
Settable and Non-Interfering

Signal Functions for FRP

Daniel Winograd-Cort
Paul Hudak

Department of Computer Science

Yale University

ICFP

Göteborg, Sweden

Tuesday, September 2, 2014

The Context:

Functional Reactive Programming

 Programming with continuous values and
streams of events.

The Context:

Functional Reactive Programming

 𝑦 ← 𝑠𝑖𝑔𝑓𝑢𝑛 −≺ 𝑥

equivalent arrow syntax in Haskell signal processing diagram

y x
signal

function

 Programming with continuous values and
streams of events.

 Like drawing signal processing diagrams:

The Context:

Functional Reactive Programming

 Programming with continuous values and
streams of events.

 Like drawing signal processing diagrams:

 Previously used in:
◦ Yampa:

◦ Nettle:

◦ Euterpea:

robotics, vision, animation

networking

sound synthesis and audio processing

 𝑦 ← 𝑠𝑖𝑔𝑓𝑢𝑛 −≺ 𝑥

equivalent arrow syntax in Haskell signal processing diagram

y x
signal

function

ARROWS

How they work and how we will represent them

 A stream can be continuously defined,

typically as a time-varying value

◦ By default, we use this notation

Event-Based vs Continuous

continuous sf

 A stream can be continuously defined,

typically as a time-varying value

◦ By default, we use this notation

 Rather than accepting a continuous

stream, some signal functions accept

discrete events, defined only at specific

times

Event-Based vs Continuous

event-based sf

continuous sf

Standard Arrow Operators

arr f

f

loop sf

sf

sf1 >>> sf2

sf1 sf2

first sf

sf

Stateful Arrows

 With continuous semantics, the length of

the delay approaches zero

delay i

i

Stateful Arrows

 With continuous semantics, the length of

the delay approaches zero

 When used in conjunction with loop,

delay allows one to create stateful signal

functions

delay i

i

Arrow Choice

 With choice, running the signal function is

a dynamic decision

left sf

Left

Right

sf

 Dynamic

 Components that start and stop

Higher Order Arrows

rSwitch sf

sf

That’s just a Monad

 Arrows with switch are equivalent to

Monad.

That’s just a Monad

 Arrows with switch are equivalent to

Monad.

 Switch takes away arrows’ static structure

◦ Not as easy to optimize

◦ Harder for certain embedded systems

So why switch?

So why switch?

 Higher order signal expression

◦ Inherently dynamic

◦ Sometimes the arrow style is right even

though switching is unavoidable

So why switch?

 Higher order signal expression

◦ Inherently dynamic

◦ Sometimes the arrow style is right even

though switching is unavoidable

 Ability to start and stop signal functions

◦ “Power choice”

◦ Increase performance by switching out signal

functions that are not necessary

Contributions

 A way to do classic switch-like behavior

without switch

Contributions

 A way to do classic switch-like behavior

without switch

◦ Resettability allows signal functions to act as if

brand new

Contributions

 A way to do classic switch-like behavior

without switch

◦ Resettability allows signal functions to act as if

brand new

◦ Non-Interfering Choice increases arrows’

standard choice’s power

Contributions

 A way to do classic switch-like behavior

without switch

◦ Resettability allows signal functions to act as if

brand new

◦ Non-Interfering Choice increases arrows’

standard choice’s power

 Extra benefits!

Contributions

 A way to do classic switch-like behavior

without switch

◦ Resettability allows signal functions to act as if

brand new

◦ Non-Interfering Choice increases arrows’

standard choice’s power

 Extra benefits!

◦ General settability

◦ Arrowized Recursion

SWITCHING FOR STATE

An example

Example: IntegralReset

 A signal function that calculates an

integral but can be reset with an event.

Example: IntegralReset

 A signal function that calculates an

integral but can be reset with an event.

 f _ = integral

integral

integralReset

fmap f

Example: IntegralReset

 A signal function that calculates an

integral but can be reset with an event.

 Can we even do this without switch?

f _ = integral

integral

integralReset

fmap f

Example: IntegralReset

 Without switch, we can simulate a reset,

but we can’t modify integral itself

 f v e k = if isEvent e then v else k

integral

delay 0

−

f

integralReset

Example: IntegralReset

 Without switch, we can simulate a reset,

but we can’t modify integral itself

 This solution is inelegant and does not

scale

f v e k = if isEvent e then v else k

integral

delay 0

−

f

integralReset

Resetting State

 We want to access the state inside a

signal function

 But what’s inside of an arbitrary signal

function?

integral

Resetting State

 We want to access the state inside a

signal function

 But what’s inside of an arbitrary signal

function?

 All state is saved with loop and delay

integral

Resetting State

 We want to access the state inside a

signal function

+ ∗ 𝑑𝑡 delay 0

integral

Resetting State

 We want to access the state inside a

signal function

 If we could reach in and restart the delay,

then integral would behave as if it just

started

+ ∗ 𝑑𝑡 delay 0

integral

Resettable Delay

 Let’s consider a new delay that can be

reset directly

 When the event is given, resettableDelay

reverts to its starting state.

resettableDelay i

NoEvent

Event const i

delay i

Resettable Delay

 Let’s consider a new delay that can be

reset directly

 When the event is given, resettableDelay

reverts to its starting state.

 Does this scale?

resettableDelay i

NoEvent

Event const i

delay i

Resettable Delay

 Let’s consider a new delay that can be

reset directly

 When the event is given, resettableDelay

reverts to its starting state.

 Does this scale? YES

resettableDelay i

NoEvent

Event const i

delay i

General Settability

 We can take any signal function and

transform it into a settable signal function

 The top wires are the standard signals

 The bottom wires are State signals

◦ The input Event State can be used to change

sf ’s internal state

◦ The output State is used to capture the

current internal state

sf

Settable Laws

≈ sf const
NoEvent

sf

Identity

Settable Laws

≈ sf const
NoEvent

sf

Identity

≈ sf
delay NoEvent arr Event

sf

Uniformity

Settable Laws

≈ sf const
NoEvent

sf

Identity

≈ sf
delay NoEvent arr Event

sf

Uniformity

const i ≈ const
(Event reset)

delay i

Default

Example: IntegralReset

 Settability makes the problem trivial

f _ = reset

fmap f

integral

Example: IntegralReset

 Settability makes the problem trivial

 We no longer need the overkill of lifting

a signal function to the signal level

f _ = reset

fmap f

integral

A STOPPING SWITCH

Another example

 A signal function that performs an integral

only under a given condition

Example: IntegralWhen

 A signal function that performs an integral

only under a given condition

Example: IntegralWhen

f Δv b resprev = if b then resprev + Δv else resprev

getDelta integral

delay 0 f

integralWhen

 A signal function that performs an integral

only under a given condition

Example: IntegralWhen

f Δv b resprev = if b then resprev + Δv else resprev

getDelta integral

delay 0 f

integralWhen

delay 0

−
getDelta

 A signal function that performs an integral

only under a given condition

Example: IntegralWhen

f Δv b resprev = if b then resprev + Δv else resprev

getDelta integral

delay 0 f

integralWhen

 A signal function that performs an integral

only under a given condition

 The integral is calculated regardless of the

condition, but is only used sometimes

Example: IntegralWhen

f Δv b resprev = if b then resprev + Δv else resprev

getDelta integral

delay 0 f

integralWhen

Example: IntegralWhen

 With switch, we have the power to stop

the integral when it is not needed.

f b v = if b then

 else

integral +𝑣

const v

delay 0 integral

fmap f

integralWhen

Example: IntegralWhen

 With switch, we have the power to stop

the integral when it is not needed.

 Why do we need switch at all?

 Why can’t we just use choice?

f b v = if b then

 else

integral +𝑣

const v

delay 0 integral

fmap f

integralWhen

Arrow Choice Laws

Extension

Functor

Exchange

Unit

Assoc

left (arr f) = arr (left f)

left (f >>> g) = left f >>> left g

left f >>> arr (right g) =
arr (right g) >>> left f

f >>> arr Left = arr Left >>> left f

left (left f) >>> arr assoc+ =
arr assoc+ >>> left f

Arrow Choice Laws

Extension

Functor

Exchange

Unit

Assoc

left (arr f) = arr (left f)

left (f >>> g) = left f >>> left g

left f >>> arr (right g) =
arr (right g) >>> left f

f >>> arr Left = arr Left >>> left f

left (left f) >>> arr assoc+ =
arr assoc+ >>> left f

Exchange

=
Left

Right

f

g

Left

Right g

f

Exchange

 Why isn’t this commutative?

=
Left

Right

f

g

Left

Right g

f

Exchange

 Why isn’t this commutative?

◦ Some arrows have effects

=
Left

Right

f

g

Left

Right g

f

Non-Interference

 We strengthen exchange into
non-interference

 If the input value is a Right value, then the
program will behave the same if there is a
left function after it or not.

=
f

Right

Left

Right

Right

Non-Interference

 We strengthen exchange into
non-interference

 If the input value is a Right value, then the
program will behave the same if there is a
left function after it or not.

 The unused branch of a choice is now
guaranteed to not run

=
f

Right

Left

Right

Right

Example: IntegralWhen

 With non-interfering choice, we make

another attempt.

 When the condition is true, only integral

is used, and when it is false, only id

integral

id

True

False

delay 0

integralWhen

ARROWIZED
RECURSION

Non-Interfering Choice gives us even more

Recursion in AFRP

 AFRP typically provides two forms of

recursion

Recursion in AFRP

 AFRP typically provides two forms of

recursion

◦ Value-level recursion

◦ Structural Recursion

Value-Level Recursion

 Value-level recursion is achieved with the

loop operator

sf

Value-Level Recursion

 Value-level recursion is achieved with the

loop operator

 loop is essentially an extension of fix

sf

Structural Recursion

 Structural recursion is “outside” the

arrow and uses the native conditional

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b])

runNTimes 0 _ =

runNTimes n sf =

sf

runNTimes (n-1) sf tail

head

cons

const []

Structural Recursion

 Structural recursion is “outside” the

arrow and uses the native conditional

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b])

runNTimes 0 _ =

runNTimes n sf =

sf

runNTimes (n-1) sf tail

head

cons

const []
sf

runNTimes (n-2) sf tail

head

cons

Structural Recursion

 Structural recursion is “outside” the

arrow and uses the native conditional

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b])

runNTimes 0 _ =

runNTimes n sf =

sf

runNTimes (n-1) sf tail

head

cons

const []
sf

tail

head

cons

sf

runNTimes (n-3) sf tail

head

cons

Structural Recursion

 Structural recursion is “outside” the

arrow and uses the native conditional

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b])

runNTimes 0 _ =

runNTimes n sf =

sf

runNTimes (n-1) sf tail

head

cons

const []
sf

tail

head

cons

sf

tail

head

cons

const []

 Structural recursion is “outside” the

arrow and uses the native conditional

Structural Recursion

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b])

runNTimes 0 _ =

runNTimes n sf =

sf

runNTimes (n-1) sf tail

head

cons

const []

 Structural recursion is “outside” the

arrow and uses the native conditional

 Note that the arrow’s structure is static

and independent of the arrowized data

Structural Recursion

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b])

runNTimes 0 _ =

runNTimes n sf =

sf

runNTimes (n-1) sf tail

head

cons

const []

Arrowized Recursion

 Arrowized recursion uses arrow choice

to determine branching

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

runDynamic sf

cons

const []

Arrowized Recursion

 Arrowized recursion uses arrow choice

to determine branching

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

cons

const []

[]

head

tail

sf

runDynamic sf

cons

const []

Arrowized Recursion

 Arrowized recursion uses arrow choice

to determine branching

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

cons

const []

[]

head

tail

sf

runDynamic sf

cons

const []

[]

head

tail

sf

runDynamic sf

cons

const []

Arrowized Recursion

 Arrowized recursion uses arrow choice

to determine branching

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

runDynamic sf

cons

const []

Arrowized Recursion

 Arrowized recursion uses arrow choice

to determine branching

 The arrow structure is not technically

static, but it is predictably dynamic

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

[]

head

tail

sf

runDynamic sf

cons

const []

OPTIMIZATION

The benefit of static arrows over dynamic arrows

Causal Commutative Arrows

 Liu, Cheng, Hudak [2009] introduced CCA

◦ CCAs can be heavily optimized

◦ Performance increases of 10-40 times

Causal Commutative Arrows

 Liu, Cheng, Hudak [2009] introduced CCA

◦ CCAs can be heavily optimized

◦ Performance increases of 10-40 times

◦ CCAs allow choice but do not allow switch

Causal Commutative Arrows

 Liu, Cheng, Hudak [2009] introduced CCA

◦ CCAs can be heavily optimized

◦ Performance increases of 10-40 times

◦ CCAs allow choice but do not allow switch

 CCAs can allow Non-interfering choice

◦ Arrowized recursion is not supported by

default, but it can be added

How CCA Works

 The CCA optimization reduces arrows to

one of two forms:

 We extend this with the ability to handle

arrowized recursion and call it CCA*

 f
f

delay i

Performance Results

 3 sample programs using arrowized

recursion

 10x performance increase is comparable

to Liu et al’s results

◦ Chained Adder is stateless, and thus more

optimized by GHC

GHC CCA* + Stream

Chained Adder 1.0 4.06

Chained Integral 1.0 13.27

Dynamic Counters 1.0 10.91

Summary

 Settability

◦ New model for controlling FRP state

◦ Ability to restart, pause, and duplicate signal

functions while retaining a static structure

Summary

 Settability

◦ New model for controlling FRP state

◦ Ability to restart, pause, and duplicate signal

functions while retaining a static structure

 Non-interfering choice

◦ New forms of expression

◦ Arrowized Recursion

Summary

 Settability

◦ New model for controlling FRP state

◦ Ability to restart, pause, and duplicate signal

functions while retaining a static structure

 Non-interfering choice

◦ New forms of expression

◦ Arrowized Recursion

 Switch is only needed for true higher

order expression

Thank you

Questions?

Thank you

