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The Context: 

Functional Reactive Programming 

 Programming with continuous values and 
streams of events. 

 Like drawing signal processing diagrams: 

 
 

 

 

 Previously used in: 
◦ Yampa: 

◦ Nettle: 

◦ Euterpea: 

robotics, vision, animation 

networking 

sound synthesis and audio processing 

 𝑦 ← 𝑠𝑖𝑔𝑓𝑢𝑛 −≺    𝑥 

equivalent arrow syntax in Haskell signal processing diagram 

y x 
signal 

function 



ARROWS 

How they work and how we will represent them 



 A stream can be continuously defined, 

typically as a time-varying value 

 
◦ By default, we use this notation 

 

Event-Based vs Continuous 

continuous sf 



 A stream can be continuously defined, 

typically as a time-varying value 

 
◦ By default, we use this notation 

 

 Rather than accepting a continuous 

stream, some signal functions accept 

discrete events, defined only at specific 

times 

Event-Based vs Continuous 

event-based sf 

continuous sf 



Standard Arrow Operators 

arr f 

f 

loop sf 

sf 

sf1 >>> sf2 

sf1 sf2 

first sf 

sf 



Stateful Arrows 

 

 

 
 

 With continuous semantics, the length of 

the delay approaches zero 

 

delay i 

i 



Stateful Arrows 

 

 

 
 

 With continuous semantics, the length of 

the delay approaches zero 

 When used in conjunction with loop, 

delay allows one to create stateful signal 

functions 

delay i 

i 



Arrow Choice 

 With choice, running the signal function is 

a dynamic decision 

left sf 

Left 

Right 

sf 



 Dynamic 

 Components that start and stop 

Higher Order Arrows 

rSwitch sf 

sf 



That’s just a Monad 

 Arrows with switch are equivalent to 

Monad. 



That’s just a Monad 

 Arrows with switch are equivalent to 

Monad. 

 Switch takes away arrows’ static structure 

◦ Not as easy to optimize 

◦ Harder for certain embedded systems 



So why switch? 
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So why switch? 

 Higher order signal expression 

◦ Inherently dynamic 

◦ Sometimes the arrow style is right even 

though switching is unavoidable 

 Ability to start and stop signal functions 

◦ “Power choice” 

◦ Increase performance by switching out signal 

functions that are not necessary 
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Contributions 

 A way to do classic switch-like behavior 

without switch 

◦ Resettability allows signal functions to act as if 

brand new 

◦ Non-Interfering Choice increases arrows’ 

standard choice’s power 

 Extra benefits! 

◦ General settability 

◦ Arrowized Recursion 



SWITCHING FOR STATE 

An example 



Example: IntegralReset 

 A signal function that calculates an 

integral but can be reset with an event. 
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 f _ = integral 

integral 

integralReset 

fmap  f 



Example: IntegralReset 

 A signal function that calculates an 

integral but can be reset with an event. 

 

 
 

 
 Can we even do this without switch? 

f _ = integral 

integral 

integralReset 

fmap  f 



Example: IntegralReset 

 Without switch, we can simulate a reset, 

but we can’t modify integral itself 

 

 

 

 

 f v e k = if isEvent e then v else k 

integral 

delay 0 

− 

f 

integralReset 



Example: IntegralReset 

 Without switch, we can simulate a reset, 

but we can’t modify integral itself 

 

 

 

 

 
 This solution is inelegant and does not 

scale 

f v e k = if isEvent e then v else k 

integral 

delay 0 

− 

f 

integralReset 



Resetting State 

 We want to access the state inside a 

signal function 

 

 
 But what’s inside of an arbitrary signal 

function? 

integral 



Resetting State 

 We want to access the state inside a 

signal function 

 

 
 But what’s inside of an arbitrary signal 

function? 

 All state is saved with loop and delay 

integral 



Resetting State 

 We want to access the state inside a 

signal function 

 

 

+ ∗ 𝑑𝑡 delay 0 

integral 



Resetting State 

 We want to access the state inside a 

signal function 

 

 
 If we could reach in and restart the delay, 

then integral would behave as if it just 

started 

+ ∗ 𝑑𝑡 delay 0 

integral 



Resettable Delay 

 Let’s consider a new delay that can be 

reset directly 

 

 

 
 When the event is given, resettableDelay 

reverts to its starting state. 

resettableDelay i 

NoEvent 

Event const i 

delay i 
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Resettable Delay 

 Let’s consider a new delay that can be 

reset directly 

 

 

 
 When the event is given, resettableDelay 

reverts to its starting state. 

 Does this scale? YES 

resettableDelay i 

NoEvent 

Event const i 

delay i 



General Settability 

 We can take any signal function and 

transform it into a settable signal function 

 
 

 The top wires are the standard signals 

 The bottom wires are State signals 

◦ The input Event State can be used to change 

sf ’s internal state 

◦ The output State is used to capture the 

current internal state 

 

 

sf 



Settable Laws 

≈ sf const  
NoEvent 

sf 

Identity 



Settable Laws 

≈ sf const  
NoEvent 

sf 

Identity 

≈ sf 
delay NoEvent arr Event 

sf 

Uniformity 



Settable Laws 

≈ sf const  
NoEvent 

sf 

Identity 

≈ sf 
delay NoEvent arr Event 

sf 

Uniformity 

const i ≈ const  
(Event reset) 

delay i 

Default 



Example: IntegralReset 

 Settability makes the problem trivial 

 

 

 

 

 
f _ = reset 

fmap  f 

integral 



Example: IntegralReset 

 Settability makes the problem trivial 

 

 

 

 

 

 We no longer need the overkill of lifting 

a signal function to the signal level 

f _ = reset 

fmap  f 

integral 



A STOPPING SWITCH 

Another example 



 A signal function that performs an integral 

only under a given condition 
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 A signal function that performs an integral 

only under a given condition 
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f Δv b resprev = if b then resprev + Δv else resprev  

getDelta integral 

delay 0 f 

integralWhen 
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Example: IntegralWhen 

f Δv b resprev = if b then resprev + Δv else resprev  

getDelta integral 

delay 0 f 

integralWhen 

delay 0 

− 
getDelta 



 A signal function that performs an integral 

only under a given condition 

 
 

 

 

Example: IntegralWhen 

f Δv b resprev = if b then resprev + Δv else resprev  

getDelta integral 

delay 0 f 

integralWhen 



 A signal function that performs an integral 

only under a given condition 

 
 

 

 
 The integral is calculated regardless of the 

condition, but is only used sometimes 

Example: IntegralWhen 

f Δv b resprev = if b then resprev + Δv else resprev  

getDelta integral 

delay 0 f 

integralWhen 



Example: IntegralWhen 

 With switch, we have the power to stop 

the integral when it is not needed. 

 

 

 

 

 
f b v = if b then 
 
             else  

integral +𝑣 

const v 

delay 0 integral 

fmap  f 

integralWhen 



Example: IntegralWhen 

 With switch, we have the power to stop 

the integral when it is not needed. 

 

 

 

 

 
 Why do we need switch at all? 

 Why can’t we just use choice? 

f b v = if b then 
 
             else  

integral +𝑣 

const v 

delay 0 integral 

fmap  f 

integralWhen 



Arrow Choice Laws 

Extension 

Functor 

Exchange 

Unit 

Assoc 

left (arr f) = arr (left f) 

left (f >>> g) = left f >>> left g 

left f >>> arr (right g) =  
arr (right g) >>> left f 

f >>> arr Left = arr Left >>> left f 

left (left f) >>> arr assoc+ =  
arr assoc+ >>> left f 



Arrow Choice Laws 

Extension 

Functor 

Exchange 

Unit 

Assoc 

left (arr f) = arr (left f) 

left (f >>> g) = left f >>> left g 

left f >>> arr (right g) =  
arr (right g) >>> left f 

f >>> arr Left = arr Left >>> left f 

left (left f) >>> arr assoc+ =  
arr assoc+ >>> left f 



Exchange 

 

 

 

 

 

= 
Left 

Right 

f 

g 

Left 

Right g 

f 



Exchange 

 

 

 

 

 

 Why isn’t this commutative? 

= 
Left 

Right 

f 

g 

Left 

Right g 

f 



Exchange 

 

 

 

 

 

 Why isn’t this commutative? 

◦ Some arrows have effects 

= 
Left 

Right 

f 

g 

Left 

Right g 

f 



Non-Interference 

 We strengthen exchange into 
non-interference 

 

 

 

 If the input value is a Right value, then the 
program will behave the same if there is a 
left function after it or not. 

  
 

= 
f 

Right 

Left 

Right 

Right 



Non-Interference 

 We strengthen exchange into 
non-interference 

 

 

 

 If the input value is a Right value, then the 
program will behave the same if there is a 
left function after it or not. 

 The unused branch of a choice is now 
guaranteed to not run 

= 
f 

Right 

Left 

Right 

Right 



Example: IntegralWhen 

 With non-interfering choice, we make 

another attempt. 

 

 

 

 

 When the condition is true, only integral 

is used, and when it is false, only id 

 

integral 

id 

True 

False 

delay 0 

integralWhen 



ARROWIZED 
RECURSION 

Non-Interfering Choice gives us even more 



Recursion in AFRP 

 AFRP typically provides two forms of 

recursion 



Recursion in AFRP 

 AFRP typically provides two forms of 

recursion 

◦ Value-level recursion 

◦ Structural Recursion 



Value-Level Recursion 

 Value-level recursion is achieved with the 

loop operator 

 

 

 

sf 



Value-Level Recursion 

 Value-level recursion is achieved with the 

loop operator 

 

 

 

 loop is essentially an extension of fix 

 

sf 



Structural Recursion 

 Structural recursion is “outside” the 

arrow and uses the native conditional 

 

 

 

 

 

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b]) 
 

runNTimes 0 _ = 
 

runNTimes n sf = 

sf 

runNTimes (n-1) sf tail 

head 

cons 

const [] 



Structural Recursion 

 Structural recursion is “outside” the 

arrow and uses the native conditional 

 

 

 

 

 

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b]) 
 

runNTimes 0 _ = 
 

runNTimes n sf = 

sf 

runNTimes (n-1) sf tail 

head 

cons 

const [] 
sf 

runNTimes (n-2) sf tail 

head 

cons 



Structural Recursion 

 Structural recursion is “outside” the 

arrow and uses the native conditional 

 

 

 

 

 

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b]) 
 

runNTimes 0 _ = 
 

runNTimes n sf = 

sf 

runNTimes (n-1) sf tail 

head 

cons 

const [] 
sf 

tail 

head 

cons 

sf 

runNTimes (n-3) sf tail 

head 

cons 



Structural Recursion 

 Structural recursion is “outside” the 

arrow and uses the native conditional 
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Structural Recursion 

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b]) 
 

runNTimes 0 _ = 
 

runNTimes n sf = 

sf 

runNTimes (n-1) sf tail 

head 

cons 

const [] 



 Structural recursion is “outside” the 

arrow and uses the native conditional 

 

 

 

 

 

 Note that the arrow’s structure is static 

and independent of the arrowized data 

Structural Recursion 

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b]) 
 

runNTimes 0 _ = 
 

runNTimes n sf = 

sf 

runNTimes (n-1) sf tail 

head 

cons 

const [] 



Arrowized Recursion 

 Arrowized recursion uses arrow choice 

to determine branching 

 

 

 

 

 

runDynamic :: (a ~> b) -> ([a] ~> [b]) 
runDynamic sf = 

[] 

head 

tail 

sf 

runDynamic  sf 

cons 

const [] 
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Arrowized Recursion 

 Arrowized recursion uses arrow choice 

to determine branching 

 

 

 

 

 

runDynamic :: (a ~> b) -> ([a] ~> [b]) 
runDynamic sf = 

[] 

head 

tail 

sf 

runDynamic  sf 

cons 

const [] 



Arrowized Recursion 

 Arrowized recursion uses arrow choice 

to determine branching 

 

 

 

 

 

 The arrow structure is not technically 

static, but it is predictably dynamic 

runDynamic :: (a ~> b) -> ([a] ~> [b]) 
runDynamic sf = 

[] 

head 

tail 

sf 

runDynamic  sf 

cons 

const [] 



OPTIMIZATION 

The benefit of static arrows over dynamic arrows 
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Causal Commutative Arrows 

 Liu, Cheng, Hudak [2009] introduced CCA 

◦ CCAs can be heavily optimized 

◦ Performance increases of 10-40 times 

◦ CCAs allow choice but do not allow switch 

 CCAs can allow Non-interfering choice 

◦ Arrowized recursion is not supported by 

default, but it can be added 



How CCA Works 

 The CCA optimization reduces arrows to 

one of two forms: 

 

 

 

 We extend this with the ability to handle 

arrowized recursion and call it CCA* 

 f 
f 

delay i 



Performance Results 

 

 

 

 3 sample programs using arrowized 

recursion 

 10x performance increase is comparable 

to Liu et al’s results 

◦ Chained Adder is stateless, and thus more 

optimized by GHC 

GHC CCA* + Stream 

Chained Adder 1.0 4.06 

Chained Integral 1.0 13.27 

Dynamic Counters 1.0 10.91 
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Summary 

 Settability 

◦ New model for controlling FRP state 

◦ Ability to restart, pause, and duplicate signal 

functions while retaining a static structure 

 Non-interfering choice 

◦ New forms of expression 

◦ Arrowized Recursion 

 Switch is only needed for true higher 

order expression 



Thank you 



Questions? 

Thank you 


