
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

Partial Evaluation for Typechecking

DANIEL WINOGRAD-CORT, University of Pennsylvania

HENGCHU ZHANG, University of Pennsylvania

BENJAMIN C. PIERCE, University of Pennsylvania

We study a small functional language in which programs are partially evaluated before typechecking, achieving some of the

useful e�ects of preprocessors, template systems, and macros in a pleasantly straightforward way. We present the system three

ways—a declarative formulation re�ecting the programmer’s view of its behavior, a nondeterministic algorithm uniformly

capturing a wide range of possible heuristic choices about how an implementation might interleave partial evaluation and

typechecking, and a concrete instance embodying one speci�c set of heuristics—and show that all three produce the same

typings “in the limit.” We also show that the system enjoys standard properties including unicity of types, progress, and

preservation.

CCS Concepts: •�eory of computation→ Lambda calculus; Type theory;

ACM Reference format:
Daniel Winograd-Cort, Hengchu Zhang, and Benjamin C. Pierce. 2017. Partial Evaluation for Typechecking. PACM Progr.
Lang. 1, 1, Article 1 (January 2017), 19 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Contemporary programming languages o�en support a bit of program transformation before typechecking. C++

has templates. Scala and Typed Racket have macros. GHC includes Template Haskell. Early implementations

of Haskell used a preprocessor to desugar arrow notation before typechecking (Paterson 2001). Even C uses a

preprocessor to replace identi�ers by numeric constants. �ese features give programmers the freedom to use

idioms that the typechecker would otherwise not be able to understand.

An even simpler way to achieve a similar e�ect is to replace the program transformation steps found in these

systems with a bit of vanilla partial evaluation. Abstractly, we �rst perform a sequence of reductions (on the

whole program, possibly at deeply nested points in its syntax tree), and then invoke a simple typechecker. If

Γ •̀ t : τ represents the underlying typing judgment and s ⇒∗ t represents a sequence of reductions within s , we
can articulate the programmer’s declarative view of typing in such a system as Γ ⇒̀ s : τ , meaning there exists t
such that s ⇒∗ t and Γ •̀ t : τ .
Consider this implementation of sprintf in a simple functional language with base and function types:

let sprintf fmt =
let rec loop fmt = match fmt with
| "%d" ++ rest => fun (s : string) (x : int) => loop rest (s ++ int2str x)
| "%f" ++ rest => fun (s : string) (x : float) => loop rest (s ++ float2str x)
| "%s" ++ rest => fun (s : string) (x : string) => loop rest (s ++ x)
| c:rest => fun (s : string) => loop rest (s ++ [c])
| "" => fun (s : string) => s

in loop fmt ""

2017. 2475-1421/2017/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1:2 • Daniel Winograd-Cort, Hengchu Zhang, and Benjamin C. Pierce

e ::= () | x | e e | λx :τ . e | µx :τ . e
τ ::= 1 | τ → τ

Fig. 1. Syntax

Val-Unit

value ()

Val-Abs

value λx :τ . e

Ev-App1

e1 7→ e ′
1

e1e2 7→ e ′
1
e2

Ev-App2

value e1 e2 7→ e ′
2

e1e2 7→ e1e
′
2

Ev-Beta

value v

(λx :τ . e)v 7→ [v/x]e

Ev-Fix

µx :τ . e 7→ [µx :τ . e/x]e

Pr-Unit () ⇒ ()

Pr-Var

x ⇒ x

Pr-App

e1 ⇒ t1 e2 ⇒ t2
e1 e2 ⇒ t1 t2

Pr-Abs

e ⇒ t

λx :τ . e ⇒ λx :τ . t

Pr-Beta

e1 ⇒ t1 value e2 e2 ⇒ t2
(λx :τ . e1)e2 ⇒ [t2/x]t1

Pr-Fix1

e ⇒ t

µx :τ . e ⇒ µx :τ . t

Pr-Fix2

e ⇒ t

µx :τ . e ⇒ [µx :τ . t/x]t

Fig. 2. Values Fig. 3. Call-By-Value Reduction Fig. 4. CBV Parallel Reduction

Here, the inner function loop takes a format string and returns a function whose arguments match the ex-

pected types of values to be forma�ed. For example, the expression sprintf "%s=%d" partially evaluates to

fun (s : string) (x : int) => s ++ "=" ++ int2str x, which is typeable using just simple types.

We de�ne and study a simple system embodying this idea of partial evaluation for typechecking, which we call

PETS: the Partial Evaluation Typing System. �e core language is a call-by-value simply typed lambda-calculus

extended with recursion (which makes the system much more interesting algorithmically because it means that

evaluating terms to normal form before typechecking is not an option). Our main contributions are:

• We propose a straightforward declarative presentation—the programmer’s view of PETS—in terms of

parallel reduction (§2).

• We present a generalized algorithm for evaluation and typechecking that uniformly describes a wide range

of speci�c implementation possibilities and prove that it is equivalent to the declarative presentation (§3).

• We establish fundamental properties of PETS, including unicity of typing, progress, and preservation (§4).

• We de�ne a simple deterministic instance of the generalized algorithmic presentation and show that it is

complete “in the limit” as well as sound (§5).

§6 illustrates programming in PETS with some additional examples, and §7 and 8 discuss related and future work.

Proofs omi�ed from this short version can be found in the full version.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PETS • 1:3

2 DECLARATIVE PRESENTATION
�e principle of PETS is that a potentially untypeable term s is allowed to parallel reduce for some number of

steps. If this reduction yields a term t that is typeable under the standard simply typed lambda calculus (STLC),

then the original term is typeable under PETS. We begin with some basic de�nitions of typing, deterministic

call-by-value reduction, and parallel reduction.

�e syntax of terms is given in Figure 1. �e standard simple typing relation, sans partial evaluation, is wri�en

Γ •̀ e : τ . (�e de�nition is elided.) �e deterministic step relation (Figures 2 and 3) is the standard small-step,

call-by-value one, which we refer to as CBV reduction later. Two important details about CBV reduction are that

variables are not values, and it can reduce open terms. For example, the term (λx :1.y) () steps to y.
We conjecture that the exact choice of evaluation strategy does not a�ect our main results signi�cantly; indeed

we have veri�ed that most of the following holds for call-by-name reduction as well (with slightly di�erent

proofs). We choose call-by-value due to its ubiquity and straightforward interaction with computational e�ects.

Figure 4 shows a standard, call-by-value parallel reduction relation (Church and Rosser 1936). In addition to

the beta and �xpoint reductions of plain CBV reduction, parallel reduction can perform multiple reductions in

one pass (as in the Pr-App and Pr-Beta rules) as well as act under binders (as in the Pr-Abs and Pr-Fix1 rules).

Essentially, parallel reduction is a technical tool that allows any subset of the current (CBV) redexes in a term to

be contracted all at once.

Lemma 2.1. If t 7→ s , then t ⇒ s .

We write t ⇒k s to indicate that t reduces to s in k steps of parallel reduction. (�is means the same as “t
parallel-reduces to s in at most k steps,” since parallel reduction is re�exive.)

De�nition 2.2 (PETS). If e ⇒∗ e ′ and Γ •̀ e ′ : τ , then e has the PETS type τ , wri�en Γ ⇒̀ e : τ .

Parallel reduction is con�uent: if multiple paths of evaluation can be taken, they can always be brought back

together.

Lemma 2.3 (Confluence). If e ⇒∗ t1 and e ⇒∗ t2, then there exists t such that t1 ⇒∗ t and t2 ⇒∗ t .

Because call-by-value reduction preserves observational equivalence between terms (Crary 2009), and observa-

tional equivalence is a congruence, call-by-value parallel reductions naturally inherit the property of preserving

observational equivalence as well. �at is, if a term s is given a type τ by partially evaluating it to a term t that
directly has type τ , we also know that s is “observably of type τ .”
Since parallel reduction is nondeterministic, a given term may have many di�erent typing derivations. One

might therefore worry that some of these could be inconsistent—i.e., that it might be possible to show both

Γ ⇒̀ e : τ and Γ ⇒̀ e : τ ′, where τ , τ ′. In §4, we prove this cannot happen because PETS has the Unicity

(�eorem 4.3) property.

3 GENERALIZED ALGORITHMIC PRESENTATION
We next present an alternative de�nition of PETS that replaces parallel-reduction-before-typing with interleaved-

typing-and-CBV-steps. �is system can be thought of as a uni�ed nondeterministic presentation embodying all

possible deterministic strategies for interleaving typechecking with evaluation. We refer to this as the Generalized

Algorithmic (GA) system. �e main result in this section is that GA-PETS is equivalent to the presentation of

PETS based on parallel reduction.

GA is represented by a set of typing rules, shown in Figure 5. In addition to providing a type, the judgments

express the evolution of one term to another. �us, a typing judgment Γ ` t ;k s : τ can be read as, “With the

context Γ, the term t evolves to s with type τ and a depth of at most k .” �e context Γ maps variables to types as

usual, and the depth is a positive integer that bounds the depth of the derivation tree. (Requiring the depth to be

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1:4 • Daniel Winograd-Cort, Hengchu Zhang, and Benjamin C. Pierce

Ty-Unit

k > 0

Γ ` ();k () : 1
Ty-Var

k > 0

Γ,x : τ ` x ;k x : τ

Ty-App

Γ ` t1 ;k s1 : τ2 → τ Γ ` t2 ;k s2 : τ2
Γ ` t1 t2 ;k+1 s1 s2 : τ

Ty-Abs

Γ,x : τ2 ` t ;k s : τ

Γ ` λx :τ . t ;k+1 λx :τ . s : τ2 → τ

Ty-Fix

Γ,x : τ ` t ;k s : τ

Γ ` µx :τ . t ;k+1 µx :τ . s : τ
Ty-Eval

e 7→ t Γ ` t ;k e ′ : τ

Γ ` e ;k+1 e ′ : τ

Fig. 5. Typing Rules

∅,x :1 ` x ;1 x : 1

∅ ` λx :1. x ;2 λx :1. x : 1→ 1

∅ ` ();1 () : 1

∅ ` (λx :1. x) ();3 (λx :1. x) () : 1
(λx :1. x) () 7→ () ∅ ` ();1 () : 1

∅ ` (λx :1. x) ();2 () : 1

Fig. 6. Two di�erent ways to derive a type for (λx :1. x) ()

positive, as opposed to nonnegative, makes some proofs and de�nitions simpler below.) When the exact value of

the depth bound is irrelevant, we sometimes elide it.

Most of the rules in Figure 5 are unsurprising. For instance, Ty-App says that, if t1 evolves to s1 with a function

type and t2 evolves to s2 with the type of the argument to that function, then t1 t2 evolves to s1 s2 with the type

of the result (and the depth of the derivation tree is one greater). �e last rule, Ty-Eval, is the interesting one. It

says that, if e evaluates to t and t evolves to e ′ with type τ , then e also evolves to e ′ with type τ .
�ere is a simple weakening lemma for the depth:

Lemma 3.1 (Depth weakening). If Γ ` s ;k t : τ , then for all k ′ > k , it is also true that Γ ` s ;k ′ t : τ .

Consider the term (λx :1. x) (). With GA, this term has two distinct typing derivations, since both the Ty-App

and Ty-Eval rules apply at the top level—one corresponding to reducing �rst and the other to typechecking

without reduction (Figure 6).

Relation to STLC. Before proving that evolutions are equivalent to parallel reduction followed by simple typing,

it is worth formally recognizing the relationship between this system and simple typing itself. Speci�cally,

evolutions without the Ty-Eval rule are equivalent to simple typing. �erefore, the proof of a simple type for a

term can be used to show its type in PETS. �at is, the judgment Γ •̀ e : τ implies Γ ` e ; e : τ by using the

same derivation tree. �e other direction is only true of the evolved term:

Lemma 3.2 (Typing without partial evaluation). If Γ ` t ; s : τ , then Γ •̀ s : τ .

To prove that our two de�nitions are equivalent, we will show that a sequence of parallel reductions can

be extracted from an evolution and that parallel reduction can be integrated into an evolution. We begin with

extraction:

Lemma 3.3 (Extraction). If Γ ` t ;k s : τ , then t ⇒k s .

Using extraction along with Lemma 3.2 yields a sequence of parallel reductions followed by a simple typing, just

as required. For the other direction, we must show that parallel reduction can be “embedded” into an evolution.

�at is, if a term s , in 0 or more parallel steps, becomes t , and Γ •̀ t : τ , then Γ ` s ; t : τ . Proving this statement

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PETS • 1:5

requires a few lemmas about parallel reductions as well as its relation to CBV reductions. First, we state two

properties about parallel reductions.

Lemma 3.4 (Parallel reduction preserves values). If value e and e ⇒ t , then value t .

Lemma 3.5 (Substitution preserves parallel reduction). If e ⇒ e ′ and t ⇒ t ′, then [t/x]e ⇒ [t ′/x]e ′.

Next, we state a few properties about the interaction between parallel reductions and CBV reductions. To

begin, we show that if a parallel step yields a particular syntactic form, then multiple CBV steps (which we write

7→∗) will yield that form too. Precisely, for each syntactic form, we show that if s parallel reduces to a term t of
that form, then s will eventually CBV reduce to a related term t̂ of the same syntactic form, and t̂ and t are related
by another parallel reduction that doesn’t involve a beta reduction at the top level. We use this to additionally

show that if s parallel steps to a term t , and t further CBV steps to e , then s will eventually CBV reduce to a term

t̂ such that t̂ parallel steps to e . Lemma 3.7 formalizes this second fact, and it is the critical lemma that helps

prove embedding.

Note that in the proofs of Parallel Forms (Lemma 3.6) and Lemma 3.7, only parallel and CBV steps are considered.

Since type annotations do not a�ect how a term steps in PETS, we omit the type annotations in these proofs for

cleaner syntax.

Lemma 3.6 (Parallel Forms).

• If s ⇒ x , then s 7→∗ x .
• If s ⇒ (), then s 7→∗ ().
• If s ⇒ λx . t , then there is a term t̂ such that s 7→∗ λx . t̂ and t̂ ⇒ t .
• If s ⇒ t1t2, then there are terms t̂1 and t̂2 such that s 7→∗ t̂1t̂2 and t̂1 ⇒ t1 and t̂2 ⇒ t2.
• If s ⇒ µx . t , then there exists t̂ such that s 7→∗ µx . t̂ and t̂ ⇒ t .

�e proofs of these statements all follow a similar pa�ern. We present just the abstraction and application

cases.

Statement. If s ⇒ λx . t , then there is a term t̂ such that s 7→∗ λx . t̂ and t̂ ⇒ t .

Proof. By induction.

• Pr-Unit, Pr-Var, Pr-App, Pr-Fix1: �ese cases are impossible.

• Pr-Beta: In this case, we are given that s = (λz. s11)s2 with s11 ⇒ s11 and s2 ⇒ s2, and we know

[s2/z]s11 = λx . t . Furthermore, s2 must be a value and s11 must be either a variable or another abstraction.

– If s11 = y , z, then [s2/z]y = y. But we already know that [s2/z]s11 = λx . t , a contradiction.
– If s11 = z, then [s2/z]s11 = s2 = λx . t . Since s2 ⇒ s2, the induction hypothesis yields reductions

s2 7→∗ λx . t̂ and t̂ ⇒ t . In fact, since s2 is a value, s2 = λx . t̂ , so s = (λz. s11)(λx . t̂). Also, since
s11 ⇒ s11 = z, the variable case of Parallel Forms (Lemma 3.6) tells us that s11 7→∗ z. Pu�ing all of
this together,

s = (λz. s11)(λx . t̂)
7→ [λx . t̂/z]s11
7→∗ [λx . t̂/z]z
= λx . t̂

⇒ λx . t .

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1:6 • Daniel Winograd-Cort, Hengchu Zhang, and Benjamin C. Pierce

– If s11 = λy. s12, then

[s2/z]s11 = [s2/z]λy. s12
= λy. [s2/z]s12
= λx . t .

So it must be that y = x and t = [s2/z]s12. Next, recall that s11 ⇒ s11. �e induction hypothesis

yields s11 7→∗ λy. ŝ12 and ŝ12 ⇒ s12. �us,

s = (λz. s11)s2
7→ [s2/z]s11
7→∗ [s2/z]λy. ŝ12
= λy. [s2/z]ŝ12
⇒ λy. [s2/z]s12
= λx . t .

Le�ing t̂ = [s2/z]ŝ12 concludes this case.
• Pr-Fix2: Similar. �

Statement. If s ⇒ t1t2, then there are terms t̂1 and t̂2 such that s 7→∗ t̂1t̂2 and t̂1 ⇒ t1 and t̂2 ⇒ t2.

Proof. By induction.

• Pr-Unit, Pr-Var, Pr-Abs, Pr-Fix1: �ese cases are impossible.

• Pr-App: In this case, we are given that s = s1s2, and we know that s1 ⇒ t1 and s2 ⇒ t2. In this case, t̂1
and t̂2 are just t1 and t2 themselves.

• Pr-Beta: In this case, we are given that s = (λx . s11)s2, where s2 is a value, and we know that s11 ⇒ s11
and s2 ⇒ s2 and that [s2/x]s11 = t1t2. Furthermore, s11 must be either a variable or an application.

– If s11 = y , x , then [s2/x]y = y. But we already know that [s2/x]y = t1t2, a contradiction.
– If s11 = x , then [s2/x]s11 = s2 = t1t2. Furthermore, since s2 is a value, s2 must also be a value and

cannot be an application, a contradiction.

– If s11 = sLsR , then

[s2/x]s11 = [s2/x](sLsR)
= ([s2/x]sL)([s2/x]sR)
= t1t2.

In turn, this means that t1 = [s2/x]sL and t2 = [s2/x]sR by matching up the application. Since

s11 ⇒ s11 = sLsR , the induction hypothesis yields ŝL and ŝR such that s11 7→∗ ŝLŝR where both

ŝL ⇒ sL and ŝR ⇒ sR . �us,

[s2/x]s11 7→∗ [s2/x]ŝLŝR
= [s2/x]ŝL [s2/x]ŝR
⇒ [s2/x]sL [s2/x]sR
= t1t2.

Le�ing t̂1 = [s2/x]ŝL and t̂2 = [s2/x]ŝR concludes this case.

• Pr-Fix2: Similar. �

We next turn our a�ention to the second useful lemma that relates parallel reductions to CBV reductions.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PETS • 1:7

Lemma 3.7 (Flipping⇒ and 7→). If s ⇒ t 7→ e , then s 7→∗ t̂ ⇒ e for some t̂ .

Proof. By induction on the CBV step relation.

• Ev-App1: �e assumptions are t = t1t2, with t1 7→ t ′
1
and e = t ′

1
t2. By examination of the parallel reduction

relation, only the Pr-App, Pr-Beta and Pr-Fix2 cases apply.

– Pr-App: In this case, the assumptions are s = s1s2, and s1 ⇒ t1, and s2 ⇒ t2. Applying the induction

hypothesis to s1 ⇒ t1 7→ t ′
1
yields some t̂1 such that s1 7→∗ t̂1 ⇒ t ′

1
. By congruence of call-by-value

reduction, s = s1s2 7→∗ t̂1t2 ⇒ t ′
1
t2 = e .

– Pr-Beta: In this case, the assumptions are s = (λx . s1)s2, and s ⇒ t = t1t2. Since t is an application,

by Parallel Forms (Lemma 3.6) for applications, there are t̂1 and t̂2 such that s 7→∗ t̂1t̂2 and t̂1 ⇒ t1
and t̂2 ⇒ t2. Applying the induction hypothesis to t̂1 ⇒ t1 7→ t ′

1
yields a t̂ ′

1
such that t̂1 7→∗ t̂ ′1 ⇒ t ′

1
.

By congruence of call-by-value reduction again, s 7→∗ t̂1t̂2 7→∗ t̂ ′1t̂2 ⇒ t ′
1
t2 = e .

– Pr-Fix2: �e assumptions are s = µx . s1, and s ⇒ t = t1t2. Since t is an application, by Parallel Forms

(Lemma 3.6) for applications again, there exist t̂1 and t̂2 such that s 7→∗ t̂1t̂2. �e rest is identical to

the case above.

• Ev-App2: �e assumptions are t = t1t2, and t2 7→ t ′
2
and e = t1t

′
2
and value t1. Again we proceed by case

analysis on the parallel reduction.

– Pr-App: Similar to the Pr-App case under Ev-App1, except the induction hypothesis now applies to

the reduction sequence on t2.
– Pr-Beta: In this case, the assumptions are s = (λx . s1)s2 and s ⇒ t = t1t2. Since t is an application,

by Parallel Forms (Lemma 3.6) for applications, there are t̂1 and t̂2 such that s 7→∗ t̂1t̂2 and t̂1 ⇒ t1
and t̂2 ⇒ t2. Applying the induction hypothesis to t̂2 ⇒ t2 7→ t ′

2
yields a t̂ ′

2
such that t̂2 7→∗ t̂ ′2 ⇒ t ′

2
.

�e rest is identical to the Pr-Beta case under Ev-App1.

– Pr-Fix2: �is case is similar to Pr-Beta.

• Ev-Beta: �e assumptions are t = (λx . t1)t2 and value t2, and e = [t2/x]t1. Since t is an application, by

Parallel Forms (Lemma 3.6) for applications, there are t̂1 and t̂2 such that s 7→∗ t̂1t̂2, with t̂1 ⇒ λx . t1 and
t̂2 ⇒ t2.

From the reduction t̂1 ⇒ λx . t1, by Parallel Forms (Lemma 3.6) for abstractions, there is t̂11 such that

t̂1 7→∗ λx . t̂11 and t̂11 ⇒ t1.
Since t2 is a value, it must be either unit or an abstraction. If t2 = (), then t̂2 ⇒ (), and, by Parallel

Forms (Lemma 3.6) for unit values, t̂2 reduces to (). On the other hand, if t2 is an abstraction λx . t ′
2
,

then by Parallel Forms (Lemma 3.6) for abstractions, there exists t̂ ′
2
such that t2 7→∗ λx . t̂ ′2 and t̂ ′2 ⇒ t ′

2
,

which means t2 7→∗ λx . t̂ ′2 ⇒ λx . t ′
2
. In either case, t̂2 7→∗ v2 where v2 is a value, and v2 ⇒ t2. By

congruence of call-by-value reduction, s 7→∗ (λx . t̂11)t̂2 7→∗ (λx . t̂11)v2 7→ [v2/x]t̂11 ⇒ [t2/x]t1 = e .
Se�ing t̂ = [v2/x]t̂11 concludes this case.
• Ev-Fix: �e assumptions are t = µx . t1 and e = [µx . t1/x]t1. By Parallel Forms (Lemma 3.6) for �xpoints,

there is some t̂1 such that s 7→∗ µx . t̂1 and t̂1 ⇒ t1. �e next reduction will be µx . t̂1 7→ [µx . t̂1/x]t̂1, and,
since t̂1 ⇒ t1, by Lemma 3.5, s 7→∗ µx . t̂1 7→ [µx . t̂1/x]t̂1 ⇒ [µx . t1/x]t1 = e . Se�ing t̂ = [µx . t̂1/x]t̂1
concludes the case. �

With these facts established, we are ready to show how to embed a single parallel step into a GA typing

judgment.

Lemma 3.8 (Embedding). If s ⇒ t and Γ ` t ; u : τ , then Γ ` s ; u : τ .

Proof. By induction on the typing judgment.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1:8 • Daniel Winograd-Cort, Hengchu Zhang, and Benjamin C. Pierce

• Ty-Unit and Ty-Var: �ese two cases are similar and we present the case for Ty-Unit. In this case,

t = u = (), and s ⇒ (). By Parallel Forms (Lemma 3.6) for unit values, the reduction sequence s 7→∗ ()
holds. Hence, simply apply multiple Ty-Eval rule to reduce s to () and conclude.

• Ty-App: �e assumptions are t = t1t2 and u = u1u2 such that Γ ` t1 ; u1 : τ2 → τ and Γ ` t2 ; u2 : τ2.
Recall that s ⇒ t1t2, by Parallel Forms (Lemma 3.6) for applications, there exist t̂1 and t̂2 such that

s 7→∗ t̂1t̂2 and t̂1 ⇒ t1 and t̂2 ⇒ t2. By the induction hypothesis, the judgments Γ ` t̂1 ; u1 : τ2 → τ and

Γ ` t̂2 ; u2 : τ2 hold.
By Ty-App, the typing judgment Γ ` t̂1t̂2 ; u1u2 : τ holds. Remember that s 7→∗ t̂1t̂2, hence apply

multiple Ty-Eval to conclude.

• Ty-Abs and Ty-Fix: �ese cases are similar and we present the case for Ty-Abs only.

�e assumptions are t = λx :τ2. t1 and u = λx :τ2.u1 and Γ,x : τ2 ` t1 ; u1 : τ1 where τ = τ2 → τ1.
Recall that s ⇒ λx :τ2. t1, by Parallel Forms (Lemma 3.6) for abstractions, there exists t̂1 such that

s 7→∗ λx :τ2. t̂1 and t̂1 ⇒ t1. So by induction hypothesis, the judgment Γ,x : τ2 ` t̂1 ; u1 : τ1 holds, which
leads to Γ ` λx :τ2. t̂1 ; λx :τ2.u1 : τ2 → τ1 by Ty-Abs.

Remember that s 7→∗ λx :τ2. t̂1, so applying multiple Ty-Eval rule again concludes this case.

• Ty-Eval: In this case, the assumption says t 7→ t ′ and Γ ` t ′ ; u : τ .
Recall that s ⇒ t 7→ t ′, by Lemma 3.7, there is t̂ such that s 7→∗ t̂ ⇒ t ′. By the induction hypothesis,

the judgment Γ ` t̂ ; u : τ holds. Since s 7→∗ t̂ , applying multiple Ty-Eval rule concludes. �

Embedding in a single parallel step leads to embedding in 0 or more parallel steps.

Lemma 3.9 (General Embedding). If s ⇒k t and Γ ` t ; u : τ , then Γ ` s ; u : τ .

To embed a sequence of parallel steps followed by simple typechecking into an evolution amounts to proving

this lemma.

Lemma 3.10 (Simple Embedding). If s ⇒k t and Γ •̀ t : τ , then Γ ` s ; t : τ .

Proof. General Embedding can absorb arbitrary sequences of parallel steps into a typing judgment of the

form in Figure 5. Recall that Γ •̀ t : τ implies Γ ` t ; t : τ , which, together with General Embedding proves

Lemma 3.10 directly. �

�us, the parallel reduction form of PETS and the evolution form are equivalent.

4 PROPERTIES OF PETS
Having demonstrated that the declarative de�nition and the GA de�nition of PETS are equivalent, we investigate

the properties of PETS that make it a proper type system in this section.

4.1 Semantic Type
�e power of PETS comes from its ability to perform targeted evaluation to transform untypeable terms to

typeable ones. If Γ ` t ; s : τ , observational equivalence tells us that even if t is not simply typeable, t and s
semantically have the same type τ .
�e key realization is that “closing a type under evolution-expansion” (which is what PETS essentially does)

does not change its meaning: even if t is not typeable with simple types, if it evolves to a term s with type τ , then
it is just as good as s behaviorally. In particular, t can safely be substituted for a variable of type τ .

Lemma 4.1 (Substitution). If Γ,x : τ2 ` e ;k1 e
′
: τ and Γ ` t ;k2 t

′
: τ2, then Γ ` [t/x]e ;k1+k2 [t ′/x]e ′ : τ .

Proof. �e proof proceeds by induction over the typing judgment on e (generalizing over Γ and the type of

the free variable). We examine each case in turn.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PETS • 1:9

• Ty-Unit: We know that e = e ′ = (), which means substitution has no e�ect, and we can conclude with

weakening.

• Ty-Var: We know that e = e ′ = y is a variable. If y , x , then the substitution does nothing. Otherwise,

[t/x]x = t and [t ′/x]x = t ′. Because we know Γ ` t ;k2 t
′
: τ2 from the assumption, then Γ ` [t/x]e ;k2

[t ′/x]e ′ : τ , and we can conclude with weakening.

• Ty-App: We know that e = e1 e2 and e ′ = e ′
1
e ′
2
, where Γ,x : τ2 ` e1 ;k1−1 e

′
1
: τ3 → τ and Γ,x : τ2 `

e2 ;k1−1 e
′
2
: τ3. By the induction hypothesis, we further have that Γ ` [t/x]e1 ;k1+k2−1 e

′
1
: τ3 → τ and

Γ ` [t/x]e2 ;k1+k2−1 [t ′/x]e ′2 : τ3. Using these two results with Ty-App, we reach the correct conclusion.

• Ty-Abs: We know that e = λy:τ3. e1 and e ′ = λy:τ3. e
′
1
, where Γ,y : τ3,x : τ2 ` e1 ;k1−1 e ′

1
: τ4 and

τ = τ3 → τ4. We can apply the induction hypothesis here with the context Γ,y : τ3 yielding the result

Γ,y : τ3 ` [t/x]e1 ;k1+k2−1 [t ′/x]e ′1 : τ4.

From this, using the Ty-Abs rule gives us the correct conclusion.

• Ty-Fix: �is case is identical to Ty-Abs.

• Ty-Eval: We know that e 7→ e1, and Γ,x : τ2 ` e1 ;k1−1 e
′
: τ . By the induction hypothesis, we further

know that Γ ` [t/x]e1 ;k1+k2−1 [t ′/x]e ′ : τ . Also, because e 7→ e1, clearly [t/x]e 7→ [t/x]e1, so we can

use the Ty-Eval rule to get Γ ` [t/x]e ;k1+k2 [t ′/x]e ′ : τ as required. �

4.2 Unicity
�e previous property described what it means for a term to be typeable under PETS; here, we show that PETS is

consistent. In other words, we prove that no ma�er how a term is typed, the type will always be the same, or in

other words, that PETS is unitary. For declarative PETS, this means that for a given term e , if e is typeable a�er a
sequence of parallel reductions, then a�er any sequence of parallel reductions such that the resulting term is

typeable, it will have the same type. For GA-PETS, it means that any typing derivation tree will result in the

same type. We will prove this using GA-PETS.

Before we present the proof of unicity, we note that parallel reduction preserves simple types, the proof of

which can be found in the extended version of this paper.

Lemma 4.2 (PR-Preservation). If Γ •̀ e : τ and e ⇒ e ′, then Γ •̀ e ′ : τ .

Theorem 4.3 (Unicity). If Γ ` e ;m e1 : τ1 and Γ ` e ;n e2 : τ2, then τ1 = τ2.

Proof. Using Extraction (Lemma 3.3), parallel reduction sequences can be extracted from the typing judgments

as e ⇒m e1 and e ⇒n e2. By con�uence of parallel reduction (Lemma 2.3), there exists t such that e1 ⇒∗ t and
e2 ⇒∗ t . Because parallel reduction preserves simple types (Lemma 4.2), and because the judgments imply that

Γ •̀ e1 : τ1 and Γ •̀ e2 : τ2, the simple type judgments Γ •̀ t : τ1 and Γ •̀ t : τ2 hold. Finally, since simple typing

obeys unicity, the proof concludes τ1 = τ2. �

4.3 Progress
PETS has the progress property with CBV reductions. Of course, progress makes li�le sense in the declarative

model because parallel reduction can always step, but we can prove a progress property for GA-PETS. It relies on

the following simple canonical forms lemma.

Lemma 4.4. If ∅ ` e ; t : τ1 → τ2 and value e , then e = λx :τ1. e1.

Theorem 4.5 (Progress). If ∅ ` e ; t : τ , then either value e or there exists e ′ such that e 7→ e ′.

Proof. Standard. �

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1:10 • Daniel Winograd-Cort, Hengchu Zhang, and Benjamin C. Pierce

4.4 Preservation
Preservation is applicable to both declarative PETS and GA-PETS; we prove it for GA-PETS.

Theorem 4.6 (Preservation). If ∅ ` e ; t : τ and e 7→ e ′, then there exists some t ′ such that ∅ ` e ′ ; t ′ : τ .

Proof. By induction on the typing judgment.

• Ty-Unit,Ty-Var, Ty-Abs: �ese are impossible.

• Ty-App: We are given that e = e1e2 and t = t1t2 along with the typing judgments ∅ ` e1 ; t1 : τ2 → τ
and ∅ ` e2 ; t2 : τ2. We continue by case analysis on e 7→ e ′.
– Ev-App1: We know that e1 7→ e ′

1
and e ′ = e ′

1
e2. By the induction hypothesis, we have ∅ ` e ′

1
; t ′

1
:

τ2 → τ , which, with Ty-App, lets us construct ∅ ` e ′
1
e2 ; t ′

1
t2 : τ as required.

– Ev-App2: We know that e2 7→ e ′
2
and e ′ = e1e

′
2
. By the induction hypothesis, we have∅ ` e ′

2
; t ′

2
: τ2,

which, with Ty-App, lets us construct ∅ ` e1e ′2 ; t1t
′
2
: τ as required.

– Ev-Beta: We know that e1 = λx : τ2. e11 and e 7→ [e2/x]e11. Furthermore, we know that the typing

judgment that states ∅ ` e1 ; t1 : τ2 → τ must use the Ty-Abs rule, meaning that there is some

t11 such that ∅,x : τ2 ` e11 ; t11 : τ . Using Substitution (Lemma 4.1), we can conclude with

∅ ` [e2/x]e11 ; [t2/x]t11 : τ .
• Ty-Fix: Similar to the Ev-Beta case of Ty-App.

• Ty-Eval: Trivial. �

5 A DETERMINISTIC PETS ALGORITHM
Both the nondeterminism and undecidability inherent to PETS seem to pose problems toward building a viable

implementation of the system. However, GA-PETS, with its reliance only on CBV reductions instead of parallel

reductions, can be practically constructed. Furthermore, the nondeterminism and undecidability can both be

overcome if we limit how much evaluation is performed and choose a suitable strategy of when to evaluate.

With the guarantee of unicity, any valid typing derivation is as correct as any other; therefore, as long as an

implementation can �nd a typing derivation, it can succeed. �is reduces the problem of nondeterminism to

searching through a tree that could have multiple correct paths.

Of course, because an evolution may perform an arbitrary number of CBV steps, the tree of derivations to

search through is unbounded. �is is why we annotated the typing derivations with a tree depth—so that we can

write an algorithm such that as long as a derivation exists within a certain depth bound, the algorithm will �nd it.

�is leads us to two simple properties that any implementation of PETS should obey. We assume the imple-

mentation is a function named alg of two arguments, the depth bound and the term, and it either produces None,
indicating type failure, or Some(t ,τ), indicating success with the evolved term t and type τ .

Property (Soundness). If alg k e = Some(t ,τ), then ∅ ` e ;k t : τ .

Property (Depth-Complete). If ∅ ` e ;k t : τ , then there exists t ′ such that alg k e = Some(t ′,τ).

5.1 “Standard Type”-Leaning DFS
We begin by considering a bounded depth-�rst search through the space of possible derivations with a preference

toward the standard typechecking rules (i.e., against partial evaluation). Intuitively, this design comes from the

idea that a typical program will likely be “mostly” typeable and that perhaps partial evaluation is only necessary

in speci�c, localized fragments of the code. Used in conjunction with iterative deepening, this approach can be

easily expanded to �nd any derivation tree if it exists. We show an implementation in Figure 7; soundness is

obvious by inspection, and depth-completeness is proven below.

Theorem 5.1 (pets dfs is sound). If pets dfs k e = Some(t ,τ), then ∅ ` e ;k t : τ .

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PETS • 1:11

let pets_dfs (k : nat) (e : exp) : (exp * typ) option =
pets_dfs' empty_env k e

let rec pets_dfs' (env : env) (k : nat) (e : exp) : (exp * typ) option =
do k' <- pred_option k;

match e with
| exp_var x => do T <- lookup env x;

return (e, T)
| exp_num _ => return (e, typ_num)
| exp_bool _ => return (e, typ_bool)
| exp_abs Tx body => do (body', Tbody) <- pets_dfs' (Tx::env) k' body;

return (exp_abs Tx body', typ_arr Tx Tbody)
| exp_app e1 e2 => begin match pets_dfs' env k' e1, pets_dfs' env k' e2 with

| Some (e1', typ_arr Tx Tr), Some (e2', Tx') =>
if Tx == Tx' then return (exp_app e1' e2', Tr)

else do e' <- eval e; pets_dfs' env k' e'
| _, _ => do e' <- eval e; pets_dfs' env k' e'
end

| exp_fix Tx body => begin match pets_dfs' (Tx::env) k' body with
| Some (body', Tbody) =>

if Tx == Tbody then return (exp_fix Tx body', Tx)
else do e' <- eval e; pets_dfs' env k' e'

| _ => do e' <- eval e; pets_dfs' env k' e'
end

Fig. 7. DFS PETS Algorithm favoring standard typing

Theorem 5.2 (pets dfs is depth-complete). If ∅ ` e ;k t : τ , then there exists t ′ such that pets dfs k e =
Some(t ′,τ).

Proof. First, rewrite pets dfs, then generalize over an environment Γ and proceed by induction on k . Let G
refer to the typing judgment. �e proof follows by case analysis on e .

• If e = () or e = x , then we are done trivially.

• If e = λx :τ2. e1, and τ = τ2 → τ1, then G must be an instance of Ty-Abs, and we can use the induction

hypothesis on the judgment typing the abstraction’s body to conclude that pets dfs′ will succeed.
• If e = e1 e2, then G may be an instance of either Ty-App or Ty-Eval. We consider each subcase.

– Ty-App: By the induction hypothesis, the recursive calls pets dfs′ Γ (m − 1) e1 and pets dfs′ Γ (m −
1) e2 will both be Some values with matching types to the typing judgment. A simple analysis of

pets dfs′ reveals that, under these conditions, it too will return a Some value with the right type.

– Ty-Eval: In this case, we will consider the possible results to the calls pets dfs′ Γ (m − 1) e1 and
pets dfs′ Γ (m − 1) e2. If either of them are None, then the returned value will be pets dfs′ Γ (m −
1) (eval e), and by the induction hypothesis, we are done. If both terms are Some values, then, the
result will be Some(t ′,τ ′), and because pets dfs′ is sound (�eorem 5.1), we know Γ ` e ;m t ′ : τ ′.
Finally, by Unicity (�eorem 4.3), we know τ = τ ′ as required.

• If e = µx :τ . e1, then G may be an instance of either Ty-Fix or Ty-Eval. We consider each subcase.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1:12 • Daniel Winograd-Cort, Hengchu Zhang, and Benjamin C. Pierce

– Ty-Fix: By the induction hypothesis, the recursive call pets dfs′ (Γ,x : τ) (m − 1) e1 will be a Some
value with the right type, as required.

– Ty-Eval: Consider the possible results of pets dfs′ (Γ,x : τ) (m−1) e1. If it is None, then the returned

value will be pets dfs′ Γ (m − 1) (eval e), and by the induction hypothesis, we can conclude. If it is

Some(t ′,τ ′), then because pets dfs′ is sound (�eorem 5.1), we know Γ ` e ;m t ′ : τ ′. Finally, by
Unicity (�eorem 4.3), we know τ = τ ′, as required. �

Remark. �ere seems to be a chance for optimization in the de�nition of pets dfs′: during the exp_app case, if

the argument and function types don’t match, perhaps the algorithm should just return None. However, this
would be wrong. �e call-by-value evaluation arrow that we use does not check the types before performing

beta reduction, which means that it may indeed step even if the function and argument types don’t match.

It is possible that a di�erent evaluation arrow could be used that does only reduce if the types match. (�e proofs

of the previous section would likely still be valid up to some slight modi�cations.) Even so, the implementation

of pets dfs′ would still be correct; when the exp_app case falls back to evaluation, the evaluator would simply

fail to step, and None would be returned anyway.

By this logic, our implementation of pets dfs is actually agnostic on the choice of evaluation arrow. As long as

the theory can be proven sound with the chosen evaluation arrow, this implementation will remain sound and

depth-complete.

Performance. As mentioned earlier, the pets dfs function is optimized for programs that are either typeable

or “mostly” typeable. Indeed, if a program has a typing derivation that does not use partial evaluation, pets dfs
will �nd it immediately, meaning it will perform just as well as type systems that are not enhanced by partial

evaluation. Only when regular typing fails will it resort to partial evaluation.

So, what does “mostly” typeable mean? �is is not a technical de�nition so much as a qualitative one, but

it means that any necessary evaluation will only need to be performed near the leaves of the derivation tree.

In practice, this corresponds to the case where most of the program typechecks normally, but there may be

di�cult sub-terms that need a li�le bit of partial evaluation to be typed. For instance, consider a long and complex

program in which, at one point deep in its structure, the following term is used:
1

if true then 1 else false

Furthermore, assume that the program would be simply typeable if only this term had a numeric type. If pets dfs
were used to typecheck this program, it would proceed through most of the derivation without doing any partial

evaluation, but when it fails to �nd a type for this subterm, it will immediately perform one step of evaluation on

the if term, and then the whole program will be easily typeable.

On the other hand, pets dfs will take a long time trying to �nd the type of a program that requires partial

evaluation near the root of the tree. For example, it may exhaust just about every incorrect derivation tree before

�nding the correct one in the following example:

(λx .()) (λz:Bool. (λy:Bool. if y then 1 else 2) (µx :Int. x))
As pets dfs builds its derivation tree of this term, everything will progress normally at �rst. Recursive calls will

deduce that (λy:Bool. if y then 1 else 2) is a function from booleans to numbers and that µx :Int. x has a numeric

type. However, the application will fail to typecheck, triggering a partial evaluation step, which reduces µx :Int. x
before trying to typecheck again. Of course, once again, the application fails to typecheck, and more useless

partial evaluation will continue. Only once the entire depth budget is exhausted will the algorithm determine that

no amount of partial evaluation can �x the type of ((λy:Bool. if y then 1 else 2) (µx :Int. x)). Finally, the algorithm
1
Although our model language does not use booleans, numbers, or if statements, they can all be easily derived from the classic lambda

calculus terms we did discuss. �erefore, we use them in our examples to be more concise.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PETS • 1:13

will perform a step of evaluation on the whole term, reducing it entirely to (), which it can then typecheck

trivially.

One could easily write a search algorithm like pets dfs that instead chooses partial evaluation as its preferred

choice for branching, and while it would speed through typechecking examples like the above, it might slow to a

crawl when typechecking “mostly” typeable programs. A be�er solution would likely involve a good heuristic

for when and where to try partial evaluation, but this may be hard to build generally as it may depend on what

kinds of programs the algorithm can expect. An analytic study of this sort is outside the scope of this work, and

we leave it for the future.

5.2 Other Algorithms
Partial Evaluation. Partial evaluation is most commonly used to improve a program’s performance by moving

computation from runtime to compile time. We can connect this idea of performance-driven partial evaluation to

PETS by considering the following simple algorithm:

let rec simple_pe (k : nat) (e : exp) : (exp * typ) option =
match k with
| O => begin match simple_type_check e with

| None => None
| Some t => Some (e, t)
end

| S k' => begin match eval e with
| None => simple_pe O e
| Some e' => simple_pe k' e
end

�e simple pe function performs k reduction steps (or fewer if no more CBV steps can take place) and then

proceeds to call simple type check, a function that �nds the simple type of a term and does not use partial

evaluation. �e term that simple pe returns as a result will necessarily be the partial evaluation of the input

term.

Clearly, simple pe is sound—it corresponds to a derivation tree that starts with k instances of the Ty-Eval

rule followed by regular typechecking—but just as clearly, it is not depth-complete.

Meta-Programming. Another technique that can be viewed through the PETS lens is meta-programming, which

allows one to write programs that construct other programs. Typically, the programmer will designate certain

fragments of code as splices, which are evaluated at compile time before the typechecker is invoked.
2
A�er the

compiler evaluates these splices, the results are inserted into the code in place of the splice functions, and the

program is then typechecked.

In PETS, meta-programming can be mimicked by introducing a new splice operator and creating a typechecker

that performs partial evaluation only on spliced terms (and at runtime, the splice operator is replaced with a

no-op). Essentially, the algorithm is exactly a standard typechecking algorithm but with the following additional

case:

let rec meta_pe (E : env) (k : nat) (e : exp) : (exp * typ) option = ...
| ...
| exp_splice e =>

2
In some systems, like Template Haskell (Sheard and Jones 2002), the splices are regular, typechecked programs even before they are run at

compile time. Speci�cally, in the case of Template Haskell, a splice must produce a value of one of a handful of special types (e.g., a term,

declaration) and be in a special Q monad. Regardless, when meta-programming is used in statically typed systems, the evaluation of the

splice must be typeable.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1:14 • Daniel Winograd-Cort, Hengchu Zhang, and Benjamin C. Pierce

match (eval e >>= \e' -> meta_pe E (k-1) (exp_splice e')) with
| Some t => return t
| None => meta_pe E (k-1) e

Note that this algorithm is clearly sound but not depth-complete.

Of course, using PETS, one can leverage all the power of meta-programming without needing to manually use

a splice operator. �at is, the splice operator functions as an annotation telling the typechecker where partial

evaluation may be necessary, but with a depth-complete algorithm, the correct path will be found regardless of

annotations.

6 EXAMPLES
In this section, we demonstrate some of the capabilities of PETS with a series of further examples.

6.1 Meta-Programming
We showed in the previous section howmeta-programming can be viewed as a particular algorithmic instantiation

of PETS. Meta-programming creates programs that evaluate to programs of an underlying langauge. Typically,

they contain fragments of code that are treated as data and, by design, must not be evaluated. �e meta-program

manipulates these fragments and splices them together to form the output program. Unfortunately, it is o�en

di�cult to write meta-programs as the code manipulation obfuscates the logic itself.

One use of meta-programming would be to write a function of “variable arity”, such as one whose �rst argument

indicates how many more arguments there will be. �e following variable arity adder (Jones 2016) does just this:

p = (\t.(((t(\n.(\a.(\x.(n(\s.\z.a s (x s z))))))) (\a.a)) zero))

Here, we assume a Church encoding, with the usual abbreviations (i.e., zero, one, etc.). For instance, consider the

following few reductions:

p zero => \s.\z.z
(p one) three => \s.\z.s (s (s z))
((p two) three) four => \s.\z.s (s (s (s (s (s (s z))))))
(((p three) three) four) five => \s.\z.s (s (s (s (s (s (s (s (s (s (s (s z)))))))))))

�e function p is not typeable even with PETS, but when provided with its �rst argument, PETS will correctly

deduce, e.g., that p two has the type nat → nat → nat.
We can look at this same example using a standard meta-programming tool. Consider writing this variable

arity adder with Template Haskell (Sheard and Jones 2002):

var_adder' :: Int -> Q Exp
var_adder' 0 = [| id |]
var_adder' n = do

acc <- newName "acc"
x <- newName "x"
lamE [varP acc, varP x]
(appE (var_adder' (n-1)) (appE (appE [|(+)|] (varE acc)) (varE x)))

var_adder :: Int -> Q Exp
var_adder n = appE (var_adder' n) [| 0 |]

Essentially, this function describes how to create a variable arity adder for a speci�c n by using a helper function

that utilizes an accumulator. When n = 0, the helper function returns the program id, which, when applied

by the main function, will return the accumulator. Otherwise, it generates names for the accumulator and the

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PETS • 1:15

next argument, and constructs a lambda that adds them together and provides them to the recursive call. �e

main function calls the helper with an initial accumulator of 0. To use a speci�c variable adder (say, 4), the

programmer would import the module where var_adder is de�ned and write the code $(var_adder 4) to splice
in the generated function.

�e special syntax necessary for quoting and manipulating terms is cumbersome and sometimes obfuscates

the algorithm. PETS provides the bene�ts of meta-programming without special syntax; indeed, the variable

arity adder can be wri�en in the most natural way,

var_adder' b 0 = b
var_adder' b n = \x -> var_adder' (b+x) (n-1)
var_adder = var_adder' 0

and the partial evaluation will automatically assist the typechecker in �nding appropriate types:

-- one_adder :: Int -> Int
one_adder = var_adder 1
-- four_adder :: Int -> Int -> Int -> Int -> Int
four_adder = var_adder 4

6.2 Partial Evaluation
In the previous example, we saw how PETS can be used to elegantly solve problems that would typically require

some form of meta-programming or more powerful type system. However, meta-programming is also used for

performance reasons: in order to move computation from runtime to compile time. Although not explicitly

designed for it, this functionality is well within PETS’s capabilities.

Performing computation at compile time to improve runtime performance typically falls under the general

name of partial evaluation. A classic example is the naive power function:

pow e b = case e of
| 0 -> 1
| _ -> b * pow (e-1) b

�e pow function takes two arguments, an exponent and a base, and raises the base to the exponent power. To

improve performance, we would like to “unroll” the recursion for a speci�c instance of e to prevent the overhead

of successive recursive calls.

Because pow has a perfectly appropriate type, a PETS algorithm (such as pets dfs from the previous section),

might typecheck it without ever resorting to partial evaluation. However, by being just a li�le bit clever, we can

force evolution to do the partial application work for us. Consider the following untypeable function:

forcepeval c r = if c then r else bot

�is function takes a condition c and a result r ; if c is true, then r is returned, but otherwise, the untypeable term
bot is returned. Because the two branches of the if statement don’t match, forcepeval is never typeable unless

partially evaluated to r . Using forcepeval, we can rewrite pow:

pow e b = case e of
| 0 -> forcepeval (e==0) 1
| _ -> b * pow (e-1) b

All at once, pow no longer typechecks. However, let’s see what happens when we try to typecheck a particular

partial application of pow, such as (pow 2). Indeed, there is a typing derivation that succeeds. Speci�cally, a�er

performing a few steps of partial evaluation interspersed with other typing rules, a PETS algorithm will determine

that there is an evolution of (pow 2) that typechecks. Speci�cally, the evolution will be equivalent to pow2 b =
b * b * 1 just as we wanted.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1:16 • Daniel Winograd-Cort, Hengchu Zhang, and Benjamin C. Pierce

6.3 Piecewise Evaluation
So far, we have demonstrated how to use PETS in a static way, but it can also provide powerful capabilities in a

more dynamic way. Imagine an untyped, interpreted language to which we add a new operation, XTC e , which
typechecks its argument. If typechecking succeeds, XTC e returns a Some result wrapping the typechecked term,

and otherwise, it fails with None. Now consider a simple example with user inputs.

reversemadlibs = do
putStrLn “Enter a format string that takes an int and a bool.”

fmt← getLine
let s = case XTC (sprintf fmt) of
Some f → f 3 True
None→ “Bad format string”

putStrLn s

In reversemadlibs, the user is asked to provide a format string for sprintf with certain type requirements. If the

language were typechecked statically, the typechecker would have no way of knowing if the format string were

appropriate. However, by using XTC, we can enforce that the use of sprintf is valid before running it.

In this simple example, it may be hard to see the di�erence between this form of deferred typechecking and an

altogether untyped language (perhaps with dynamic type assertions). However, the term provided to XTC does

not need to be limited to something simple. �is piecewise static design allows one to mark arbitrary pieces of a

program as needing to be typechecked before execution is allowed.

In fact, this is the design basis on which the Adaptive Fuzz (Winograd-Cort et al. 2017) programming language is

built. Adaptive Fuzz is an extension of Fuzz, a language for di�erential privacy, which uses a powerful type system

to verify that the queries it produces are di�erentially private. Adaptive Fuzz adds to Fuzz by allowing adaptivity

between queries, but because queries may depend on results from previous queries, the Fuzz typechecker cannot

be used to prove any di�erential privacy claims about the whole program. Instead, the typechecker is extended

with the power of partial evaluation and the language is extended with a XTC-like operator. �e resulting

piecewise structure allows the language to verify every query before it is run while still allowing adaptivity

between queries.

7 RELATED WORK
Extending type systems. PETS presents a type system that employs partial evaluation at compile time to extend

the set of typeable terms, such that many additional programs that don’t go wrong are assigned a meaningful

type. �is idea of providing a more precise characterization of safe program through a type system has been

explored in many other directions. In particular, intersection type systems (Barendregt et al. 1983; Coppo et al.

1981) have been shown to exactly characterize the set of terms that have a normal form. Van Bakel (1995) provides

a comprehensive survey of di�erent intersection type systems.

Rocca and Venneri (1983) discovered methods of �nding principal typing derivations in an intersection type

system by using evaluation at “compile time.” Principal typing derivations are derivations from which all other

typing derivations can be derived. Rocca and Venneri described an algorithm for �nding these derivations by

βη-reducing the “approximate normal forms” of the original program in the typechecking phase. �is is intuitively

similar to GA-PETS, where β-reductions are performed during typechecking in an e�ort to �nd evolved terms

that are more typeable.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PETS • 1:17

�e power of intersection types come at the price of some challenging theoretical machinery. PETS provides an

alternative approach towards the same goal with a more lightweight mechanism—just closing typing by subject

expansion under parallel reduction.
3

Partial evaluation. Veldhuizen (2000) described a unique approach to compiling C++ programs. First, C++

source code is �rst translated into an untyped intermediate language in which C++ types are rei�ed as values.

Next, a partial evaluator specializes the intermediate language, where the specialization step provides typecheck-

ing, template function instantiation, and optimization. By varying the degrees of specialization and template

instantiation, the binary code produced can be much smaller than that produced using a traditional compilation

approach.

Interleaving typing and evaluation has also been explored in research on staged computation. Shields et al.

(1998) discussed a staged language that achieves type safety by delaying the typechecking of spliced terms until

runtime. PETS, although not explicitly staged, also employs this interleaving of typing and evaluation in its GA

presentation. Indeed, PETS is allowed to interleave evaluation with typechecking in any order, allowing it to

capture speci�cs of many possible concrete (heuristic) implementations. In particular, the algorithm presented in

§5 chooses to interleave evaluation with typechecking only when all other typing rules fail to apply.

Model-checking algorithms have also been shown to bene�t from partial evaluation. Kobayashi (2009) presented

e�cient algorithms for model checking higher order functions. �e traditional approach �rst converts programs

into recursion schemes and then model checks those schemes, but when done naively, this process explodes in

complexity and becomes impractical. Kobayashi suggests reducing the recursion scheme as the model checking

process proceeds, which is similar to GA-PETS.

Similar Tools. �ere are a number of tools that, although technically di�erent from PETS, can be used to

solve similar problems. For instance, meta-programming—as in Template Haskell (Sheard and Jones 2002),

MetaML (Taha and Sheard 2000), Scheme’s macros (Adams et al. 1998), and others—allow a programmer to write

code that, itself, generates the �nal program. �is can sometimes be simulated with evolution in PETS, but the

programmer is given more precise control in the meta-programming systems. However, in exchange for the extra

freedom, the design of meta-programs is complicated by an extra layer of syntax as well as the semantics of the

meta-language evaluator.

Pre-processors like that of C are o�en used to encode programming idioms that fall outside what the typechecker

can understand. �ey tend to be less context sensitive than languages’ built-in meta-programming tools, which

can be good or bad depending on the task at hand, and they are widely used (Ernst et al. 2002).

Our example of piecewise evaluation in §6.3 has a similar feel to multi-stage programming (Taha 2004), a variety

of meta-programming in which multiple phases of type-safe evaluation take place. Like other meta-programming

styles, multi-stage programming requires annotating at which stage of evaluation each term should be evaluated.

In our example, this is accomplished simply with the type-check operator XTC.
In many cases where PETS can �nd a type for a term, a dependent type system might be able to as well. In

dependently typed languages (such as Cayenne (Augustsson 1999), Agda (Norell 2009), Epigram (Altenkirch et al.

2005), Idris (Brady 2013), etc.), runtime values can be li�ed to the type system to provide extra static information.

�is information can be used to inform the type system how a term will evaluate, thus allowing it to deduce a

much more precise type. One motivation for designing PETS was to achieve some of the precision of dependent

type systems with a much lighter-weight mechanism. While dependent types can provide more static information

to the programmer than PETS, PETS is able to accept piecewise evaluated programs, like in §6.3, while dependent

type systems cannot.

3
We are grateful to Jakob Rehof for this observation.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1:18 • Daniel Winograd-Cort, Hengchu Zhang, and Benjamin C. Pierce

8 LIMITATIONS AND FUTURE WORK

8.1 Theory
Evaluation Schemes. In this work, we showed how one can use PETS in a language that uses call-by-value

semantics. We conjecture that the work can be adapted to call-by-name semantics as well (although we have not

proved this), but we have yet to explore other evaluation strategies or �nd a general form. Ideally, we would

like to be able to list a set of laws that an evaluation strategy must follow, de�ne a method to derive a parallel

reduction scheme from such a strategy, and then have our proofs be applicable to any such strategy. �is will be

a topic of our a�ention going forward.

E�ects. We de�ned PETS over a simple lambda calculus extended with �xed points, but can PETS work on

a language with other e�ects? One possible solution would be to de�ne a subset of the evaluation semantics

in which no e�ects can be performed and use this subset as the PETS evaluation strategy. In other words, the

partial evaluation would be able to perform beta reductions as it does in this work, but it would not be able to

perform any e�ects. �at said, it may be possible for certain e�ects to be allowable during typechecking, and we

would like to explore exactly which ones and how they may work.

Type Inference. It is not clear what the interaction between PETS and type inference is. In certain situations,

the type of an object must be known in order for evaluation to proceed (such as with Haskell’s type classes and

the implicit libraries they pass around), which means that partial evaluation may not be possible when a type

cannot be found. It may be that this presents an obstacle for PETS, limiting its e�ectiveness in complex systems.

We would like to explore this more fully.

8.2 Pragmatics
We have focused on the theoretical aspects of PETS in this paper, but there are many directions to explore in the

future that would make PETS a be�er practical programming environment.

Search Depth. PETS algorithms are de�ned as always taking a depth parameter k , but what values of k should

be used in practice? As k is a measure of the derivation tree depth, an easy heuristic might be to set k proportional

to the size of the term being typechecked. Beyond this, a practical approach would be to iteratively increase k
until either a type is found or a time limit is reached. Experimentation is likely required.

Search Heuristic. As described in §5.1, a good PETS algorithm should use a heuristic to decide whether to try

partial evaluation or simple typechecking. One idea would be to start by performing simple typechecking, and

when this fails, determine why. If there is an unbound variable, perform evaluation steps at its de�nition site

until it is substituted with a value; if a function and its argument don’t have the right type, try to evaluate the

argument to a value and perform the beta reduction anyway. Only by trying to create good heuristics and then

trying them on real examples will we be able to determine what is e�ective.

Fragility. One problem with PETS is that it can typecheck terms that are fragile. A fragile term is one that

typechecks, but small changes in the code, even non-local to the term, can cause typechecking to fail. For instance,

consider the following two de�nitions:

let b = true
let f x = if b then 1 else (if x then 1 else false)

Although f would not typecheck in a typical system, PETS will evaluate the outer if statement to 1 and declare

that f is a constant function that returns a number. However, if we change b to false, then f is no longer typeable,
even under PETS. �us, we call f fragile. It is not clear that allowing fragile terms is a good thing: although it

may make programming easier in the short term, it could lead to hard to manage code in the long term.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PETS • 1:19

Error Messages. PETS introduces a new model for typechecking, and this new model necessitates a new form

of interaction with the user. What should an error message for PETS look like when it cannot �nd a derivation?

Is it useful to see what sort of partial evaluation the PETS algorithm performed when trying to typecheck the

term? We do not yet have answers to these questions.

ACKNOWLEDGMENTS
�is work was supported in part by NSF grants CNS-1065060 and CNS-1513694, and a grant from the Sloan

Foundation.

REFERENCES
N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M.

Pitman, G. J. Rozas, G. L. Steele, Jr., G. J. Sussman, M. Wand, and H. Abelson. 1998. Revised
5
Report on the Algorithmic Language Scheme.

SIGPLAN Not. 33, 9 (Sept. 1998), 26–76. DOI:h�p://dx.doi.org/10.1145/290229.290234
�orsten Altenkirch, Conor McBride, and James McKinna. 2005. Why dependent types ma�er. Manuscript, available online (2005), 235.
Lennart Augustsson. 1999. Cayenne — A Language with Dependent Types. Springer Berlin Heidelberg, Berlin, Heidelberg, 240–267. DOI:

h�p://dx.doi.org/10.1007/10704973 6

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A Filter Lambda Model and the Completeness of Type Assignment.

�e Journal of Symbolic Logic 48, 4 (1983), 931–940. h�p://www.jstor.org/stable/2273659

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal of Functional
Programming 23, 5 (001 009 2013), 552–593. DOI:h�p://dx.doi.org/10.1017/S095679681300018X

Alonzo Church and J. B. Rosser. 1936. Some Properties of Conversion. Trans. Amer. Math. Soc. 39, 3 (1936), 472–482. h�p://www.jstor.org/

stable/1989762

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Be�i Venneri. 1981. Functional characters of solvable terms. Mathematical Logic�arterly
27, 2-6 (1981), 45–58.

Karl Crary. 2009. A simple proof of call-by-value standardization. Computer Science Department (2009), 474.
Michael D Ernst, Greg J Badros, and David Notkin. 2002. An empirical analysis of C preprocessor use. IEEE Transactions on So�ware

Engineering 28, 12 (2002), 1146.

Neil Jones. 2016. Private communication. (2016).

Naoki Kobayashi. 2009. Model-checking Higher-order Functions. In Proceedings of the 11th ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming (PPDP ’09). ACM, New York, NY, USA, 25–36. DOI:h�p://dx.doi.org/10.1145/1599410.1599415

Ulf Norell. 2009. Dependently Typed Programming in Agda. Springer Berlin Heidelberg, Berlin, Heidelberg, 230–266. DOI:h�p://dx.doi.org/
10.1007/978-3-642-04652-0 5

Ross Paterson. 2001. A New Notation for Arrows. In Proceedings of the Sixth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’01). ACM, New York, NY, USA, 229–240. DOI:h�p://dx.doi.org/10.1145/507635.507664

S.Ronchi Della Rocca and B. Venneri. 1983. Principal type schemes for an extended type theory. �eoretical Computer Science 28, 1-2 (1983),
151–169. DOI:h�p://dx.doi.org/10.1016/0304-3975(83)90069-5

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for Haskell. In Proceedings of the 2002 ACM SIGPLAN Workshop on
Haskell (Haskell ’02). ACM, New York, NY, USA, 1–16. DOI:h�p://dx.doi.org/10.1145/581690.581691

Mark Shields, Tim Sheard, and Simon Peyton Jones. 1998. Dynamic Typing As Staged Type Inference. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’98). ACM, New York, NY, USA, 289–302. DOI:h�p:
//dx.doi.org/10.1145/268946.268970

Walid Taha. 2004. A Gentle Introduction to Multi-stage Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 30–50. DOI:h�p:
//dx.doi.org/10.1007/978-3-540-25935-0 3

Walid Taha and Tim Sheard. 2000. MetaML and Multi-stage Programming with Explicit Annotations. �eor. Comput. Sci. 248, 1-2 (Oct. 2000),
211–242. DOI:h�p://dx.doi.org/10.1016/S0304-3975(00)00053-0

Ste�en Van Bakel. 1995. Intersection type assignment systems. �eoretical Computer Science 151, 2 (1995), 385–435.
Todd L Veldhuizen. 2000. Five compilation models for C++ templates. In First Workshop on C++ Template Programming. Citeseer.
Daniel Winograd-Cort, Andreas Haeberlen, Aaron Roth, and Benjamin C. Pierce. Submi�ed 2017. A Framework for Adaptive Di�erential

Privacy. (Submi�ed 2017). Submi�ed manuscript.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://dx.doi.org/10.1145/290229.290234
http://dx.doi.org/10.1007/10704973_6
http://www.jstor.org/stable/2273659
http://dx.doi.org/10.1017/S095679681300018X
http://www.jstor.org/stable/1989762
http://www.jstor.org/stable/1989762
http://dx.doi.org/10.1145/1599410.1599415
http://dx.doi.org/10.1007/978-3-642-04652-0_5
http://dx.doi.org/10.1007/978-3-642-04652-0_5
http://dx.doi.org/10.1145/507635.507664
http://dx.doi.org/10.1016/0304-3975(83)90069-5
http://dx.doi.org/10.1145/581690.581691
http://dx.doi.org/10.1145/268946.268970
http://dx.doi.org/10.1145/268946.268970
http://dx.doi.org/10.1007/978-3-540-25935-0_3
http://dx.doi.org/10.1007/978-3-540-25935-0_3
http://dx.doi.org/10.1016/S0304-3975(00)00053-0

	Abstract
	1 Introduction
	2 Declarative Presentation
	3 Generalized Algorithmic Presentation
	4 Properties of PETS
	4.1 Semantic Type
	4.2 Unicity
	4.3 Progress
	4.4 Preservation

	5 A Deterministic PETS Algorithm
	5.1 ``Standard Type''-Leaning DFS
	5.2 Other Algorithms

	6 Examples
	6.1 Meta-Programming
	6.2 Partial Evaluation
	6.3 Piecewise Evaluation

	7 Related Work
	8 Limitations and Future Work
	8.1 Theory
	8.2 Pragmatics

	Acknowledgments
	References

