
Real-Time Interactive Music in Haskell

Paul Hudak Donya Quick Mark Santolucito Daniel Winograd-Cort
Yale University Department of Computer Science, USA

{paul.hudak, donya.quick, mark.santolucito, daniel.winograd-cort}@yale.edu

Abstract
Euterpea and UISF are two recently released Haskell libraries on
Hackage that facilitate the creation of interactive musical programs.
We show an example of using these two libraries in combination
with Haskell’s support for parallelism to create a complex applica-
tion that generates music in real time in response to user input from
MIDI controllers.

Categories and Subject Descriptors H.5.5 [Information Inter-
faces And Presentation]: Information Systems; D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming

Keywords Haskell, Euterpea, UISF, arrows, functional reactive
programming

1. Introduction
We present a Haskell-based music generation application that illus-
trates the use of two libraries, Euterpea and UISF, for creating inter-
active musical applications. The program has a graphical interface
that allows the user to select different properties about the gener-
ated music. It also takes input from MIDI controllers, the pitches of
which are used to determine the key, bassline, and harmony of the
generated music. Although currently limited to producing a single
style of music, this program demonstrates the potential of using the
Euterpea and UISF libraries in Haskell for building large-scale in-
teractive musical systems. These libraries are also useful in a class-
room setting, providing a user-friendly way for students to build
interactive programs with relatively little code.

This combination of libraries is a unique example of support
for interactive multimedia systems in a pure functional style. Su-
percollider is a popular language for creating interactive music[5],
but uses a very impure functional style. Python is another func-
tional language that has support for creating interactive musical
systems with libraries like JythonMusic[4], but applications using
these libraries tend to be coded in a more imperative style. In pure
functional language development, most work addresses interactive
media of a single type. For example, Tidal is a Haskell library for
live coding that supports musical applications[6]. Since the funda-
mental interface in live coding is code itself, interactive multime-
dia is not required in the same way it is presented here. In contrast
to these other libraries and coding environments, the combination

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

of Euterpea and UISF allows the creation of multimedia systems
while retaining the benefits of coding in a pure functional style with
Haskell: concise code, rapid prototyping, and a rich type system
that eliminates many categories of bugs experienced by imperative
programmers.

2. Euterpea
Euterpea[2] is a domain-specific language for computer music de-
velopment embedded in the functional language Haskell[7]. In ad-
dition to data structures for representing many features of music
and various algorithms for offline music generation, Euterpea also
features support for real-time MIDI I/O, allowing for the creation
of interactive musical applications.

Euterpea’s real-time MIDI I/O interface wraps the low-level
implementations of two other Music-related Haskell libraries,
HCodecs[1] and PortMidi[3], and provides a simpler interface to
the user that allows pure handling of MIDI events. The perfor-
mance of systems written with this approach is good enough that
even complex programs can be very responsive and low-latency.
Using features of the UISF library, Euterpea can also be used to
build musical user interfaces, or MUIs.

3. The UISF Library
UISF[10] is a functional reactive Haskell library for creating graph-
ical user interfaces. Its design is based on the theory of arrows, and
thus its standard use employs Haskell’s arrow syntax. In practice,
this means that adding widgets to a UISF GUI involves adding lines
of code to one’s program that look as follows:

outputStream <- widget -< inputStream

Notice that the special characters (<- ... -<) create the shape of
an arrow pointing to the left: this means that the input stream is
processed through the widget into an output stream.

The library supports standard widgets such as labels, buttons,
sliders, text boxes, check boxes, etc, and the GUI layout can
be changed with transformer functions such as leftRight and
topDown.

Euterpea contains additional widgets to lift real-time MIDI I/O
operations into UISF’s arrowized environment for creating MUIs.
Two such widgets are midiIn and midiOut, which allow the user
to receive and send MIDI messages respectively within a UISF
context. A common use case for these widgets is to take MIDI input
from some device, perform computation on that input, and then
send a collection of new messages to another device. The general
format of code for this is quite straightforward:

midiMsgs <- midiIn -< inputDevice
let newMsgs = f midiMsgs
midiOut -< (outputDevice, newMsgs)

The simplicity of these widgets makes them an excellent candi-
date for simple MIDI applications, such as music-related home-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

FARM’15, September 5, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3806-6/15/09
http://dx.doi.org/10.1145/2808083.2808087

15

work assignments and term projects for students learning about
Haskell. However, these widgets suffer from one problem: the han-
dling of MIDI events in the code above is actually tied to the update
rate of the UISF-based graphical interface—which is in turn lim-
ited by properties of the underlying graphics implementation. An
update rate of 60 frames per second is sufficient for graphics, but
is slow for many types of music. As a result, computation-heavy
programs that also require precise timing at fast tempos can expe-
rience audible timing issues. Fortunately, there is an easy and user-
friendly way to overcome this and achieve good performance even
under demanding conditions.

4. Improving Performance with Parallelism
Previously, we presented a technique of media modules to create
intermedia and multi-rate applications[9]. The media module de-
sign allows different media-producing components to communicate
without requiring significant structural changes to individual mod-
ules or impacting performance.

We incorporated the media module design directly into Euterpea
and UISF to create a new parallel, multi-rate, low-latency widget
for MIDI output. This new widget takes as an argument a function
that produces MIDI messages as well as timing information of how
this function should run and automatically parallelizes it and sets
up the appropriate communication channels. In practice, the user
need only exchange the previously stated midiOut widget with a
line such as:

asyncMidi midiGen -< (outputDevice, midiInput)

where midiGen is an algorithm for processing the MIDI mes-
sages in midiInput. A key point of this technique is that any po-
tentially unsafe effects that are typical of asynchrony and shared
memory are not directly exposed to the users. Instead, we allow the
user to write pure Haskell code to describe the behavior of the in-
dividual components (music generation and user interface) without
worrying about the underlying implementation.

5. Application: A Three-Part Music Generator
To demonstrate the use of Euterpea and UISF, we present a pro-
gram that generates music stochastically based on user input1. The
program uses UISF to allow the user to select properties of the gen-
erated music and iterates through the following two-step pattern to
generate a series of MIDI messages as output:

1. Over a fixed-length cycle (either a beat or a measure depending
on the selected settings), MIDI input is taken from the MIDI
devices specified via the GUI and placed in a buffer. The buffer
is cleared after each cycle. MIDI input can be taken from any
number of MIDI input devices.

2. A key-finding algorithm is run on the pitches received during
the last cycle. The determined key is used as input for generat-
ing music in the next cycle.

The user is able to alter the key of the harmony and the bassline
by providing input from a standard MIDI controller. For example,
if the currently playing music is in C-major and the user plays an E-
flat-major triad (the pitch classes E-flat, G, and B-flat), the program
should switch to E-flat major. Depending on the settings chosen,
the bassline will either use primarily the root and fifth of the key
or it will be stochastically chosen from the pitch classes in the user
input. The harmony at each step is generated stochastically using
a Haskell implementation for chord spaces[8], which are a way of
mathematically grouping collections of pitches in musically mean-
ingful ways. The overall style of the output produced is similar to

1 Our implementation is available at http://haskell.cs.yale.edu.

Music Generation
with Euterpea

User Interface

Drum pattern,
MIDI devices,
current pitches
in buffer, etc.

MIDI Output
Devices

MIDI messages

MIDI Input
Devices

MIDI messages

Music Generator
Thread 1

Thread 2

Current beat

Figure 1. Illustration of information flow between the two threads
of the music generator program. Because the timing of the user
input is less critical, MIDI input can be taken at the slower UISF
update rate without harming performance.

pop music, and the chord spaces used generate jazzy harmonies.
Using the approach described in section 4, the program’s perfor-
mance is smooth and responsive. Figure 1 shows the overall pat-
tern of communication between MIDI devices and threads in the
program.

6. Conclusion
Euterpea and UISF are powerful libraries for creating interactive
musical programs in Haskell. Euterpea allows easy manipulation
of musical structures, and UISF enables the creation of graphical
interfaces with a concise and elegant coding style. These two li-
braries are very easy to use, making them a great tool for teaching
functional programming techniques in a musical context.

Acknowledgments
This research was supported in part by NSF grant CCF-0811665.
Authors are listed in alphabetical order and contributed equally to
the work presented in this article.

References
[1] G. Giorgidze. HCodecs, 2014. URL https://hackage.haskell.

org/package/HCodecs.
[2] P. Hudak. Euterpea, 2014. URL http://haskell.cs.yale.edu/

euterpea/.
[3] P. H. Liu. PortMidi, 2015. URL https://hackage.haskell.org/

package/PortMidi.
[4] B. Manaris, A. R. Brown, and T. Kohn. Making music with computers:

Creative programming in python. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, pages 705–
705. ACM, 2015.

[5] J. McCartney. Rethinking the computer music language: SuperCol-
lider. Comput. Music J., 26(4):61–68, Dec. 2002. ISSN 0148-9267.

[6] A. McLean. Making programming languages to dance to: live coding
with tidal. In Proceedings of the 2nd ACM SIGPLAN international
workshop on Functional art, music, modeling & design, pages 63–70.
ACM, 2014.

[7] S. Peyton Jones. The Haskell 98 Language and Libraries: the Revised
Report. Journal of Functional Programming, 13(1):0–255, Jan 2003.

[8] D. Quick and P. Hudak. Grammar-Based Automated Music Composi-
tion in Haskell. In Proceedings of the first ACM SIGPLAN workshop
on Functional Art, Music, Modeling, and Design, pages 59–70, 2013.

[9] M. Santolucito, D. Quick, and P. Hudak. Media Modules: Intermedia
Systems in a Pure Functional Paradigm (forthcoming). In Proceedings
of International Computer Music Conference, 2015.

[10] D. Winograd-Cort. UISF, 2015. URL https://hackage.haskell.
org/package/UISF.

16

