
the input stream both being sent to the embeddeddelayoperator
as well as being duplicated to theStateoutput, and the output is
determined by a case analysis of theEvent Stateinput with data
from thedelay’s output.

• The simplest transformation is that of thearr operator, which
has no state and should essentially remain unaffected. In this



delay i

arr f

sf1>>>sf2

first sf

loop sf

left sf
(with Right input)

left sf
(with Left input)

Figure 7. The circuit diagrams showing the settability transforma-
tions for the various arrow combinators.

case, we ignore the inputEvent Stateand return a constant
stream of the null, orreset, state.

• The composition of two functions is a little more interesting.
Each of the two composed signal functions may have state, so
we need to split the incomingEvent Stateinto two pieces and
pass the first to the first signal function and the second to the
second. We gather the resulting states together and join them
into a single output state.

• Applying a partial application (first) is a simple matter of rerout-
ing the state data and the unused input stream properly.

• Looping is handled similarly to partial application with a simple
rerouting of streams.

• The most complicated transformation is for our non-interfering
choice’s left operator. This is because there are two difficult
questions that we must address in designing this transformation.
First, in the case of an inputRightvalue, the embedded signal
function is not executed, so where can we get aStatevalue for
the outputStatestream? And second, again in the case of an

input Right value, if we are given anEvent Statethat requires
updating the embedded signal function, how can we get that
event where it needs to go? The way to address both of these
questions is to allow the transformed choice operator to contain
some internal state, which we achieve withloopanddelay.

Furthermore, in an effort to clarify the behavior of the trans-
formed choice, we provide two diagrams to describe its behav-
ior: one that shows how it behaves when given aRightvalue and
the other for when it is given aLeftvalue. Thedelays are shared
between both diagrams: the upperdelayshould be assumed to
be initialized with aNoEventvalue and the lower with a null, or
reset, state value. Themergefunction is a standard overwriting
event merge that favors the left (newly incoming) event in the
case of two events.

When given aRight input, the input stream is identical to the
output stream. TheEvent Stateinput is merged with the stored
Event Stateand stored once again, thus updating the store with
any new setting events. The outputStateis the stored one.

When given aLeft input, we will execute the embedded signal
function. We still merge theEvent Stateinput with the stored
one, but the result goes directly into the embedded signal func-
tion, and the store is instead updated with aNoEvent, indicating
that there are no pastEvent States waiting to be delivered. The
output of the transformed, embedded signal function, both the
streamingLeft value as well as the outputState, become the
output of the overall transformed signal function, but the out-
putStateis also stored for potential future use. The storedState
value is discarded outright as it is now obsolete.

6.2 Haskell Implementation

Rather than relying on Haskell’s rewrite rules or Template Haskell,
we can perform the entire transformation with only type classes.
Our method involves creating a wrapper for a generic arrow that
itself instantiates the arrow classes. Then, any code that is an
arbitrary arrow could just as well be this wrapper.

Thus, our goal will be to concretely define our types and then
instantiate the arrow classes using them.

Data Types

The first type we must choose a concrete representation for is the
Statedata type. Although we could use Haskell’s type families and
other features to make a type-safe solution, its complexity would
detract from the point. Therefore, to keep the types simple, we will
make use of Haskell’sDynamicdata type to store arbitrary state
information from individualdelayfunctions.2 Also, rather than use
an auxiliary option type to represent a default state or an absence
of state (as we did in thesettableDelayfunction in Section 4.2), we
will build this directly into the type.

We show the definition of theStatedata type along with the few
helper functions we need in Figure 8. Note that becauseNoState
represents an absence of state information, trying to split it returns
a similar lack of information.

With the Statetype defined, we next build our wrapper for a
general arrow:

data SA( ) α β = SA((α ,Event State) (β ,State))

Already, we can see that thisSAdata type is merely hiding the extra
piping that will be required to store and load the state.

2 Technically, usingDynamic in this way enforces aTypeablerestriction
to the types of the individual state components, but this is oflittle conse-
quence.



data State= NoState
| DState Dynamic
| PairState State State

reset= NoState

split :: Event State→ (Event State,Event State)
split NoEvent = (NoEvent,NoEvent)
split (Event NoState) = (Event NoState,Event NoState)
split (Event(PairState l r)) = (Event l,Event r)

join :: State→ State→ State
join l r = PairState l r

merge:: Event→ Event→ Event
merge NoEvent e= e
merge e = e

Figure 8. TheStatedata type and its two accessor functions.

Instantiating Arrow

Next, we show howSA ( ) can instantiate the arrow operators
themselves. If it can, then any program written using the arrow op-
erators could just as well be written for the generic arrow( ) as for
SA( ). Thus, this instantiation will essentially provide a method
to perform a code transformation to allow any arrow to behave as
if it could be made settable. In fact, it will not even matter if this
instantiation actually obeys the arrow laws; because the arrow it is
built atop does, we can always strip off the wrapper and be left with
an arrow that does satisfy the laws. The implementations are shown
in Figure 9.

The implementations follow directly from the circuit diagrams
from Figure 7, and thus we will omit any further description of how
they function.

Settable

It feels like we could make anSA( ) settable merely by removing
theSAwrapper – after all, the underlying arrow will be of the ap-
propriate type. However, this approach limits modularity by forcing
the input and output arrows of thesettablefunction to be different.
Therefore, we instead write asettablefunction forSAdirectly:

settable(SA f) = SA$ proc ((b,es),e′s)→ do
(c,s)← f −≺ (b,merge es e′s)
returnA−≺ ((c,s),s)

This settablefunction is straightforward with one exception. If
there is already a state-update event that is propagating a new state
(shown here ase′s), and the settable signal function is also given
a state-update event (es), which one takes precedence? In fact, the
new one must take precedence in order to guarantee the laws we set
out in Figure 5.

7. Optimizations
Providing such an expressive, first-order alternative to the higher-
order switch function is a boon for optimizations as it allows the
arrow structure to be fully determinable at compile time. For in-
stance, Causal Commutative Arrows (CCAs) are a particular sub-
class of arrows that have been shown to be highly optimizable [14],
but they are restricted to be only first-order. As a demonstration
of the optimization capabilities of our work, we extend the Haskell
CCA transformation to include non-interfering choice and show the
promising results. We begin with a brief overview of CCAs.

arr f = SA$ arr
(

λ (b, )→ ( f b,NoState)
)

first (SA f) = SA$ proc ((b,d),es)→ do
(c,s)← f −≺ (b,es)
returnA−≺ ((c,d),s)

(SA f)>>> (SA g) = SA$ proc (b,es)→ do
let (el ,er) = split es
(c, sl )← f −≺ (b, el )
(d,sr)← g−≺ (c, er )
returnA−≺ (d, join sl sr )

loop (SA f) = SA$ proc (b,es)→ do
rec ((c,d),s)← f −≺ ((b,d),es)
returnA−≺ (c,s)

delay i= SA$ proc (snew,es)→ do
sold← delay i−≺snew
returnA−≺ ( f sold es,DState(toDyn snew))

where f s NoEvent= s
f (Event NoState) = i
f (Event(DState d)) = fromDyn d

left ∼(SA f) = SA$ proc (bd,es)→ do
rec (sold,eold)← delay(NoState, NoEvent)−≺ (snow,enext)

let enow= merge es eold
(snow,enext,cd)← case bd of

Left b→ do
(c,s)← f −≺ (b,enow)
returnA−≺ (s,NoEvent,Left c)

Right d→ returnA−≺ (sold,enow,Right d)
returnA−≺ (cd,snow)

Figure 9. SAimplementations of the Arrow class functions.

7.1 Causal Commutative Arrows

Causal Commutative Arrows are arrows that have two additional
laws: a commutativity law that essentially states that signal function
effects can be reordered at will, and a product law that governs
the behavior of the causal operator (theinit or delay operator).
With these two laws at their disposal, Liu et al. [14] describe a
transformation that allows an arrow to be reduced to a normal form,
which they call the Causal Commutative Normal Form (CCNF),
and then even stream fused into a standard function. The authors
demonstrate that GHC can then aggressively optimize this, yielding
performance increases of orders of magnitude.

The CCA transformation is of particular interest to us as it
is what we will be extending to add support for non-interfering
choice, but first, we must describe the CCNF. The CCNF of an
arrow is either of the form:

arr f

or

loop (arr f >>>second(delay i))

where f is a pure function andi is a state. We can express these
more simply by calling themArr f andLoopD i f. The transforma-
tion, then, is the process of reducing an arrow built with the arrow
operators into one of these two forms. It is a recursive transforma-
tion that applies a set of reduction rules until the normal form is
produced.



For instance, if the transformation comes across an arrow of the
form first sf, then it will recursively reducesf and then choose one
of the following two rules based on the result:

first (Arr f ) 7→ Arr ( f × id)
first (LoopD i f) 7→ LoopD i (juggle. ( f × id) . juggle)

where juggle is a pure helper function to reorder the inputs and
outputs as necessary.

7.2 Extending CCA

CCAs already have a mechanism for dealing with choice, and at
first glance, it appears to work with non-interfering choice too.
However, it is the arrowized recursion that non-interfering choice
allows, and not the choice operator directly, that actually poses a
problem for the CCA transformation.

As is, the CCA transformation does not support recursion. Of
course, as we mentioned when we introduced arrowized recursion
in Section 3.5, arrows themselves are not guaranteed to support it,
so its absense is perfectly sensible as it serves no purpose without
non-interfering choice. However, the absense of recursion support
is not due to inability – indeed, we can add that functionality in a
straightforward manner.

Intuitively, the presense of arrowized recursion will present us
with the following two scenarios:

Arr f = Arr (g f)

LoopD i f = LoopD( j i) (g f)
In the first case, we find that a signal function of the formArr f
is defined based on that same functionf , and the second is the
same except for bothf and its statei. However, becausef andg
(and j) are pure functions, this is a trivial relation to solve: indeed
the solution to the first form is as simple as applying a fix point
operator:

f = fix g
The second form is slightly more complicated as it requires the

use of a coinductive data type fori. We would need a data type such
as:

data StateCCA k= S(k (StateCCA k))
and with it, we can solve fori and f :

i = s where s= S( j s)
f = fix g

7.3 Haskell Implementation

We model the Haskell implementation off of the original CCA
transformation design. We use Template Haskell along with a
clever use of the Arrow type classes to perform a preprocessing
step on only the arrowized components. Thus, rather than try to
interfere with Haskell’s native recursion support, we introduce a
new type class to capture it only where we need it:

class ArrowFix ( ) where
afix :: (b c→ b c)→ b c

TheArrowFix type class introduces theafix function that acts as a
fix point function particularly for arrowized recursion. In practice,
we could merely defineafix to be equivalent to the regular fix point
operator, but we will make better use of it for the transformation.

Specifically, when the recursive transformation encounters an
arrow of the formafix f, the first thing it will do is to produce a
fresh, unique “hole”. The hole (which we represent with•) is a
special internal data structure that acts likeArr or LoopD except
that instead of holding the functionf and statei, it keeps track of
the modifying functionsg and j. That is, if the hole is anArr form,
then we know that we will eventually come to a scenario such as

Arr f = Arr (g f)

Name GHC arrowp CCNF Stream
Dynamic Counters 1.0 1.66 10.91 12.73

Chained Adder 1.0 1.91 4.06 4.29
Chained Integral 1.0 2.17 13.27 15.40

Figure 10. Performance Ratio (higher is better)

and since f is unknown and will be deduced via the fix point
operation, the hole instead keeps track ofg. Applying this hole as
the argument tof and then recursively running the transformation
will reduce the result to one of the two forms we identified in the
previous subsection, which we have already shown can be solved
easily.

To facilitate this, we create a second set of transformation rules
that are nearly identical to the original except that they expect
an additional argument. For instance, if the transformation comes
across a partial application of a hole, then it will follow one of the
following two rules:

first (•Arr g) 7→ •Arr (λ f → (g f× id))
first (•LoopD j g) 7→ •LoopD j (λ f →

(juggle. (g f× id) . juggle))

Note the similarities between this and the description for the non-
hole version at the end of Section 7.1. They are almost identical
except for the fact that the hole’s arguments are functions of func-
tions.

Coinductive State

We mentioned in the previous subsection that taking a fix point of
the statei would require a coinductive data type, but we make no
mention of that. Indeed, because Haskell makes it difficult to dy-
namically create new types and adding that behavior to the existing
CCA Template Haskell transformation would involve completely
rewriting it, we instead utilize Haskell’sDynamicdata type as an
all-purpose coinductive wrapper. Although not the most elegant so-
lution, it gets the job done.

7.4 Performance Results

We followed the same procedure for performance testing that Liu
et al. [14] use. That is, for each program, we:

1. Compiled with GHC, which has a built-in translator for arrow
syntax.

2. Translated the arrow syntax to arrow combinators using Pater-
son’sarrowppre-processor [17] and then compiled with GHC.

3. Normalized into CCNF combinators and compiled with GHC.

4. Normalized into CCNF combinators, rewrote in terms of
streams, and compiled with GHC using stream fusion.

The three benchmark programs we used are based on the examples
from this paper but are simplified. The first uses therunDynamic
function to run multiple stateful counters at the same time. The
second and third use a function similar torunDynamicthat runs a
signal function multiple times but chains the output from one run
to the input of the next, essentially linking them together. For the
second, we link together a basic, stateless adder, and for the third,
we link an integral function.

The programs were compiled and run on an Intel Core i7 ma-
chine with GHC version 7.6.3, using the−O2 optimization. The
results are shown in Figure 10, where the numbers represent nor-
malized speedup ratios.

In general, the results show a similarly dramatic performance
improvement compared with standard CCA. Notably, the perfor-
mance of the chained adder, although improved in CCNF, does not



show nearly the speedup that the others show. We believe this is
because the chained adder has no internal state whatsoever, making
the pre-processed performance better.

8. Other effects of switching from switch
As stated earlier, arrows with switch are fundamentally more pow-
erful than those without. Thus, it was never our goal to demonstrate
that non-interfering choice and state settability could provide the
tools to replace switch outright, but rather that switch’s power is
often underutilized, and in those cases, switch can be replaced.

8.1 First order

The primary and most important difference between switch and
non-interfering choice is that switch is truly higher order while
choice is not. This means that while programs with switch can ac-
cept streams of signal functions and then run those signal functions,
programs with only choice cannot.

8.2 Memory Use

One of the main reasons to use switch in a program is to improve
performance. Rather than run a signal function when its results are
not being used, we can switch it off, reducing unneeded compu-
tation. Signal functions that have been switched out will never be
restarted and so can be garbage collected to free memory.

With non-interfering choice, we can similarly stop a signal
function, but because it might be restarted, it cannot be garbage
collected. Rather, once started, it will remain in memory forever.
This is a fundamental reason for demonstrating state settability of
signal functions: a signal function that is waiting in memory can
have its state re-set so that it can behave as a fresh instance of
itself. Thus, with proper management of state, we should never
be creating new signal functions while others are left for dead but
stranded in memory. Therefore, though our system will always use
at least as much memory as a version with switch and often times
more, it should be capped by the maximum amount of memory that
a comparable switch-based version would use at any one time.

9. Related Work
The idea of using continuous modeling for dynamic, reactive be-
havior (now usually referred to as “functional reactive program-
ming,” or FRP) is due to Elliott, beginning with early work on
TBAG, a C++ based model for animation [7]. Subsequent work
on Fran (“functional reactive animation”) embedded the ideas in
Haskell [6, 9], and other embeddings were explored in [5].

After the Arrow framework was proposed by Hughes [12], it
was quickly adopted for use in FRP in the GUI language Fruit
[1, 2], which also introduced the first arrowized switch function
(before then, higher-order signals were dealt with by a function
typically calleduntil). The design of Yampa [3, 11] built off of this
and expanded the idea of switching into fourteen distinct switch
operators.

As mentioned, Liu et al. [14] proposed causal commutative ar-
rows, which provide an optimization strategy for first-order arrow-
ized FRP, but which cannot handle higher-order switching. Addi-
tionally, some work has minimally explored a restricted form of
switch [19], although there is no evidence that this provides any ac-
tionable benefits. Patai [16] presents an alternative approach of em-
bracing the higher-order mentality and shows a method for dealing
with higher-order streams directly and efficiently using a monadic
interface.

Other attempts at optimizing FRP (such as Reactive [8] and
Elm [4]) have focused on avoiding recomputation of values when
unnecessary. Reactive additionally uses deterministic concurrency
for even better performance.
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A. Proof That Non-Interference Implies
Commutativity (and Exchange)

Theorem (Commutativity).

right f >>> left g= left g>>> right f

Proof. This proof is straightforward. We will begin by assuming
Right inputs only, and thus we can modify our assertion to:

arr Right>>> right f >>> left g= arr Right>>> left g>>> right f

Starting with the left hand side,

arr Right>>> right f >>> left g
= { Unit backwards}

f >>>arr Right>>> left g
= { Non-Interference}

f >>>arr Right
= { Unit }

arr Right>>> right f
= { Non-Interference backwards}

arr Right>>> left g>>> right f

For Left input values, the proof works in exactly the same way
except that we must use non-interference’s mirror:

arr Left>>> right f = arr Left

which follows directly from non-interference and the definition of
right.

B. Choice-Based Implementations of First-Order
Switch

Although using non-interfering choice and settability allows for a
different paradigm for designing FRP programs, we can also use
these tools to implement operators that are similar to the classic
switchers. We show two such implementations in this appendix.

B.1 Standard Switch

The standardswitch function can be implemented with non-
interfering choice in a straightforward manner:

switchchoice:: (α  (β ,Eventγ))→ ((Eventγ,α) β )
→ (α  β )

switchchoicesf1 sf2 = proc a→ do
rec onOne← delay True−≺not onTwo

(b,et) ← if onOne
then sf1−≺ a
else returnA−≺ (undefined,NoEvent)

let onTwo= (isEvent et) || (not onOne)
if onTwothen sf2−≺ (et,a)

else returnA−≺ b

Here, we keep track of two internal state variables calledonOne
andonTwothat indicate whether we should be running the first or
the second signal function. When the first produces an event, we
setonOneto Falseso that we stop running it, and we setonTwo
to True. Then, we pass the impulse generated from the first signal
function to the second one, and for the future, the impulse stream
contains onlyNoEventvalues.

pChoice:: Eq key⇒ [(key,Eventα  β )]→
([(key,(UID,Eventα))] [β ])

pChoice[ ] = constA[ ]
pChoice((key,sf) : rst) = proc es→ do

rec states← delay[ ]−≺statesnew
let esthis = map snd$ filter ((== key) . fst) es

statesinp = update states esthis
output← runDynamic(first (settable sf))−≺ statesinp
let statesnew= map(λ (( ,s),uid)→

((NoEvent,Event s),uid)) output
rs← pChoice rst−≺es
returnA−≺ (map(fst . fst) output)++ rs

where update:: [((Eventα ,Event State),UID)]
→ [(UID,Eventα)]
→ [((Eventα ,Event State),UID)]

update s[ ] = s
update s((uid,NoEvent) : rst) =

update(filter (( 6= uid) . snd) s) rst
update s((uid, i) : rst) =

update(((i,Event reset),uid) : s) rst

Figure 11. The implementation ofpChoice.

B.2 Parallel Switch

ThepChoicefunction is somewhat more complicated and is shown
in Figure 11.pChoicetakes a mapping of keys to signal functions
(implemented here as a list for simplicity) as its static argument.
For each element of this static list, we keep a dynamic list of
states (thestatesvariable in the figure). We check the input events
for any that are keyed to the signal function we are currently
processing and update the state list accordingly (by either adding
or removing elements), and then we run the signal function for
each state and recur. Note that the static signal functions are all
impulse driven; thus, when new states are first added to the state
list (which is done in theupdatehelper function), they are given
an impulse event, but otherwise, they are givenNoEvent(i.e. in the
definition of statesnew). This restriction to strictly impulse driven
signal functions is not fundamental – indeed, we could write a
version ofpChoicethat accepts signal functions that also take a
streaming input – but making it more generic would needlessly
complicate this already dense definition.

It is also worth noting that there is a subtle difference in per-
formance betweenpChoiceandpSwitch. When the finite data type
is large but rarely used,pSwitchmay outperformpChoicebecause
pChoicestill has to iterate through its entire static list on each step
while pSwitch’s dynamic list will be just the relevant signal func-
tions. That said, their performance should be comparable when the
finite data type is small compared to the number of currently run-
ning signal functions.


