Settable and Non-Interfering
Signal Functions for FRP

Daniel Winograd-Cort
Paul Hudak

Department of Computer Science
Yale University

ICFP

Goteborg, Sweden
Tuesday, September 2,2014

The Context:
Functional Reactive Programming

* Programming with continuous values and
streams of events.

The Context:
Functional Reactive Programming

* Programming with continuous values and
streams of events.

» Like drawing signal processing diagrams:

signal processing diagram equivalent arrow syntax in Haskell

signal X _ .

The Context:
Functional Reactive Programming

* Programming with continuous values and
streams of events.

» Like drawing signal processing diagrams:

signal processing diagram equivalent arrow syntax in Haskell

signal X _ :

* Previously used in:
° Yampa: robotics, vision, animation
> Nettle: networking
> Euterpea: sound synthesis and audio processing

How they work and how we will represent them

ARROWS

Event-Based vs Continuous

e A stream can be continuously defined,
typically as a time-varying value

— R —

> By default, we use this notation

Event-Based vs Continuous

e A stream can be continuously defined,
typically as a time-varying value

— R —

> By default, we use this notation

* Rather than accepting a continuous
stream, some signal functions accept
discrete events, defined only at specific

e — -
. cvent-based sf

Standard Arrow Operators

0

arr f

first sf

— kB

\ 4

stl >>> sf2

=

loop sf

Stateful Arrows

delay 1

* With continuous semantics, the length of
the delay approaches zero

Stateful Arrows

delay 1

* With continuous semantics, the length of
the delay approaches zero

* When used in conjunction with loop,
delay allows one to create stateful signal
functions

Arrow Choice

— -

Right

left sf

* With choice, running the signal function is
a dynamic decision

Higher Order Arrows

__nf_)

rswitch sf

e Dynamic
 Components that start and stop

That’s just a Monad

* Arrows with switch are equivalent to
Monad.

That’s just a Monad

* Arrows with switch are equivalent to
Monad.

e Switch takes away arrows’ static structure
> Not as easy to optimize
> Harder for certain embedded systems

So why switch!?

So why switch!?

* Higher order signal expression
° Inherently dynamic

> Sometimes the arrow style is right even
though switching is unavoidable

So why switch!?

* Higher order signal expression
° Inherently dynamic

> Sometimes the arrow style is right even
though switching is unavoidable

 Ability to start and stop signal functions
> “Power choice”

° Increase performance by switching out signal
functions that are not necessary

Contributions

* A way to do classic switch-like behavior
without switch

Contributions

* A way to do classic switch-like behavior
without switch

> Resettability allows signal functions to act as if
brand new

Contributions

* A way to do classic switch-like behavior
without switch

> Resettability allows signal functions to act as if
brand new

> Non-Interfering Choice increases arrows’
standard choice’s power

Contributions

* A way to do classic switch-like behavior
without switch

> Resettability allows signal functions to act as if
brand new

> Non-Interfering Choice increases arrows’
standard choice’s power

o Extra benefits!

Contributions

* A way to do classic switch-like behavior
without switch

> Resettability allows signal functions to act as if
brand new

> Non-Interfering Choice increases arrows’
standard choice’s power

» Extra benefits!
> General settability

o Arrowized Recursion

An example

SWITCHING FOR STATE

Example: IntegralReset

* A signal function that calculates an
integral but can be reset with an event.

Example: IntegralReset

* A signal function that calculates an
integral but can be reset with an event.

integral

integralReset

f_ - — -

Example: IntegralReset

* A signal function that calculates an
integral but can be reset with an event.

integral

integralReset

f_ - — -

e Can we even do this without switch?

Example: IntegralReset

e Without switch, we can simulate a reset,
but we can’t modify integral itself

e o -

f s EVAL

integralReset

f vek=1f isevent e then v else k

Example: IntegralReset

e Without switch, we can simulate a reset,
but we can’t modify integral itself

e o -

f s EVAL

integralReset

f vek=1f isevent e then v else k

 This solution is inelegant and does not
scale

Resetting State

e We want to access the state inside a
signal function

e But what’s inside of an arbitrary signal
function!?

Resetting State

e We want to access the state inside a
signal function

e But what’s inside of an arbitrary signal
function!?

 All state is saved with loop and delay

Resetting State

e We want to access the state inside a
signal function

integral

Resetting State

e We want to access the state inside a
signal function

— integral

e If we could reach in and restart the delay,
then integral would behave as if it just
started

Resettable Delay

 Let’s consider a new delay that can be
reset directly

— -

NoEvent

>]
Yot ¢—>¢ w

resettableDelay 1

* When the event is given, resettableDelay
reverts to its starting state.

Resettable Delay

 Let’s consider a new delay that can be
reset directly

— -

NoEvent

>]
Yot ¢—>¢ w

resettableDelay 1

* When the event is given, resettableDelay
reverts to its starting state.

e Does this scale?

Resettable Delay

 Let’s consider a new delay that can be
reset directly

— -

NoEvent

>]
Yot ¢—>¢ w

resettableDelay 1

* When the event is given, resettableDelay
reverts to its starting state.

e Does this scale? YES

General Settability

* We can take any signal function and
transform it into a settable signal function

==

» The top wires are the standard signals

* The bottom wires are State signals

> The input Event State can be used to change
sf’s internal state

> The output State is used to capture the
current internal state

Settable Laws

sf

NoEvent .
|dentity

2

Settable Laws

const
NoEvent

sf

|dentity

sf

delay NoEvent arr Event

Uniformity

2

o

2

o

Settable Laws

const
NoEvent

|dentity

delay NoEvent arr Event

Uniformity

const
(Event reset)

Default

;

2

2

Example: IntegralReset

* Settability makes the problem trivial

integral
fmap f

f = reset

Example: IntegralReset

* Settability makes the problem trivial

(D

f = reset

* We no longer need the overkill of lifting
a signal function to the signal level

Another example

A STOPPING SWITCH

Example: IntegralVWhen

* A signal function that performs an integral
only under a given condition

Example: IntegralVWhen

* A signal function that performs an integral
only under a given condition

— integral getDelta

f delay 0 ->

integralwhen

f Av b res,., = if b then res,., + Av else res,.,

Example: IntegralVWhen

* A signal function th
only under a give

getDelta

— integral

f delay 0

integralwhen

f Av b res,., = if b then res,., + Av else res,.,

Example: IntegralVWhen

* A signal function that performs an integral
only under a given condition

— integral getDelta

f delay 0 ->

integralwhen

f Av b res,., = if b then res,., + Av else res,.,

Example: IntegralVWhen

* A signal function that performs an integral
only under a given condition

— integral getDelta

f delay 0 >

integralwhen

f Av b res,., = if b then res,., + Av else res,.,

e The integral is calculated regardless of the
condition, but is only used sometimes

Example: IntegralVWhen

* With switch, we have the power to stop
the integral when it is not needed.

integral >

integralwhen

f bv=1f b then > hilEuEl +U g

Example: IntegralVWhen

* With switch, we have the power to stop
the integral when it is not needed.

integral >

integralwhen

f bv=1f b then > hilEuEl >

* Why do we need switch at all?

* Why can’t we just use choice!

Arrow Choice Laws

Extension left (arr f) = arr (left)

Functor lTeft (f >>> g) = left f >>> left ¢

left f >>> arr (right g) =

EXChange arr (right g) >>> left f
Unit f >>> arr Left = arr Left >>> left f
Assoc left (left f) >>> arr assoc, =

arr assoc, >>> left f

Arrow Choice Laws

Extension left (arr f) = arr (left)

Functor lTeft (f >>> g) = left f >>> left ¢

left £ >>> arr (right g) =

EXChange arr (right g) >>> left f
Unit f >>> arr Left = arr Left >>> left f
AssocC left (left f) >>> arr assoc, =

arr assoc, >>> left f

Exchange

Left

> -
Right

Exchange

Left

> -
Right

* Why isn’t this commutative?

Exchange

Left

> -
Right

 Why isn’t this commutative?

> Some arrows have effects

Non-Interference

* We strengthen exchange into
non-interference

0
@ D
Right

e If the input value is a Right value, then the
brogram will behave the same if there is a
eft function after it or not.

Non-Interference

* We strengthen exchange into
non-interference

.
@ D
Right

e If the input value is a Right value, then the
brogram will behave the same if there is a
eft function after it or not.

e The unused branch of a choice is now
guaranteed to not run

Example: IntegralVWhen

* With non-interfering choice, we make
another attempt.

— delay 0 >

integralwhen

* When the condition is true, only integral
is used, and when it is false, only id

Non-Interfering Choice gives us even more

ARROWIZED
RECURSION

Recursion in AFRP

* AFRP typically provides two forms of
recursion

Recursion in AFRP

* AFRP typically provides two forms of
recursion
> Value-level recursion

o Structural Recursion

Value-Level Recursion

e Value-level recursion is achieved with the

loop operator
E)

Value-Level Recursion

e Value-level recursion is achieved with the

loop operator
“Em-

* loop is essentially an extension of fix

Structural Recursion

e Structural recursion is “‘outside’ the

arrow and uses the native conditional
runNTimes :: Int -> (a ~> b) -> ([a] ~> [b])

runNTimes 0 _ = _)@_)

runNTimes n st =
-

Structural Recursion

e Structural recursion is “‘outside’ the

arrow and uses the native conditional

runNTimes :: Int -> (a ~> b) -> ([a] ~> [b])
runNTimes[= s

unrines| "

DU

Structural Recursion

e Structural recursion is “‘outside’ the
arrow and uses the native conditional

N st

v

-

tail runNTimes (n-3) sf

Structural Recursion

e Structural recursion is “‘outside’ the

arrow and uses the native conditional
al] ~> [b])

Structural Recursion

e Structural recursion is “‘outside’ the

arrow and uses the native conditional
runNTimes :: Int -> (a ~> b) -> ([a] ~> [b])

runNTimes 0 _ = _)@_)

runNTimes n st =
-

Structural Recursion

e Structural recursion is “‘outside’ the

arrow and uses the native conditional
runNTimes :: Int -> (a ~> b) -> ([a] ~> [b])

runNTimes 0 _ = —)@—)

runNTimes n st =
-

* Note that the arrow’s structure is static
and independent of the arrowized data

Arrowized Recursion

e Arrowized recursion uses arrow choice

to determine branching

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

p—

&

>

Arrowized Recursion

e Arrowized recursion uses arrow choice
to determing-hranchine

runDynamic ::| L _)®

runDynamic sf——>

[] head —)n
8

head tail

Arrowized Recursion

arrow choice

® AI’I" NI

—

&

cons
tail runDynamic sf

tail

Arrowized Recursion

e Arrowized recursion uses arrow choice

to determine branching

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

p—

&

>

Arrowized Recursion

e Arrowized recursion uses arrow choice

to determine branching

runDynamic :: (a ~> b) -> ([a] ~> [b])
runDynamic sf =

p—

&

ead —— IR "
D>-

* The arrow structure is not technically
static, but it is predictably dynamic

The benefit of static arrows over dynamic arrows

OPTIMIZATION

Causal Commutative Arrows

¢ Liu, Cheng, Hudak [2009] introduced CCA
> CCAs can be heavily optimized

o Performance increases of 10-40 times

Causal Commutative Arrows

¢ Liu, Cheng, Hudak [2009] introduced CCA
> CCAs can be heavily optimized

o Performance increases of 10-40 times

o CCAs allow choice but do not allow switch

Causal Commutative Arrows

e Liu, Cheng, Hudak [2009] introduced CCA
> CCAs can be heavily optimized

o Performance increases of 10-40 times

o CCAs allow choice but do not allow switch

o CCAs can allow Non-interfering choice

> Arrowized recursion is not supported by
default, but it can be added

How CCA Works

e The CCA optimization reduces arrows to
one of two forms:

—0 Oz

* We extend this with the ability to handle
arrowized recursion and call it CCA*

Performance Results

GHC | CCA* + Stream
Chained Adder 1.0 4.06
Chained Integral 1.0 13.27
Dynamic Counters | 1.0 10.91

* 3 sample programs using arrowized
recursion

* |Ox performance increase is comparable
to Liu et al’s results

o Chained Adder is stateless, and thus more
optimized by GHC

Summary

e Settability
> New model for controlling FRP state

> Ability to restart, pause, and duplicate signal
functions while retaining a static structure

Summary

e Settability
> New model for controlling FRP state

> Ability to restart, pause, and duplicate signal
functions while retaining a static structure

* Non-interfering choice
> New forms of expression

o Arrowized Recursion

Summary

e Settability
> New model for controlling FRP state

> Ability to restart, pause, and duplicate signal
functions while retaining a static structure

* Non-interfering choice
> New forms of expression
> Arrowized Recursion

 Switch is only needed for true higher
order expression

Thank you

Thank you

Questions?

